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Determining full conditional independence
by low-order conditioning
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A concentration graph associated with a random vector is an undirected graph where each vertex corre-
sponds to one random variable in the vector. The absence of an edge between any pair of vertices (or
variables) is equivalent to full conditional independence between these two variables given all the other
variables. In the multivariate Gaussian case, the absence of an edge corresponds to a zero coefficient in the
precision matrix, which is the inverse of the covariance matrix.

It is well known that this concentration graph represents some of the conditional independencies in the
distribution of the associated random vector. These conditional independencies correspond to the “separa-
tions” or absence of edges in that graph. In this paper we assume that there are no other independencies
present in the probability distribution than those represented by the graph. This property is called the perfect
Markovianity of the probability distribution with respect to the associated concentration graph. We prove
in this paper that this particular concentration graph, the one associated with a perfect Markov distribution,
can be determined by only conditioning on a limited number of variables. We demonstrate that this number
is equal to the maximum size of the minimal separators in the concentration graph.

Keywords: conditional independence; graphical models; Markov properties; separability in graphs;
undirected graphs

1. Introduction

Let (X ,G, F ) be a triple where X = ×α∈V Xα is a product probability space, G = (V ,E)

is a graph with a finite set of vertices V and a set of edges E ⊆ V × V in which a certain
separation criteria C is defined, and F is a family of probability distribution of random vectors
X = (Xα,α ∈ V )′ with values in X . The triple (X ,G, F ) is called a graphical model if it satisfies
the following property called the global Markov property.

Let A, B and S be three disjoint subsets where A and B are non-empty. If S separates A and
B according to the criteria C in G, denoted by A⊥C B|S, then the random vectors XA and XB

are independent given XS , where XA, XB and XS are subvectors of X indexed respectively by
the subsets of vertices A, B and S. So

A⊥C B|S then XA ⊥⊥XB |XS. (1)

Note that the graph G should not contain loops – that is, an edge linking one vertex to itself –
and any pair of vertices in G is connected at maximum by one edge, that is, there are no multiple
edges between any given pair of vertices.

1350-7265 © 2009 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/09-BEJ193
mailto:dhafer.malouche@essai.rnu.tn


1180 D. Malouche

When the graph G has only undirected edges, that is,

(α,β) ∈ E ⇐⇒ (β,α) ∈ E,

the associated graphical model is called a concentration graph model (see Lauritzen (1996)).
Dempster (1972) studied concentration graph models for Gaussian distributions under the name
of covariance selection or covariance selection models. The absence of an edge between a given
pair of vertices (α,β) in the associated graph indicates that the random variable Xα is inde-
pendent of Xβ given all the other variables X−αβ = (Xγ , γ �= α,β)′. These models are very
well studied, especially the ones corresponding to Gaussian distributions (see Whittaker (1990),
Lauritzen (1996), Edwards (2000) and, recently, Letac and Massam (2007) and Rajaratnam et al.
(2008)). The separation criteria defined on such graphs is a simple separation criteria on undi-
rected graphs: S ⊆ V separates two disjoint non-empty subsets A and B of V if any path joining
a vertex in A and another in B intersects S.

Other graphical models are represented by graphs with bi-directed edges. These models are
called covariance graph models. The absence of an edge between a given pair of vertices (α,β)

implies that Xα is marginally independent from Xβ , denoted Xα ⊥⊥Xβ . The separation criteria in
bi-directed graphs can be defined as follows: If A, B and S are three disjoint subsets of V , where
S could be empty, the subset S separates A and B in the bi-directed graph G if V \ (A ∪ B ∪ S)

separates A and B , that is, any path connecting A and B intersects V \ (A∪B ∪S). In this paper
this graph will be represented by non-directed edges and will be denoted by G0. So the global
Markov property on G0, also called the covariance global Markov property, can be defined as
follows (see Chaudhuri et al. (2007)):

If V \ (A ∪ B ∪ S) separates A and B in G0, then XA ⊥⊥XB |XS. (2)

Let P be a probability distribution belonging to a certain graphical model (X ,G, F ). The
probability distribution P is said to be perfectly Markov to G if the converse of the global Markov
property (1) is also satisfied, that is, for any triple of disjoint non-empty subsets (A,B,S) where
S is not empty,

A⊥C B|S ⇐⇒ XA ⊥⊥XB |XS. (3)

It was conjectured in Geiger and Pearl (1993) that for any undirected graph G we can find
a Gaussian probability distribution P that is perfectly Markov to G. In the Gaussian case the
perfect Markovianity assumption is equivalent to the following property: For all non-adjacent
vertices α and β in V and for all S ⊆ V \ {α,β} and S �= ∅,

S separates α and β ⇐⇒ Xα ⊥⊥Xβ |XS. (4)

In this paper we will consider an undirected graph G = (V ,E) and a probability distribution P

that is perfectly Markov to G. Hence, if X = (Xα,α ∈ V )′ is a random vector with distribution P ,
then G satisfies the following condition

(α,β) /∈ E ⇐⇒ Xα ⊥⊥Xβ | X−αβ,
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and if A, B and S are three disjoint non-empty subsets of V

S separates A and B in G ⇐⇒ XA ⊥⊥XB |XS.

The aim of this paper is to prove the existence of a relationship between the cardinality of the
separators in G and the maximum number of conditioning variables needed to determine the full
conditional independencies in P . We proceed first by defining a new parameter for undirected
graphs, called the “separability order”. Subsequently we prove that when we condition on a
fixed number of variables equal to this separability order, the graph that is obtained is exactly
the concentration graph.

The paper is organized as follows. Section 2 is devoted to the definition of this parameter
and of some properties thereof. In Section 3, we will define a sequence of undirected graphs
constructed due to conditional independencies for a given fixed number k ∈ {0, . . . , |V | − 2}.
More precisely, we define the k-graph Gk = (V ,Ek) by

(α,β) /∈ Ek ⇐⇒ ∃S ⊆ V \ {α,β} such that |S| = k and Xα ⊥⊥Xβ |XS. (5)

When k = 0, the conditional independence given an empty set corresponds to the marginal in-
dependence between Xα and Xβ . In the case when k = 0, the corresponding k-graph is then
denoted by G0 and constructed using the pairwise Markov property with respect to bi-directed
graphs (see Cox and Wermuth (1996) and Chaudhuri et al. (2007)). We mean that

α �∼G0 β ⇐⇒ Xα ⊥⊥Xβ.

The graph G0 is also called a covariance graph (see Chaudhuri et al. (2007)). Wille and Bühlman
(2006) define a graph called a 0–1 graph, which corresponds to a graph with a set of edges
equal to E0 ∩ E1. We will show later (see Lemma 7) that this graph is equal to G1. Castello and
Roverato (2006) consider so called k-partial graphs G

p
k = (V ,E

p
k ), which are defined as follows:

α �∼Gk
β ⇐⇒ ∃S ⊆ V \ {α,β} such that |S| ≤ k and Xα ⊥⊥Xβ |XS. (6)

Obviously for a fixed k, E
p
k ⊆ Ek . We will show later (see Lemma 8) that the k-partial graph G

p
k

is equal to Gk . The principle result we prove in this paper (see Theorem 4) is that Ek ⊆ · · · ⊆
E1 ⊆ E0 and that G is equal to Gk , where k is the separability order of G. The main assumption
of this result is that probability distribution P of the random vector X is perfectly Markov to G.

2. Separability order

An undirected graph G = (V ,E) is a pair of sets where V is the set of vertices and E is the set
of edges that is a subset of V × V , where

(α,β) ∈ E ⇐⇒ (β,α) ∈ E.

For α,β ∈ V , we write α ∼G β when α and β are adjacent in G, that is, (α,β) ∈ E. A complete
graph is a graph where all the vertices are adjacent, and an empty graph is a graph where the set of
edges is empty, that is, E = ∅. A path between a pair of vertices (α,β) is a sequence of distinct
vertices α0, α1, . . . , αn such that α0 = α, αn = β and αi ∼G αi+1 for all i = 0, . . . , (n − 1).
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Let U ⊆ V . A subgraph of G induced by U is an undirected graph GU = (U,EU) such that
EU = U × U ∩ E.

A connected graph is a graph G where any pair of vertices can be joined by a path. So a
connected component of a graph is a subset of V that induces a maximal connected sub-graph of
G, i.e., C ⊆ V is a connected component of G if GC is a connected subgraph of G and, for any
α ∈ V \ C, ∀β ∈ C, there is no path between α and β .

For any non-adjacent vertices α �∼G β in a graph G and for any S ⊆ V \ {α,β}, we say that S

is a separator of α and β in G if all the paths between α and β in G intersect S. Consequently,
any S′ ⊇ S and S′ ⊆ V \ {α,β} is also a separator of α and β . The separator S is called a minimal
separator of α and β if, for any S′ ⊆ S and S′ �= S, S′ cannot be a separator of α and β . We
denote by msG(α,β) the set of minimal separators of α and β in G. It is clear that the set
msG(α,β) = ∅ if and only if α,β are in two different connected components of G.

Let us now give the definition of the separability order of an undirected graph:

Definition 1. The separability order of a given graph G = (V ,E) is

so(G) = max
α �∼Gβ

min{|S|, S ∈ msG(α,β)} (7)

if G is not complete, and so(G) = +∞ if G is complete.

Note that complete graphs have a separability order of infinity. Also, empty graphs, that is,
graphs with no edges between the vertices of G, have a separability order equal to zero. Con-
versely, if so(G) = 0 then either G is composed only of complete connected components or G is
an empty graph. We also note that the separability order is purely a graph-theoretic concept.

We now give an example and proceed to prove basic properties of the separability order (see
Lemma 1).

Example 1. The graph in Figure 1 is an undirected graph containing five vertices. Its separability
order, so(G), is equal to 2. We can easily see that

msG(1,3) = {{2}}, msG(2,5) = {{3,4}},
msG(1,4) = {{2}}, msG(1,5) = {{3,4}, {2}}.

Hence so(G) = 2. The degree of the graph G, d(G), defined in (10) is equal to 3.

Figure 1. so(G) = 2 and d(G) = 3.
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Lemma 1. Let G = (V ,E) be an undirected graph with connected components

G1 = (V1,E1), . . . ,Gs = (Vs,Es),

with s ≥ 2, and so(G) = m. Then

(i) m = 0 if and only if all the connected components of G are either complete or singletons.
(ii) m = +∞ if and only if G is complete.

(iii) When m > 0, the following properties are satisfied:
1. There exists a pair (α,β) of non-adjacent vertices and a minimal separator S of this

α and β such that |S| = m.
2. For any pair of non-adjacent vertices there exists a separator of these two vertices

with cardinality equal to m.
(iv) When m > 0, the separability order, so(G), is equal to the maximum separability order

among all its non-complete connected components:

so(G) = max{so(Gl),Gl non-complete}. (8)

Proof. The proof of items (ii) and (iii) follows immediately from Definition 1.

(i) If m = 0, this means that for any α �∼G β the only separator of these vertices is the empty
set. Hence α and β belong to different connected components. Moreover, in each con-
nected component of G there are non-adjacent vertices, since m = 0. Hence all the con-
nected components of G are either complete or singletons. The converse of this statement
follows easily from the definition of the separability order.

(iv) Let us define the pairwise separability order of a given pair of vertices α and β

so(α,β|G) = min{|S|, S ∈ msG(α,β)}. (9)

Now let G1, . . . ,Gl be the sequence of non-complete connected components of G.
Now so(α,β | G) = 0, if α ∈ Gi and β ∈ Gj when i �= j and i, j ∈ {1, . . . , l}.
Thus we can focus on the pairwise separability order of pairs within non-complete

connected components. Then

so(G) = max
α �∼Gβ

min{|S|, S ∈ msG(α,β)}
= max

α,β∈Vk,k=1,...,l
max

α �∼Gk
β

min{|S|, S ∈ msGk
(α,β)}

= max
k=1,...,l

max
α �∼Gk

β
min{|S|, S ∈ msGk

(α,β)}

= max
k=1,...,l

so(Gk). �

It is important to note that the separability order defined in this paper is exactly equal to the
outer connectivity of the missing edges defined by Castello and Roverato (2006) for connected
graphs. We can also prove that the separability order of a non-complete undirected graph G is
always smaller than its degree (Lemma 2 below).
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Lemma 2. Let G = (V ,E) be a non-complete undirected graph; then

so(G) ≤ d(G),

where

d(G) = max
α∈V

d(α|G), (10)

where d(α|G) = |{γ,α ∼G γ }|.

Proof. Let α be a vertex in V , and let V (α|G) be the set of vertices adjacent to α. So d(α|G) =
|V (α|G)|, the degree of α in G. Let β be a vertex non-adjacent to α. It is easy to see that V (α|G)

and V (β|G) are also separators between α and β . Also it is easy to see that V (α|G) always
contains one minimal separator between α and β . For example, the set of vertices γ denoted by
S(α|G) that are simultaneously adjacent to α and belonging to one path between α and β is a
minimal separator of α and β . If we suppress one vertex from this S(α|G), this latter set will no
longer be a separator between α and β . The same thing also occurs for V (β|G). Hence

min{|S|, S ∈ msG(α,β)} ≤ max(d(α|G),d(β|G)).

Then,

so(G) = max
α �∼Gβ

{
min{|S|, S ∈ msG(α,β)}} ≤ max

α �∼Gβ
max(d(α|G),d(β|G))

= max
α∈V

d(α|G) = d(G).

So, so(G) ≤ d(G). �

We now define the degree two of an undirected graph.

Definition 2. Let G = (V ,E) be an undirected graph. The degree two of a vertex in G is defined
by,

d2(α|G) = |{γ,α ∼G γ and d(γ |G) ≥ 2}|
and the degree two of the graph G, d2(G), is

d2(G) = max
α∈V

d2(α|G).

We give an example to illustrate the degree two of a simple undirected graph.

Example 2. The graph in Figure 2 has d2(G) = 1, d(G) = 3, so(G) = 1.

It is easily seen that in practice the computation of the separability order is an NP-complete
problem. The degree two of a graph could be a good upper bound for this separability order, as
this quantity is more easily computable. We prove that so(G) ≤ d2(G) in Lemma 3 below.
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Figure 2. d2(G) = 1, d(G) = 3, so(G) = 1.

Lemma 3. Let G = (V ,E) and G′ = (V ,E′) be two undirected graphs. Then

(i) if E ⊆ E′, then d2(G) ≤ d2(G
′),

(ii) if G is connected and non-complete so(G) ≤ d2(G).

Proof.

(i) First let us define V2(α|G) as follows:

V2(α|G) = {γ,α ∼G γ and d(γ |G) ≥ 2}.
Now for any α ∈ V , V2(α|G) ⊆ V2(α|G′). Hence |V2(α|G)| ≤ |V2(α|G′)| and thus
d2(α|G) ≤ d2(α|G′). This inequality is valid for any α and taking the maximum on α

on either side gives d2(G) ≤ d2(G
′).

(ii) If so(G) = m, then, using Lemma 1, part (iii), there exist α and β such that α �∼G β and
a minimal separator S with cardinality |S| = m. Now V2(α | G) contains the set S(α|G),
which is a minimal separator between α and β (as defined in the proof of Lemma 2). As S

is the smallest minimal separator of α and β ,

m ≤ |S(α|G)| ≤ |V2(α|G)| ≤ d2(G)

since d2(G) = maxα∈V |V2(α|G)|. Hence so(G) ≤ d2(G). �

3. Concentration graph by low-order conditioning

As before, let G = (V ,E) be an undirected graph with the set of vertices V and the set of
edges E. Let X =×α∈V Xα be a product probability space. The aim of this section is to prove
the following result.

Theorem 4. Let (X ,G, F ) be a concentration graph model and P a probability distribution
belonging to F . Let us consider for any k ∈ {0, . . . , |V | − 2} the undirected graph Gk = (V ,Ek)

constructed as described in (5):

α �∼Gk
β ⇐⇒ ∃S ⊆ V \ {α,β} such that |S| = k and Xα ⊥⊥Xβ |XS.

Suppose that P is perfectly Markov to G and so(G) = m, then

E = Em ⊆ Em−1 ⊆ · · · ⊆ E1.
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Furthermore, if so(G0) < |V | − 2, then E1 ⊆ E0.

Theorem 4 will be proved using the following series of lemmas.

Lemma 5. Let (X ,G, F ) be a concentration graph model and let P be a probability distribution
belonging to F . Suppose that G is connected and non-complete and so(G) = m where m > 0.
Suppose also that P is perfectly Markov to G. Then G = Gm, where Gm is the undirected graph
constructed using (5).

Proof. Let α and β be two vertices and let us consider a random vector X = (Xα,α ∈ V )′ with
distribution P . For any pair (α,β) such that α �∼G β , from Lemma 1(iii), there exists a non-
empty subset S with cardinality equal to m that is a separator of α and β . Using the global
Markov property with respect to G (see (1)), we can conclude that Xα ⊥⊥Xβ |XS . Using (5) we
conclude that α �∼Gm β . Since this is valid for any pair (α,β) we can conclude that Em ⊆ E.

Conversely, suppose that α �∼Gm β; then there exists a separator S ⊆ V \ {α,β} with cardi-
nality m such that Xα ⊥⊥Xβ |XS . Using the perfect Markovianity property we can say that S

separates α and β in G. Thus we can assert that α �∼G β . Since this argument is valid for any
(α,β) we can conclude that E ⊆ Em.

We have altogether shown that Em ⊆ E and E ⊆ Em, hence E = Em, and thus G = Gm. �

Lemma 6. Let (X ,G, F ) be a concentration graph model and let P be a probability distribution
belonging to F . For m,k ∈ N, let Gm and Gk be two undirected graphs constructed using (5).
If P is perfectly Markov to G and 1 ≤ m ≤ k ≤ |V | − 2 then Ek ⊆ Em.

Proof. Let α and β be two vertices. Let us consider a random vector X = (Xα,α ∈ V )′ with
distribution P . Suppose that α �∼Gm β , then there exists a separator S ⊆ V \ {α,β} with cardi-
nality m such that Xα ⊥⊥Xβ |XS . By the perfect Markovianity property we can conclude that S

separates α and β in G. But since k ≥ m, we can find a subset S′ of V \ {α,β} containing S with
cardinality k such that S′ is a separator of α and β in G. Using the global Markov property, we
determine that Xα ⊥⊥Xβ |XS′ . Hence α �∼Gk

β .
Since α �∼Gm β implies that α �∼Gk

β for any pair (α,β), we can conclude that Ek ⊆ Em. �

Lemma 7. Let P be a probability distribution in X . Let G0 = (V ,E0) and G1 = (V ,E1) be
two undirected graphs constructed using (5) for k = 0,1, respectively. If G0 is connected and
so(G0) = m0 < |V | − 2, then E1 ⊆ E0.

Proof. Let α and β be two vertices and let us consider a random vector X = (Xα,α ∈ V )′ with
distribution P . Suppose that α �∼G0 β . By assumption so(G0) = m0, hence there exists a subset
S of V \ {α,β} for which |S| = m0. Let γ ∈ V \ (S ∪ {α,β}), which is not empty because
m0 < |V | − 2. Then V \ {α,β, γ } contains S and so it is a separator of α and β in G0. So {γ }
m-separates {α} and {β} in G0. Here G0 is seen as an ancestral graph. Using the covariance
global Markov property (2) with respect to bi-directed graphs (see Cox and Wermuth (1996),
Chaudhuri et al. (2007), or Drton and Richardson (2008)), we can conclude that Xα ⊥⊥Xβ |Xγ .
Then α �∼G1 β . Hence E1 ⊆ E0. �
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It is easily seen that the results in Lemmas 5–7 lead to the proof of Theorem 4. Castello
and Roverato (2006) prove, by also assuming the perfect Markovianity, that the concentration
graph model G is equal to the k-partial graph G

p
k as defined in (6) when k is smaller than the

separability order of G, referred to in that paper as the “outer connectivity of the missing edges”.
The result in Theorem 4, however, is based on a construction of a sequence of nested graphs. It
starts from the covariance graph, that is, G0, the 0-graph, and it becomes stationary and equal to
the concentration graph when the number of conditioning variables is equal to the separability
order of the concentration graph.

In Lemma 8, we show that k-partial graphs and k-graphs are equal when the perfect Marko-
vianity assumption is satisfied. Next, we give a corollary of Theorem 4. In Corollary 9 we give a
condition that allows us to determine the last undirected k-graph in the sequence of nested graphs
obtained due to Theorem 4. This condition is given in term of the degree two of the k-graphs, not
as in Castello and Roverato (2006), where this condition is expressed as a function of the outer
connectivity of connected edges, a quantity that can be difficult to compute.

Lemma 8. Let X = (Xα,α ∈ V )′ be a random vector with distribution P belonging to a graph-
ical model generated by an undirected graph G = (V ,E). The undirected graphs G

p
k = (V ,E

p
k )

and Gk = (V ,Ek) are respectively the k-partial graph and the k-graph defined as in (6) and (5).
If P is perfectly Markov w.r.t. to G then for any k ∈ {1, . . . , |V | − 2}, we have E ⊆ Ek = E

p
k .

Proof. By definition it is easily seen that α �∼Gk
β implies α �∼G

p
k

β , hence Ek ⊆ E
p
k .

Now let us assume that α �∼G
p
k

β , then there exists S ⊆ V \ {α,β}, |S| ≤ k such that

Xα ⊥⊥Xβ |XS = (Xγ , γ ∈ S)′. If |S| = k, the problem is solved. If |S| < k, using the per-
fect Markovianity of P we can say that S separates α and β in G. Then we can construct an
S′ ⊆ V \ {α,β} with |S′| = k, S′ ⊇ S such that S′ separates α and β in G. We can now use
the global Markov property (see (1)), to assert that Xα ⊥⊥Xβ |XS′ and hence α �∼Gk

β . We can
therefore deduce that E

p
k ⊆ Ek . Since Ek ⊆ E

p
k and E

p
k ⊆ Ek we can conclude that E

p
k = Ek .

The inclusion E ⊆ Ek has already been proved in Theorem 4. �

We can also deduce the following corollary from Theorem 4.

Corollary 9. Let (X ,G, F ) be a concentration graphical model such that G is a non-complete
connected graph and let P be a probability distribution belonging to F . Let us consider for any
k ∈ {0, . . . , |V | − 2} the undirected graph Gk = (V ,Ek) constructed as described in (5). Let us
assume that P is perfectly Markov to the graphical model G and d2(G) ≤ |V | − 2. Then there
exists k ∈ {1, . . . , |V | − 2} such that

d2(Gk) ≤ k and G = Gk. (11)

Proof. Let us assume that for all k ∈ {1, . . . , |V | − 2} that d2(Gk) > k. This implies for example
that d2(G|V |−2) > |V | − 2. As the concentration graph G is exactly the G|V |−2 we deduce that
d2(G) > |V |−2 which is a contradiction with our assumption, i.e., d2(G) ≤ |V |−2. Hence there
exists an integer k such that d2(Gk) ≤ k. But E ⊆ Ek and, applying Lemma 3(ii), we deduce that
so(G) = m ≤ d2(G) ≤ d2(Gk) ≤ k.
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Using Theorem 4, as k ≥ m, we can conclude that G = Gm = Gk . �

Corollary 9 can be useful if we wish to determine the concentration graph from a given data set
when assuming perfect Markovianity. It is sufficient to check the degree two of each estimated
k-graph.

4. Conclusion

In this paper we have proved that a concentration graph model can be determined using a limited
number of conditioning variables. The cardinality of this limited subset is determined by looking
at the structure of the undirected graph associated with the corresponding distribution global
Markov property. Certainly the perfect Markovianity assumption is also needed for our result to
be valid. Our result remains true for both continuous and discrete distributions.

Our result can also be used as a justification of the estimation of graphical models by low-order
conditioning such as using the PC algorithm (see Spirtes et al. (2000), Kalisch and Bühlmann
(2007), Kjærulff and Madsen (2007)), the 0–1 procedure (see Friedman et al. (2000) and Wille
and Bühlman (2006)), or the qp-procedure (see Castello and Roverato (2006)). Practical appli-
cations of these procedures are useful when the number of observations are far fewer than the
number of variables. We first estimate the sequence of nested graphs Gk starting from k = 0
(test on marginal independence between variables) and proceed accordingly. This procedure is
terminated when the number of conditioning variables becomes greater than the degree two of
the estimated graph Gk . In this sense the theory above has tremendous scope for applications.
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