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A distribution for a pair of unit vectors
generated by Brownian motion
SHOGO KATO

Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan.
E-mail: skato@ism.ac.jp

We propose a bivariate model for a pair of dependent unit vectors which is generated by Brownian motion.
Both marginals have uniform distributions on the sphere, while the conditionals follow so-called “exit”
distributions. Some properties of the proposed model, including parameter estimation and a pivotal statistic,
are investigated. Further study is undertaken for the bivariate circular case by transforming variables and
parameters into the form of complex numbers. Some desirable properties, such as a multiplicative property
and infinite divisibility, hold for this submodel. Two estimators for the parameter of the submodel are studied
and a simulation study is carried out to investigate the finite sample performance of the estimators. In an
attempt to produce more flexible models, some methods to generalize the proposed model are discussed.
One of the generalized models is applied to wind direction data. Finally, we show how it is possible to
construct distributions in the plane and on the cylinder by applying bilinear fractional transformations to
the proposed bivariate circular model.
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1. Introduction

In a variety of scientific fields, observations are described as pairs of d-dimensional unit vectors.
In meteorology, for example, wind directions at the weather station in Milwaukee at 6 a.m. and
noon (Johnson and Wehrly (1977)) are data of this type with d = 2. Another example with d = 3
consists of directions of the magnetic field in a rock sample before and after some laboratory
treatment (Stephens (1979)).

For the analysis of data of this type, various stochastic models have been proposed in the
literature. Some distributions with certain marginals or conditionals are seen in Mardia (1975),
Wehrly and Johnson (1980), Rivest (1988, 1997), Downs and Mardia (2002), SenGupta (2004)
and Shieh and Johnson (2005). Among various works on distributions for bivariate angular data
considerable attention has been paid to models with uniform marginals, which can be viewed as
spherical equivalents of copulas. Johnson and Wehrly (1977) provided a bivariate circular dis-
tribution with uniform marginals and von Mises conditionals. Saw (1983) introduced a bivariate
family with uniform marginals for pairs of dependent unit vectors which is an offset distribu-
tion of the multivariate normal distribution with some restrictions on parameters. Rivest (1984)
discussed a certain class of distributions with so-called “O(d)-symmetric” densities, which has
uniform marginals. Recent work by Alfonsi and Brigo (2005) proposed new families of copulas
based on periodic functions.

The potential application of these special copulas is not restricted to the bivariate angular data
whose marginals are uniformly distributed. Saw (1983) constructed a method which extends
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these copulas to distributions having any rotationally symmetric marginals. In the bivariate cir-
cular case, it is also possible to use a well-known technique in copula theory to generalize the
model. These methods enable us to provide a bivariate model with prescribed marginals.

The main purpose of this paper is to introduce a new distribution with uniform marginals
which is generated by R

d -valued Brownian motion. To our knowledge, distributions for bivariate
angular data have not previously been proposed based on Brownian motion. In this paper, a new
approach is taken to provide a tractable model. This method enables us to define a class of
bivariate distributions with uniform marginals and derive some desirable properties. We also
discuss generalization of the proposed model.

Section 2 suggests a model for two dependent unit vectors and Section 3 investigates properties
of the proposed model, including parameter estimation and a pivotal statistic. In Section 4, we
focus on the bivariate circular case of the model and discuss its properties in detail. It is shown
that some desirable properties, such as a multiplicative property and infinite divisibility, hold for
this submodel. Some properties of two estimators for the parameter of the submodel are studied
by means of a simulation study. In Section 5, generalizations of the proposed model are discussed
and one of the extended models is applied to wind direction data. Finally, in Section 6, related
models on R

2 and on the cylinder are constructed by applying bilinear fractional transformations
to the proposed model.

2. A model for a pair of unit vectors

2.1. Definition of the proposed model

Let {Bt ; t ≥ 0} be R
d -valued Brownian motion where d ≥ 2. Starting at B0 = 0, a Brownian

particle will eventually hit a d-sphere with radius ρ (∈ (0,1)). Let τ1 be the minimum time at
which the particle exits the sphere, that is, τ1 = inf{t; ‖Bt‖ = ρ}, where ‖ · ‖ is the Euclidean
norm. After leaving the sphere with radius ρ, the particle will hit a unit sphere first at time τ2,
meaning τ2 = inf{t; ‖Bt‖ = 1}. The proposed model is then defined by the joint distribution of a
random vector (

Q
Bτ1

‖Bτ1‖
,Bτ2

)
,

where Q is a member of O(d), the group of orthogonal transformations on R
d . Note that the

reason for multiplying Q by Bτ1/‖Bτ1‖ is to make the model more flexible without losing its
tractability.

2.2. Probability density function

For convenience, write (U,V ) = (QBτ1/‖Bτ1‖,Bτ2). It is clear that (U,V ) is a random vector
where each variable takes values on the unit sphere. The joint distribution of (U,V ) has density

c(u, v) = 1

A2
d−1

1 − ρ2

(1 − 2ρu′Qv + ρ2)d/2
, u, v ∈ Sd−1, (2.1)
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where ρ ∈ [0,1),Q ∈ O(d),Sd−1 = {x ∈ R
d ; ‖x‖ = 1}, x′ is the transpose of x and Ad−1 is

surface area of Sd−1, that is, Ad−1 = 2πd/2/�(d/2). The domain of ρ is extended to include
ρ = 0 so that the model includes the uniform distribution. We write (U,V ) ∼ BSd(ρQ) if a
random vector (U,V ) has density (2.1). For the derivation of the density (2.1), see Appendix A.

The parameter ρ influences the dependence between U and V . When ρ = 0, U and V are
independent and distributed as the uniform distribution on the sphere, that is, c(u, v) = 1/A2

d−1
on u,v ∈ Sd−1. As ρ tends to 1, it can be shown that P(‖U − QV ‖ < ε) → 1 for any ε > 0.
We note that this property holds not only for density (2.1), but also for any O(d)-symmetric
density with shape parameter κ , namely, f (u, v) = g(u′Qv;κ). For any such model, it holds
that P(‖U − QV ‖ < ε) is monotonically increasing with respect to κ .

As is clear from the form of (2.1), c(u, v) is a function of u′Qv, the inner product of u and Qv.
From this fact, we easily find that the density (2.1) takes maximum (minimum) values for a given
v at u = Qv (u = −Qv). The parameter Q thus controls the mode of the density. It is known that
an orthogonal transformation Q involves two types of transformation, namely, rotation and/or
reflection. In particular, when d = 2, these transformations can be expressed as

v �−→
(

cos θ − sin θ

sin θ cos θ

)
v and v �−→

(
1 0
0 −1

)
v,

where 0 ≤ θ < 2π. If detQ = 1, this transformation consists of only rotation. Otherwise, if
detQ = −1, the transformation is made up of a reflection together with a rotation.

3. Properties of and inference for the proposed model

3.1. Marginals and conditionals

One important feature of the proposed model is that it has well-known marginals and condition-
als. Suppose (U,V ) ∼ BSd(ρQ). The density for this random vector, (2.1), is O(d)-symmetric
in the sense of Rivest (1984), Example 1. It then follows that the marginals of U and V are
uniform distributions on Sd−1 with density

f (x) = 1

Ad−1
, x ∈ Sd−1.

Hence, model (2.1) can be viewed as a copula on Sd−1 × Sd−1. One difference between this
special copula and the usual ones is the periodicity of its variables. As discussed in Saw (1983),
Section 4, it is possible to obtain the model with rotationally symmetric marginals from the one
with uniform marginals. One can also generalize the bivariate circular model, that is, d = 2, so
that both marginals have specified distributions by using copula theory. We discuss generaliza-
tions using the above techniques and some other methods in Section 5.

Both conditional distributions of U given V = v and V given U = u are the exit distributions
for the sphere. The terminology exit distribution is taken from Durrett (1984), Section 1.10, and
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the exit distribution on Sd−1, Exitd(η), is of the form

f (x) = 1

Ad−1

1 − ‖η‖2

‖x − η‖d
, x ∈ Sd−1, (3.1)

where η ∈ {ζ ∈ R
d; ‖ζ‖ < 1}. This distribution is unimodal and rotationally symmetric about

x = η/‖η‖ with the concentration being controlled by ‖η‖. In particular, when ‖η‖ = 0, the
distribution reduces to the spherical uniform. As ‖η‖ → 1, it tends to a degenerate distribution
concentrated at x = η. It follows that the conditionals of the model with density (2.1) are U |(V =
v) ∼ Exitd(ρQv) and V |(U = u) ∼ Exitd(ρQ′u).

It is worth remarking that the conditional of W ≡ v′Q′U given V = v has a family discussed
by Leipnik (1947) and McCullagh (1989). The derivation of the density is clear from the latter
paper or from Watson’s result (Watson (1983), Equation 3.4.1). As in the latter paper, write
X ∼ H ′(θ, ν) if the density of the random variable X is

f (x) = 1 − θ2

B(ν + 1/2,1/2)

(1 − x2)ν−1/2

(1 − 2θx + θ2)ν+1
, −1 < x < 1,

where −1 < θ < 1 and ν > −1/2. It then follows that W |(V = v) ∼ H ′{ρ, (d − 2)/2}.

3.2. Some properties

Here, we investigate some of the properties of the model with density (2.1). The first is that the
distribution is closed under orthogonal transformations:

(U,V ) ∼ BSd(ρQ) �⇒ (Q1U,Q2V ) ∼ BSd(ρQ1QQ′
2), Q1,Q2 ∈ O(d).

The next result can be obtained by applying a result which appears in, for example, Durrett
(1984), Section 1.10.

Theorem 1. Suppose that (U,V ) is distributed as BSd(ρQ). Let f be C2 in D and continuous
on D, where D = {ζ ∈ Rd; ‖ζ‖ < 1}. If f is harmonic, namely,

∂2

∂x2
1

f + ∂2

∂x2
2

f + · · · + ∂2

∂x2
d

f = 0,

then E{f (V )|U = u} = f (ρQ′u) and E{f (U)|V = v} = f (ρQv).

Using this fact, it is easy to show that E{f (U)} = E{f (V )} = f (0).
The moments and correlation coefficient of the model are given by the following theorem.

Theorem 2. Suppose (U,V ) has density (2.1). Then

E(U) = E(V ) = 0, E(UU ′) = E(V V ′) = d−1I,
(3.2)

E(UV ′) = d−1ρQ.
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The Johnson and Wehrly (1977) coefficient of correlation, ρJW , is thus

ρJW ≡ λ1/2 = ρ,

where λ is the largest eigenvalue of −1
UUUV −1

V V ′
UV ,UU = E(UU ′) − E(U)E(U ′),

UV = E(UV ′) − E(U)E(V ′) and V V = E(V V ′) − E(V )E(V ′).

See Appendix B for the proof.
Note the simplicity of these moments and of the correlation coefficient. To our knowledge, no

distributions for bivariate angular data have such a simple correlation coefficient except for the
uniform distribution.

The following is useful for constructing a pivotal statistic for (ρ,Q), which is discussed in
Section 3.5. The result is stated in its general form as follows. The proof is also given in Appen-
dix B.

Theorem 3. Assume (U,V ) has O(d)-symmetric density, that is, f (u, v) = g(u′Qv), where
Q ∈ O(d). The density of T ≡ U ′QV is then given by

h(t) = Ad−1 · Ad−2g(t)(1 − t2)(d−3)/2, −1 ≤ t ≤ 1.

From this theorem, it follows that if (U,V ) ∼ BSd(ρQ), then U ′QV ∼ H ′{ρ, (d − 1)/2}.
Note that this result also enables us to obtain the density for X′QY of Saw’s (1983) distribution
immediately.

3.3. Random vector simulation

To generate a random vector having density (2.1), it is helpful to apply the idea which appears in,
for instance, Saw (1983) and Watson (1983), Equation 2.2.1. We generalize the idea as follows.

Let W be a random variable from H ′{ρ, (d − 2)/2} and let d(X; ζ ) = (I − ζ ζ ′)X/‖(I −
ζ ζ ′)X‖, where ζ ∈ Sd−1 and X is a random vector having a uniform distribution on Sd−1. In
other words, d(X; ζ ) has a uniform distribution on the (d − 1)-sphere, S⊥, in R

d defined by
S⊥ = {η ∈ R

d; ‖η‖ = 1, ζ ′η = 0}. The conditional of U given V = v can then be decomposed
into

U |(V = v)
d= WQv + (1 − W 2)1/2d(X;Qv).

Given this, generation of variates from (2.1) can be carried out using the following three steps:
(i) generate a random vector V which has a uniform distribution on S, achieved by using the
method proposed by Tashiro (1977); (ii) generate W , which has H ′{ρ, (d − 2)/2}, as stated in
Section 4 of McCullagh (1989); (iii) finally, a random vector d(X;Qv) distributed as a uniform
distribution on S⊥ is obtained in a similar manner as in step (i) and one obtains a variate from
the conditional of U given V = v as described in the preceding paragraph. The joint distribution
of (U,V ) is then BSd(ρQ).



A distribution for a pair of unit vectors 903

3.4. Parameter estimation

Parameter estimation for multivariate distributions is often difficult. This is also the case for
our model. However, one can discuss parameter estimation under certain conditions. Here, we
consider parameter estimation based on the method of moments and maximum likelihood.

First, the method of moments estimator is constructed from (3.2). Assume that (Uj ,Vj )

(j = 1, . . . , n (≥ 2)) is a random sample from a distribution with density (2.1) with unknown
parameters ρ and Q. Under the condition rank(

∑n
j=1 UjV

′
j ) = d , one can construct an estimator

for the parameters based on the moment E(UV ′). This is done by equating the theoretical and
sample moments. We thus obtain

ρ̂Q̂ = d

n

n∑
j=1

UjV
′
j . (3.3)

The estimators of ρ and Q induced from the condition |detQ| = 1 are then given by

ρ̂ = d

∣∣∣∣∣det

(
1

n

n∑
j=1

UjV
′
j

)∣∣∣∣∣
1/d

and Q̂ = d

nρ̂

n∑
j=1

UjV
′
j .

The estimator ρ̂Q̂ has the following properties. For the proof, see Appendix B.

Theorem 4. The following hold for the estimator ρ̂Q̂ defined in (3.3):

(i) ρ̂Q̂ is an unbiased and consistent estimator of ρQ;
(ii) if g is a function defined by g(A) = (a′

1, . . . , a
′
d)′, where A = (a1, . . . , ad) is a d × d

matrix, then
√

n{g(ρ̂Q̂) − g(ρQ)} d−→ N(0,) as n → ∞,

where  = (σmn) is

σmn =

⎧⎪⎪⎨
⎪⎪⎩

1 + ρ2

d + 2
{(d − 2)q2

ij − 2}, m = n,

ρ2

d + 2
(dqkj qil − 2qij qkl), otherwise,

(3.4)

qij is the (i, j)th entry of Q, m = d(j − 1) + i and n = d(l − 1) + k,1 ≤ i, j, k, l ≤ d .

We note that although Q̂ is an unbiased estimator of Q with |det Q̂| = 1, it is not necessarily
an orthogonal matrix.

Next, we consider maximum likelihood estimation. Let (Uj ,Vj ) (j = 1, . . . , n) be an i.i.d.
sample from BSd(ρQ), where Q is known and ρ is unknown. The log-likelihood for ρ is given
by

l(ρ) = C + n log(1 − ρ2) − d

2

n∑
j=1

log(1 − 2ρu′
jQvj + ρ2), (3.5)
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where C is a constant which does not depend on ρ. The derivative with respect to ρ is

∂l

∂ρ
= − 2nρ

1 − ρ2
+ d

n∑
j=1

xj − ρ

1 − 2ρxj + ρ2
,

where xj = u′
jQvj ∈ [−1,1]. From this expression, we find that the maximization of (3.5) with

respect to ρ is essentially the same as that of H ′{ρ, (d − 2)/2} with respect to ρ.

3.5. Pivotal statistic

Suppose (U,V ) is a BSd(ρQ) random vector. Define a random variable

T (ρ,Q) = 1 − (U ′QV )2

1 − 2ρU ′QV + ρ2
.

It is easy to see that 0 < T (ρ,Q) < 1 a.s. for any ρ and Q. As shown in Theorem 3, U ′QV ∼
H ′{ρ, (d − 2)/2}. By using the results in McCullagh (1989), Section 4, and Abramowitz and
Stegun (1972), equations (15.1.13) and (15.3.1), one then obtains

E{T (ρ,Q)r } = B(r + (d − 1)/2,1/2)

B((d − 1)/2,1/2)
,

where B(·, ·) is a beta function. Since these moments are equal to those of a beta distribution
Beta((d − 1)/2,1/2), it follows that T (ρ,Q) is a pivotal statistic for (ρ,Q) having a Beta((d −
1)/2,1/2) distribution almost surely.

4. Bivariate circular case

4.1. Transformation of random vectors and parameters

Thus far, we have considered properties of model (2.1) for the general dimensional case. In this
section, we specifically discuss the bivariate circular case of the proposed model which possesses
some unique properties.

Suppose (U,V ) ∼ BS2(ρQ). Its density is then expressed as

c(u, v) = 1

4π2

1 − ρ2

1 − 2ρu′Qv + ρ2
, u, v ∈ S1.

For ease of discussion, it will be helpful to transform the random variables and parameters by
taking

(ZU ,ZV ) = (U1 + iU2,V1 + iV2) and ψ = ρeiθ ,
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where U = (U1,U2)
′,V = (V1,V2)

′ and θ is a constant satisfying

Q =
(

cos θ −detQ sin θ

sin θ detQ cos θ

)
, 0 ≤ θ < 2π. (4.1)

It then follows that |ψ | < 1 and ZU,ZV ∈ �, where � = {z ∈ C; |z| = 1}. The density for
(ZU ,ZV ) is given by

c(zu, zv) = 1

4π2

1 − |ψ |2
|1 − ψzvz

−detQ
u |2 , zu, zv ∈ �. (4.2)

If (ZU ,ZV ) has density (4.2) with detQ = 1, we write (ZU ,ZV ) ∼ BC+(ψ). Similarly, we write
(ZU ,ZV ) ∼ BC−(ψ) if (ZU ,ZV ) has density (4.2) with detQ = −1.

Note that this transformation does not actually change the distribution. All we have done is to
express the random variables and the parameters in the form of complex numbers for the sake of
further investigation of the distributions.

As already stated in Section 2.2, the marginals of ZU and ZV are circular uniform, whereas
both conditionals of ZU given ZV = zv and ZV given ZU = zu are exit distributions for the cir-
cle, that is, wrapped Cauchy distributions. For brevity, we introduce the notation C∗(φ) derived
from McCullagh (1996) which denotes the wrapped Cauchy or circular Cauchy distribution with
density

f (z) = 1

2π

1 − |φ|2
|z − φ|2 , z ∈ �; |φ| < 1.

The relationship |φ| = ‖ξ‖ and arg(φ) = arg(ξ1 + iξ2), where ξ = (ξ1, ξ2)
′, holds between the

parameters of model (3.1) and those of the density above via a transformation Z = X1 + iX2.
See McCullagh (1996), Mardia and Jupp (2000), pp. 51–52, and Jammalamadaka and SenGupta
(2001), pp. 45–46, for further properties of the wrapped Cauchy and circular Cauchy distribu-
tion. For model (4.2), it is easy to show that ZU |(ZV = zv) ∼ C∗(ψzv) and ZV |(ZU = zu) ∼
C∗(ψzu).

4.2. Some properties

To investigate other properties of the model, it is useful to calculate its moments. Assume that
(ZU ,ZV ) has BC+(ψ). The moments for (ZU ,ZV ) are then obtained, by applying Rudin (1987),
Theorem 11.13, as

E(ZU
jZV

k) =
⎧⎨
⎩

ψj , j = −k ≥ 0,

ψ
−j

, j = −k < 0,
0, otherwise,

for j, k ∈ Z. (4.3)

Similarly, we can obtain the moments for BC−. According to Fourier series expansion theory,
one can recover the density from these moments if the density f satisfies f ∈ L2(� × �). See
Dym and McKean (1972), Section 1.10, for details.
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Using these results, the following properties are established. First, the BC+ model has the
multiplicative property

(ZU 1,ZV 1) ∼ BC+(ψ1)⊥(ZU 2,ZV 2) ∼ BC+(ψ2)
(4.4)

�⇒ (ZU 1ZU 2,ZV 1ZV 2) ∼ BC+(ψ1ψ2).

Likewise, it can be shown that the BC− model also has this multiplicative property. However, the
convolution of BC+ and BC− is the uniform distribution, that is,

(ZU 1,ZV 1) ∼ BC+(ψ1)⊥(ZU 2,ZV 2) ∼ BC−(ψ2)

�⇒ (ZU 1ZU 2,ZV 1ZV 2) ∼ BC+(0).

In addition,

(ZU ,ZV ) ∼ BC±(ψ) �⇒ (ZU
n,ZV

n) ∼ BC±(ψn) for any n ∈ N.

As n tends to infinity, the distribution of (ZU
n,ZV

n) tends to a uniform distribution on the torus.
Furthermore, model (4.2) is infinitely divisible with respect to multiplication. This can be

proven as follows. Let (ZU ,ZV ) ∼ BC±(ψ). For any positive integer n, the assumption that
(ZU j ,ZV j ) (j = 1, . . . , n) is an i.i.d. sample from BC±(n

√
ψ) then yields(

n∏
j=1

ZU j ,

n∏
j=1

ZV j

)
d= (ZU ,ZV ). (4.5)

4.3. Random vector simulation

In order to simulate a BC+(ψ) random vector, one could generate R
2-valued Brownian motion

and record the points at which the Brownian particle hits circles with radii ρ and 1. However, this
algorithm is somewhat inefficient because we need to simulate Brownian motion at least up to the
time at which the particle hits the unit circle. Another possibility is discussed in Section 3.3, but
it, too, is less efficient than the method proposed below. The focus of this subsection is therefore
to discuss an algorithm for simulating BC+(ψ) variates which we conclude to be more appealing
than the aforementioned methods.

To obtain the random vector, we use the fact that the marginal of ZU is circular uniform and the
conditional of ZV given ZU = zu is wrapped Cauchy, specifically, C∗(ψzu). For the generation
of a variate from a wrapped Cauchy distribution, we apply a result from McCullagh (1996)
concerning the Möbius transformation of a circular uniform random variable, namely that

Z ∼ C∗(0) �⇒ Z + β

1 + βZ
∼ C∗(β), |β| < 1. (4.6)

An algorithm for generating BC+(ψ) random vectors then involves the following steps.

Step 1: Generate uniform (0,1) random numbers U1 and U2.
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Step 2: Set ZU = exp(2πiU1) and ZT = exp(2πiU2).

Step 3: Let ZV = ψZU +ZT

1+ψZU ZT
.

The joint distribution of (ZU ,ZV ) is then BC+(ψ). In Step 2, ZU and ZT are independent cir-
cular uniform random variables. In Step 3, because of property (4.6), the conditional distribution
of ZV given ZU = zu is C∗(ψzu). It therefore follows that (ZU ,ZV ) ∼ BC+(ψ).

BC−(ψ) random vectors can be simulated using a very similar approach.

4.4. Parameter estimation

Here, we consider parameter estimation for the BC+(ψ) model based on the method of moments
and maximum likelihood. Although we discuss parameter estimation for only the BC+(ψ) here,
it is possible to derive the estimates of the parameters for the BC−(ψ) model by a straightforward
modification of the result below.

First, we consider method of moments estimation based on (4.3). Assume (ZU ,ZV ) is a
BC+(ψ) random variable. As discussed in Section 4.2, its theoretical moments are given by (4.3).
Suppose (ZU j ,ZV j ) (j = 1, . . . , n) is a random sample from the BC+(ψ) distribution. The
method of moments estimator is obtained by equating the theoretical and sample moments. We
thus obtain

ψ̂ = 1

n

n∑
j=1

ZU jZV j . (4.7)

It follows from the weak law of large numbers that ψ̂ is a consistent estimator of ψ . In addition,
the central limit theorem enables us to prove asymptotic normality of the estimator, namely,

√
n

{(
Re(ψ̂)

Im(ψ̂)

)
−

(
Re(ψ)

Im(ψ)

)}
d−→ N

{
0,

1

2
(1 − |ψ |2)I

}
as n → ∞.

Although this estimator is different from the method of moments estimator (3.3), these estima-
tors are somewhat related. Recall that the relationship (4.1) holds between arg(ψ) and Q. If
detQ = 1, ρQ can then be expressed as

ρQ =
(

Re(ψ) − Im(ψ)

Im(ψ) Re(ψ)

)
.

Given this relationship, an estimator of ψ induced naturally from the method of moments esti-
mator (3.3) is

ψ̂ = Re

{
1

n

n∑
j=1

(Uj1Vj1 + Uj2Vj2)

}
+ i Im

{
1

n

n∑
j=1

(Uj2Vj1 − Uj1Vj2)

}
,

where Uj = (Uj1,Uj2)
′ and Vj = (Vj1,Vj2)

′. This estimator is equal to the method of moments
estimator (4.7).
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Second, turning to the maximum likelihood estimation, it is obvious that the maximum like-
lihood estimator coincides with the method of moments estimator, that is, ψ̂ = ZU 1ZV 1, for a
single observation (i.e., when n = 1). When n is large, the estimates must be obtained numeri-
cally. Note that the likelihood function can be written as

L(ψ) ∝
n∏

j=1

1 − |ψ |2
|zuj zvj − ψ |2 .

This expression suggests that maximum likelihood estimation for the BC+(ψ) model essentially
coincides with that for the wrapped Cauchy distribution C∗(ψ). We can therefore obtain esti-
mates by applying the algorithm of Kent and Tyler (1988). Since distribution (4.2) is identifiable
and the parameter space, the unit disc, is finite, consistency of the maximum likelihood estimator
follows from the general theory (see, e.g., Bahadur (1971)). The Fisher information matrix for
(Re(ψ), Im(ψ)), denoted by I(Re(ψ), Im(ψ)), is simply expressed as

I{Re(ψ), Im(ψ)} = 2

(1 − |ψ |2)2
I.

The above can be obtained by transforming random variables into polar coordinates and using
(3.616.7) of Gradshteyn and Ryzhik (1994). Therefore, the following hold for the maximum
likelihood estimator:

√
n

{(
Re(ψ̂)

Im(ψ̂)

)
−

(
Re(ψ)

Im(ψ)

)}
d−→ N

{
0,

1

2
(1 − |ψ |2)2I

}
as n → ∞.

4.5. Simulation study

In this subsection, a simulation study is carried out to compare the finite sample performance
of the estimators. Here, we discuss two estimators for the parameter ψ based on the method of
moments (4.7) and maximum likelihood. As for the estimator (3.3), we do not discuss it here
because it is expressed in matrix form and we cannot directly compare it with the other two
estimators.

In our simulation study, random samples of sizes n = 10,20,30,50 and 100 from BC+(ψ)

with ψ = 0.1,0.3,0.5,0.7 and 0.9 are generated. For each combination of n and ψ , 2000 random
samples are gathered. Random vectors from BC+(ψ) are generated by using a method introduced
in Section 4.3. We employ the Mersenne Twister, which is implemented by the command runif
in R 2.7.1, to obtain uniform random variates.

We discuss the performance of the estimators in terms of the estimates of the mean squared
error. In this case, the estimate of the mean squared error is given by

∑2000
j=1 |ψ̂j − ψ |2/2000,

where the ψ̂j ’s (j = 1, . . . ,2000) are the estimates for ψ .
Estimates of the relative mean squared errors of the method of moments estimator (4.7) with

respect to the maximum likelihood estimator for some selected values of n and ψ are given in
Table 1. In the table, the relative mean squared errors for n = ∞ are derived from the asymptotic
variance of two estimators as (1 − |ψ |2)/(1 − |ψ |2)2 = 1/(1 − |ψ |2). The comparison of the
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Table 1. Estimates of relative mean squared errors of the method of moments estimator (4.7) with respect
to the maximum likelihood estimator

ψ = 0.1 ψ = 0.3 ψ = 0.5 ψ = 0.7 ψ = 0.9

n = 10 0.919 0.998 1.155 1.620 4.135
n = 20 0.963 1.032 1.221 1.749 4.767
n = 30 0.980 1.071 1.229 1.795 4.942
n = 50 0.977 1.059 1.306 1.827 5.039
n = 100 0.992 1.105 1.311 1.891 5.088
n = ∞ 1.010 1.099 1.333 1.961 5.263

relative mean squared errors shows that the maximum likelihood estimator provides a better
result in many cases, especially for large |ψ | or n. However, the difference diminishes as n or |ψ |
decreases. In particular, when ψ = 0.1 or (ψ,n) = (0.3,10), the method of moments estimator
displays better performance.

An advantage of the method of moments estimator (4.7) is its simplicity in calculation. Be-
cause the estimator is expressed in closed form, it is not necessary to use any numerical algorithm
to estimate the parameter. In addition, the estimator displays satisfactory performance when |ψ |
is small. However, the maximum likelihood estimator is considered a better estimator in most
combinations of ψ and n, as seen in Table 1. A small drawback of the maximum likelihood es-
timator is the complexity involved in calculating the estimator. Since the maximum likelihood
estimator is not expressed in a closed form, we need to resort to a numerical method to obtain
the estimate for the parameter.

5. Related models

5.1. Generalizations of the model with density (2.1)

As described in Section 2.1, the model with density (2.1) is generated using Brownian motion
starting at B0 = 0. In this subsection, we briefly discuss a distribution which is generated using
Brownian motion starting at B0 = ξ(‖ξ‖ < ρ) instead of B0 = 0. We define a random vector
(U,V ) = (QBτ1/‖Bτ1‖,Bτ2) in the same way as was used in Section 2.1, except that we incor-
porate the new starting point. The resulting density for (U,V ) is given by

f (u, v) = 1

A2
d−1

1 − ρ2

(1 − 2ρu′Qv + ρ2)d/2

ρ2 − ‖ξ‖2

(ρ2 − 2ρU ′Qξ + ‖ξ‖2)d/2
, u, v ∈ Sd−1. (5.1)

The marginals and conditional distribution of V given U = u are the exit distributions:

U ∼ Exitd(ρ−1Qξ), V ∼ Exitd(ξ) and V |(U = u) ∼ Exitd(ρQ′u).

The conditional distribution of U given V = v is not of the usual form. This conditional distrib-
ution can be unimodal or bimodal and is generally skewed, except for certain special cases such



910 S. Kato

as v = ±ξ/‖ξ‖. It can be shown that U and V are independent if and only if ρ = 0. We note that
the bivariate circular case of model (5.1) is a submodel of the distribution briefly discussed by
Kato et al. (2008) as a model related to a circular-circular regression model.

Another generalization arises from the use of the method discussed in Saw (1983), Section 4.
This method enables us to derive a distribution with prescribed rotationally symmetric marginals.

In the bivariate circular case, it might be promising to apply the Möbius transformation to each
variable. Let (Z̃U , Z̃V ) ∼ BC+(ψ) and define a random vector

(ZU ,ZV ) =
(

Z̃U + α1

1 + α1Z̃U

,
Z̃V + α2

1 + α2Z̃V

)
, |α1|, |α2| < 1. (5.2)

Then, because of property (4.6), the marginals of ZU and ZV have wrapped Cauchy distributions
C∗(α1) and C∗(α2), respectively. Another benefit of this extension is that its density has a simple
and exact form, including the normalizing constant which does not involve any special functions.

It is also possible to transform the bivariate circular model into a distribution with spec-
ified marginals by applying Sklar’s theorem in the theory of copulas. (See Nelsen (1998),
Theorem 2.3.3.) For example, a bivariate distribution with von Mises or, equivalently, cir-
cular normal marginals is constructed as follows. Let (ZU ,ZV ) have BC+(ψ). Assume that
(�̃U , �̃V ) = (Arg(ZU),Arg(ZV )), where Arg(z) is the argument of z taking values on [0,2π).
Suppose that Fj (j = 1,2) are distribution functions of the von Mises distributions vM(μj , κj ),
namely,

Fj (θ) =
∫ θ

0

1

2πI0(κj )
exp{κj cos(t − μj )}dt, (5.3)

where 0 ≤ μj < 2π, κj ≥ 0 and I0(·) denotes the modified Bessel function of the first kind and
of order 0. Define a distribution by a random vector

(�U ,�V ) =
(

F−1
1

(
�̃U

2π

)
,F−1

2

(
�̃V

2π

))
.

The density for this random vector is of the form

f (θu, θv) = 1 − |ψ |2
4π2I0(κ1)I0(κ2)

exp{κ1 cos(θu − μ1) + κ2 cos(θv − μ2)}

× [
1 + |ψ |2 − 2|ψ | cos[2π{F1(θu) − F2(θv)} − arg(ψ)]]−1

, (5.4)

0 ≤ θu, θv < 2π.

It follows from Sklar’s theorem that the marginals of �U and �V are the von Mises, vM(μ1, κ1)

and vM(μ2, κ2), respectively. As is clear from the derivation, the distribution reduces to BC+(ψ)

when κ1 = κ2 = 0.
Figure 1 plots some contour plots of density (5.4) for fixed values of μ2, κ2 and arg(ψ)

and some selected values of μ1, κ1 and |ψ |. The comparison between Figure 1(a)–(c) suggests
that |ψ | influences dependence between �U and �V , and this was mathematically validated in
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Contour plots of density (5.4) with μ2 = π, κ2 = 1.16, arg(ψ) = 0 and (a) μ1 = π, κ1 =
1.16, |ψ | = 0; (b) μ1 = π, κ1 = 1.16, |ψ | = 0.5; (c) μ1 = π, κ1 = 1.16, |ψ | = 0.8; (d) μ1 = π,

κ1 = 2.32, |ψ | = 0; (e) μ1 = 3π/2, κ1 = 1.16; |ψ | = 0.5; (f) μ1 = 3π/2, κ1 = 1.16, |ψ | = 0.8.
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Theorem 2. Figures 1(a) and 1(d) imply that the concentration of the marginal distributions is
controlled by κ1 or κ2. As seen in Figures 1(e) and 1(f), the distribution can be skewed when
μ1 �= μ2.

It is important to decide on conditions for the independence of two variables for a bivariate dis-
tribution. The following result provides the parameter configuration which yields independence
for the bivariate family including models (5.2) and (5.4).

Theorem 5. Let (ZU ,ZV ) ∼ BC+(ψ). Suppose g1 and g2 are one-to-one mappings defined on
� and differentiable on �. Then g1(ZU) and g2(ZV ) are independent if and only if ψ = 0.

Proof. Let (Z̃U , Z̃V ) = (g1(ZU), g2(ZV )). The density of (Z̃U , Z̃V ) is then calculated as

f (z̃u, z̃v) = 1

4π2

1 − |ψ |2
|1 − ψg−1

2 (z̃v)g
−1
1 (z̃u)|2

∣∣∣∣∂g−1
1 (z̃u)

∂z̃u

∣∣∣∣
∣∣∣∣∂g−1

2 (z̃v)

∂z̃v

∣∣∣∣, z̃u, z̃v ∈ �.

Given this, the necessary and sufficient condition for independence is that ψg−1
2 (z̃v)g

−1
1 (z̃u) is a

constant or a function which either depends only on z̃u or only on z̃v . Since neither g1 nor g2 is
a constant function, this condition holds if and only if ψ = 0. �

5.2. Comparison with existing bivariate circular distributions

Model (5.4) has some relation to models discussed by SenGupta (2004) and Shieh and John-
son (2005). A bivariate circular family related to the von Mises has been considered by Sen-
Gupta (2004). It has the density

f (θu, θv) ∝ exp

{
(1, cos θu, sin θu)

(
m11 m12 m13
m21 m22 m23
m31 m32 m33

)( 1
cos θv

sin θv

)}
,

(5.5)
0 ≤ θu, θv < 2π,

where mjk (1 ≤ j, k ≤ 3) are the parameters, with m11, a function of the other mjk’s, being
the normalizing constant. This model has the property that both conditionals follow the von
Mises distributions, a property which our model does not have. On the other hand, our model
has von Mises marginals, while model (5.5) generally does not. This difference comes from the
derivations of the models. Model (5.5) is constructed by means of the conditional specification,
while our model is obtained by transforming a distribution, which is generated by Brownian
motion, via copula theory, so that both marginals have the von Mises distributions.

Shieh and Johnson (2005) presented a bivariate circular distribution which is called the bivari-
ate von Mises distribution in their paper. The density of their model is of the form

f (θu, θv) = 1

4π2
∏3

j=1 I0(κj )

× exp
[
κ1 cos(θu − μ1) + κ2 cos(θv − μ2) (5.6)

+ κ3 cos[2π{F1(θu) − F2(θv)} − μ3]
]
, 0 ≤ θu, θv < 2π,
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where 0 ≤ μj < 2π, κj ≥ 0, j = 1,2,3, and Fk(·) are the distribution functions of the von Mises
vM(μk, κk), k = 1,2, as defined in (5.3). A property common to their model and ours is that both
models have the von Mises marginals and belong to a general class of distributions presented by
Wehrly and Johnson (1980). One difference is the conditional distributions of the model and this
distinction could make a difference in fit, as we see in the next subsection.

5.3. Application

Example 1. As an illustrative example in which one of our models is utilized, we consider a data
set of pairs of wind directions measured at a weather station in Texas. The data set is a part of a
larger data set which is taken from a website http://data.eol.ucar.edu/codiac/dss/id=85.034. The
original data set contains hourly resolution surface meteorological data from the Texas Natural
Resources Conservation Commission Air Quality Monitoring Network. (These data are provided
by NCAR/EOL with the support of the National Science Foundation.) Among this data set, we
focus on 30 pairs of wind directions at 6 a.m. (θu) and 7 a.m. (θv) measured each day at a weather
station, which is denoted C28_1 in the data set, from June 1 to June 30, 2003.

Figure 2(a) shows a planer of the dataset. This frame suggests that there is dependence between
wind directions at 6 a.m. and 7 a.m. We fit models (5.4), (5.5) and (5.6) to the data set based on
maximum likelihood estimation. To estimate the parameters numerically, we employ the PORT
routine which is an optimization method carried out using nlminb in R 2.7.1.

Table 2 shows the maximum log-likelihood, AIC and BIC values of the fitted models. Ac-
cording to the AIC and BIC criteria, our model (5.4) provides the best fit of all. Model (5.5)
is the second best model judging from the AIC criterion, while the BIC criterion indicates
that model (5.6) is the second best. The estimated parameters of model (5.4) are given by
μ̂1 = 1.89, μ̂2 = 2.01, κ̂1 = 1.03, κ̂2 = 1.19, arg(ψ̂) = 6.24 and |ψ̂ | = 0.75. The fitted density

(a) (b)

Figure 2. (a) Planar plot of the wind directions at 6 a.m. and 7 a.m.; (b) contour plot of the density for
model (5.4) fitted to the data.

http://data.eol.ucar.edu/codiac/dss/id=85.034
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Table 2. The maximized log-likelihood, AIC and BIC values of the
proposed model (5.4) and two existing models (5.5) and (5.6) fitted to
wind directions at 6 a.m. and 7 a.m.

Model logL AIC BIC

(5.4) −65.9 143.8 152.2
(5.5) −68.2 152.4 163.6
(5.6) −70.9 153.8 162.2

of model (5.4) is displayed in Figure 2(b) which seems to show a satisfactory fit of the model
to the data set. Since the parameter |ψ̂ |, which controls the dependence between two circular
variables, is fairly large, it seems that the wind directions at 6 a.m. and 7 a.m. are strongly as-
sociated. Also, note that the argument of ψ̂ is close to zero, implying that the mean direction
of the wind directions at 6 a.m. is close to that at 7 a.m. In other words, the mean direction of
F1(�U) − F2(�V ) is nearly zero. These results correspond to our intuition that wind directions
usually do not change dramatically within one hour.

Example 2. The second example concerns another 30 pairs of wind directions measured at the
same weather station as in Example 1. This time we focus on wind directions at 6 a.m. (θu) and
6 p.m. (θv), observed from June 1 to June 30, 2003. Figure 3(a) shows a planar plot of the data
set; it seems that the dependence structure between the two variables is not as clear as in the
previous example. Again, we use models (5.4), (5.5) and (5.6) to model the data set.

The maximum log-likelihood, AIC and BIC values of the three fitted models are given in
Table 3. From AIC and BIC criteria, model (5.5) is the best of all. The fitted density of model (5.5)

(a) (b)

Figure 3. (a) Planar plot of the wind directions at 6 a.m. and 6 p.m.; (b) contour plot of the density for
model (5.5) fitted to the data.
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Table 3. The maximized log-likelihood, AIC and BIC values of the
proposed model (5.4) and two existing models (5.5) and (5.6) fitted to
wind directions at 6 a.m. and 6 p.m.

Model logL AIC BIC

(5.4) −89.8 191.6 200.0
(5.5) −82.0 180.0 191.2
(5.6) −89.9 191.8 200.2

is displayed in Figure 3(b). The proposed model is the second best, but there is no significant
difference in fit from Shieh and Johnson’s model (5.6). The maximum likelihood estimates of the
parameters of our model are given by μ̂1 = 2.29, μ̂2 = 1.43, κ̂1 = 1.33, κ̂2 = 0.222, arg(ψ̂) =
0.144 and |ψ̂ | = 0.544. Note that the estimate |ψ̂ | in this example is smaller than that in the
previous one. This suggests that there is less association between wind directions at 6 a.m. and
6 p.m. than between those at 6 a.m. and 7 a.m. However the estimate of arg(ψ) in this example
is also close to zero, meaning that the mean direction of the wind directions did not make a big
change although twelve hours have passed since the first observation at 6 a.m.

In Example 1, which deals with a data set with clear dependence structure, the AIC and
BIC criteria suggest that our model (5.4) is the best. The example implies that the proposed
model (5.4) is suitable to fit bivariate circular data if F1(�U)−F2(�V ) has a unimodal and sym-
metric shape. On the other hand, model (5.5) is recommended for a data set which shows a differ-
ent kind of association between variables, as seen in Example 2. One advantage of model (5.5) is
that it is a flexible eight-parameter model having von Mises conditionals and seems to have more
potential to fit various kinds of bivariate circular data because of its flexibility. Model (5.6) has
some properties common to our model; for example, the marginals of both distributions are the
von Mises. However, these models have different conditionals and this difference can produce
considerable distinction in fit, as demonstrated in Example 1.

6. Related distributions on R
2 and on the cylinder

In previous sections, we have dealt with distributions for two directional observations. In this
subsection, we provide models for two other manifolds, namely, R

2 and the cylinder.
By applying bilinear fractional transformations to model (4.2), a distribution on R

2 is con-
structed. Let (ZU ,ZV ) be distributed as BC−(ψ). Define a random vector (X,Y ) as

X = i
1 − ZU

1 + ZU

and Y = i
1 − ZV

1 + ZV

.

Clearly, (X,Y ) takes values in R
2. It is straightforward to show that the joint density for (X,Y )

is

f (x, y) = 1

π2

Im(θ)

|x + y + θ(1 − xy)|2 , x, y ∈ R, (6.1)
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where θ = i(1 − ψ)/(1 + ψ). Since |ψ | < 1, it is evident that Im(θ) > 0.
This model has the following properties:

X ∼ C(i), Y ∼ C(i),

X|(Y = y) ∼ C

(
θ + y

1 − θy

)
, Y |(X = x) ∼ C

(
θ + x

1 − θx

)
,

where the C(φ) notation is derived from McCullagh (1992) and denotes the Cauchy distribution
on the real line with location parameter Re(φ) and scale parameter Im(φ). Thus, the marginals
and conditionals are members of the real Cauchy family. Further properties of model (6.1) are
derived using the inverse transformations ZU = (1 + iX)/(1 − iX) and ZV = (1 + iY)/(1 − iY)

which map the real line onto the unit circle in the complex plane.
A related distribution on the cylinder � × R is obtained in a similar fashion. Let (ZU ,ZV ) be

BC+(ψ) distributions. Define a random vector

(Z�,X) =
(

ZU, i
1 − ZV

1 + ZV

)
. (6.2)

The marginals and conditionals of (Z�,X) are then

Z� ∼ C∗(0), X ∼ C(i),

Z�|(X = x) ∼ C∗
(

1 + ix

1 − ix
ψ

)
, X|(Z� = zθ ) ∼ C

(
−i

1 − zθψ

1 + zθψ

)
.

Thus, the marginals are circular uniform and standard Cauchy, while the conditionals are the
wrapped Cauchy and linear Cauchy distributions, respectively.

In a manner similar to that in Section 5.1, one can transform the model BS+(ψ) into a family
of cylindrical distributions having prescribed marginals as follows. Let (ZU ,ZV ) ∼ BS+(ψ) and
express these variables in terms of radians, that is, (�U ,�V ) = (Arg(ZU),Arg(ZV )). Suppose
that F� and FX are distribution functions of any circular and linear distributions, respectively,
and are strictly increasing. A random vector defined by (�,X) = (F−1

� (�U/(2π)),F−1
X (�V /

(2π))) then follows a distribution on the cylinder which has marginals with distribution functions
F� and FX . For instance, if we assume that F� and FX are distribution functions of the von
Mises and the normal distribution, respectively, we can construct a distribution with von Mises
and normal marginals.

A straightforward modification of Theorem 5 yields parameter configuration for indepen-
dence between two variables for the distributions presented in this subsection. For example, if
a random vector (Z�,X) is defined as in (6.2), then Z� and V are independent if and only if
ψ = 0.
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Appendix A: Derivation of density (2.1)

Let c(u, v) be the joint density of (U,V ) = (QBτ1/‖Bτ1‖,Bτ2), which is defined in the same
way as in Section 2.1. Note that if the density for (U,V ) exists, it can be expressed as

c(u, v) = fU(u)gV |U(v|u), u, v ∈ Sd−1,

where fU is a density for the marginal of U and gV |U that for the conditional of V given U = u.
Clearly, the marginal of U is distributed as the uniform distribution and thus fU(u) = 1/Ad−1.
Because of the Markov property of Brownian motion, the conditional of V given U = u is essen-
tially equivalent to the exit distribution for the sphere generated by Brownian motion starting at
B0 = ρQ′u (see Durrett (1984), Section 1.10). The density for the exit distribution for the sphere
is known to be

gV |U(v|u) = 1

Ad−1

1 − ρ2

‖v − ρQ′u‖d
, v ∈ Sd−1.

We thus obtain the density (2.1).
Density (5.1) is obtained by a straightforward modification of the above.

Appendix B: Proofs of Theorems 2–4

Proof of Theorem 2. Since the marginals of U and V are uniformly distributed on the sphere,
it is evident that E(U) = E(V ) = 0 and E(UU ′) = E(V V ′) = d−1I .

We show that E(UV ′) = d−1ρI . Because model (2.1) is O(d)-symmetric in the sense of
Rivest (1988), calculation of E(UV ′) is simplified by applying Proposition 1 of his paper to

E(UV ′) = diag{E(RjSj )}Q,

where (R,S) ∼ BSd(ρI),R = (R1, . . . ,Rd)′, S = (S1, . . . , Sd)′. Consider the integral

E(R1S1) =
∫

Sd−1×Sd−1
r1s1c(r, s)dr ds =

∫
Sd−1

r1

Ad−1

∫
Sd−1

s1

Ad−1

1 − ρ2

‖s − ρr‖d
ds dr.

Transforming S into S̃ = PS, where P is a d × d orthogonal matrix such that P = (r,p2, . . . ,

pd)′,pj = (pj1, . . . , pjd)′ ∈ R
d , we have

∫
Sd−1

r1

Ad−1

∫
Sd−1

s1

Ad−1

1 − ρ2

‖s − ρr‖d
ds dr

=
∫

Sd−1

r1

Ad−1

∫
Sd−1

r1s̃1 + ∑d
j=2 pj1s̃j

Ad−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃ dr

=
∫

Sd−1

s̃1

dAd−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃.
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The last equality follows from E(R) = 0 and E(R2
1) = d−1.

Then, from the fact that X ∼ H ′(θ, ν) implies E(X) = θ (McCullagh (1989)), the above equa-
tion can be expressed as

∫
Sd−1

s̃1

dAd−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃

= 1 − ρ2

dAd−1

2π(d−1)/2

�{(d − 1)/2}
∫ π

0

cos θ sind−2 θ

(1 − 2ρ cos θ + ρ2)d/2
dθ

= 1 − ρ2

dB{(d − 1)/2,1/2}
∫ 1

−1

t (1 − t2)(d−3)/2

(1 − 2ρt + ρ2)d/2
dt

= ρ

d
.

The other elements, E(RjSj ) (2 ≤ j ≤ d), are calculated in a similar way. �

Proof of Theorem 3. The distribution function of T , say H , is given by

H(t) = P(T ≤ t) = EV {P(U ′Qv ≤ t |V = v)}
= E

Ṽ
{P(U ′ṽ ≤ t |Ṽ = ṽ)},

where Ṽ = QV . Define Ũ = PU , where P ∈ O(d) such that P = (ṽ,p2, . . . , pd)′,pj ∈ R
d ,

and one obtains

E
Ṽ
{P(U ′ṽ ≤ t |Ṽ = ṽ)} =

∫
Sd−1

∫
ũ1≤t

ũ∈Sd−1

g(ũ1)dũdṽ

= Ad−1
2π(d−1)/2

�{(d − 1)/2}
∫

cos θ≤t
0≤θ<π

g(cos θ) sind−2 θ dθ

= Ad−1 · Ad−2

∫ t

−1
g(x)(1 − x2)(d−3)/2 dx.

Thus,

h(t) = Ad−1 · Ad−2g(t)(1 − t2)(d−3)/2, −1 ≤ t ≤ 1. �

Proof of Theorem 4. It is clear from (3.2) that ρ̂Q̂ is an unbiased estimator of ρQ. Consistency
of the estimator follows from the weak law of large numbers. The use of the central limit theo-
rem enables us to prove the asymptotic normality. Here, we show that the variance–covariance
matrix of g(ρ̂Q̂) is given by a matrix with entries (3.4). Suppose that (U,V ) ∼ BSd(ρQ),U =
(U1, . . . ,Ud)′ and V = (V1, . . . , Vd)′. To calculate the variance–covariance matrix, we first con-
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sider d2E(UiVjUkVl) for 1 ≤ i, j, k, l ≤ d. It can be expressed as

d2E(UiVjUkVl) = d2EU {UiUkEV |U(VjVl |U = u)}
= d2EU [UiUkEṼ |U {b′

j diag(Ṽ 2
j )bl |U = u}],

where Ṽ = (Ṽ1, . . . , Ṽd )′ = PQV , bj is the j th column of PQ and P is any d × d orthogo-
nal matrix such that the first row of P is u′. McCullagh (1989) showed that if X ∼ H ′(θ, ν),
then E(X2) = {1 + (2ν + 1)θ2}/{2(ν + 1)}, and that

∫ 1
−1(1 − x2)ν−1/2/{(1 − 2θx + θ2)B(ν +

1
2 , 1

2 )}dx = 1. Using these results, we have

E
Ṽ |U {diag(Ṽ 2

j )|U = u} = 1 − ρ2

d
I + ρ2�1,

where �k = (δij ) is a d × d matrix whose entries are given by δij = 1 for (i, j) = (k, k) and
δij = 0 otherwise. Therefore,

d2E(UiVjUkVl) = d2EU

{
UiUkq

′
j

(
1 − ρ2

d
I + ρ2UU ′

)
ql

}
,

where qj is the j th column of Q. If i = k and j = l, we have

d2E(UiVjUkVl) = (1 − ρ2) + dρ2

d + 2
(1 + 2q2

ij ).

The above follows from the fact that EU(UU ′) = d−1I and EU(UiUU ′) = (2�i + I )/{d(d +
2)}. If i �= k or j �= l, it is fairly easy to show that

d2E(UiVjUkVl) = d2ρ2q ′
jEU(UiUkUU ′)ql = dρ2

d + 2
(qij qkl + qkj qil).

Thus, we obtain d2E(UiVjUkVl) for any 1 ≤ i, j, k, l ≤ d . On the other hand, it follows imme-
diately from (3.2) that dE(UiVj ) = ρqij . Summarizing these results, we obtain Theorem 4. �
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