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In this paper, we study the problem of pointwise estimation of a multivariate function. We develop a gen-
eral pointwise estimation procedure that is based on selection of estimators from a large parameterized
collection. An upper bound on the pointwise risk is established and it is shown that the proposed selec-
tion procedure specialized for different collections of estimators leads to minimax and adaptive minimax
estimators in various settings.
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1. Introduction

In this paper, we study the problem of pointwise nonparametric estimation of an unknown func-
tion F : Rd → R in the multidimensional Gaussian white noise model

Y(dt) = F(t)dt + εW(dt), t = (t1, . . . , td) ∈ D, (1)

where D is an open interval in R
d containing D0 := [−1/2,1/2]d , W is the standard Wiener

process in R
d and 0 < ε < 1 is the noise level. Our goal is to estimate F at a given point x ∈ D0

using the observation Yε := {Y(t), t ∈ D}. We assume that the observation set D is larger than
D0 in order to avoid boundary effects. Such assumptions are rather common in multivariate
nonparametric models (see, e.g., Chen (1991), Hall (1989)).

Accuracy of an estimator F̃ (x) = F̃ (x; Yε) is measured by the risk

Rr [F̃ ;F ] := {EF |F̃ (x) − F(x)|r }1/r , r > 0,

where EF denotes the expectation with respect to the distribution PF of Yε satisfying (1).
We develop a pointwise estimation procedure that is based on the selection of estimators from

a large collection.
Denote by K the set of all kernels, that is, functions K : D × D0 → R such that

∫
D K(t,

x)dt = 1 for all x ∈ D0. Let K be a given subset of K and let F (K) be the corresponding
collection of linear estimators of F(x) associated with the family K:

F (K) :=
{
F̂ K(x) =

∫
D

K(t, x)Y (dt),K ∈ K
}
. (2)
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In this paper, we propose an estimator of F(x) that is based on random (measurable with respect
to Yε) selection from the collection F (K). Denoting this estimator by F̂K(x), we have

F̂K(x) = F̂ K̂ (x),

where K̂ ∈ K for any “frozen” trajectory Yε . Although F̂K(x) can be constructed for any K ∈ K,
we establish the upper bound on its risk only for K ∈ P (K); here, P (K) is the set of all collec-
tions K satisfying some natural and non-restrictive conditions (see (K0)–(K2) in Section 2). We
then prove (Theorem 1) that for all ε small enough and for any K ∈ P (K),

Rr [F̂K;F ] ≤ U K,F (x) ∀F ∈ F(K), (3)

where the upper bound UK,F (x) is completely determined by the function F and by the family of
kernels K. Here, F(K) is a large nonparametric set whose dependence on K is typically weak. In
particular, in most interesting examples, we have F(K) ⊃ Cb(D) (see Remark 6 and Theorem 1
below), where Cb(D) is the set of all uniformly bounded continuous functions.

It is important to emphasize that our selection procedure can be applied to different collec-
tions of kernel estimators. Thus, we derive estimators {F̂K, K ∈ P (K)} with different statistical
properties as an output of a unique computational routine.

Kernel collections. Consider several examples of kernel collections for which the upper
bound (3) can be established. Here and later on, K : Rd → R is a fixed function and for all
u,v ∈ R

d , we understand u/v as (u1/v1, . . . , ud/vd).

Example 1. Let d = 1 and for any x ∈ D0, let

K1 =
{
h−1K

( · − x

h

)
, h ∈ [hmin, hmax]

}
,

where 0 < hmin < hmax ≤ 1 are given real numbers.
A random choice from this collection leading to a data-driven bandwidth ĥε(x) = ĥ(x, Yε)

was proposed in Lepski et al. (1997). The upper bound of type (3) obtained in that paper was
used in order to establish minimax results on the Besov classes of functions. We note that the
estimator F̂ K̂ , K̂(t, x) = ĥε(x)−1K([t − x]/ĥε(x)) constructed in Lepski et al. (1997) and the
estimator F̂K1 developed in this paper are different.

Example 2. Consider generalization of the above collection K1 to an arbitrary dimension d > 1.
Let H =⊗d

i=1[h(i)
min, h

(i)
max] and

K H =
{[

d∏
i=1

h−1
i

]
K

( · − x

h

)
, h ∈ H

}
. (4)

A sophisticated random choice from the collection K H was proposed in Kerkyacharian et al.
(2001). The corresponding upper bound of the type (3) allowed minimax results to be obtained on
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the anisotropic Besov classes of functions (functions with inhomogeneous smoothness). Again,
we note that the estimator constructed in Kerkyacharian et al. (2001) and the estimator F̂K H
proposed in the present paper are different.

Even though K H is a rather rich collection, it is not “sufficiently” rich for many interesting
statistical problems. The next example illustrates this point.

Example 3. Denote by E the set of all d × d orthogonal matrices and let

H1 = {h ∈ R
d :h = (h1, hmax, . . . , hmax), h1 ∈ [hmin, hmax]}.

Consider the kernel collection

KSI =
{

1

h1

1

hd−1
max

K

(
ET [· − x]

h

)
,E ∈ E , h ∈ H1

}
. (5)

This collection is appropriate for the estimation of functions possessing the single index structure.
We refer to Chen (1991), Golubev (1992), Hristache et al. (2001) and references therein for works
on estimation in the single index model.

Note that the collections (4) and (5) are quite different and “incomparable”. However, one can
easily define a more general collection of kernels that combines (4) and (5).

Example 4. Define

KH,E =
{[

d∏
i=1

h−1
i

]
K

(
ET (· − x)

h

)
, h ∈ H,E ∈ E

}
.

The estimator F̂KH,E could be applied simultaneously to estimate functions with inhomogeneous
or unknown smoothness as well as functions with the single index structure.

The list of examples of kernel collections corresponding to different “structural” models (see
Stone (1985)) could be continued. Selection from such collections leads to estimators that adapt
simultaneously to a wide spectrum of assumptions on smoothness, structure, etc. Pointwise adap-
tive estimators based on selection from specific collections of estimators were also constructed
in Lepski (1990, 1991), Lepski and Spokoiny (1997), Goldenshluger and Nemirovski (1997),
Tsybakov (1998), Klemelä and Tsybakov (2001) and Golubev (2004). A detailed discussion of
relationships between our results and results in the cited papers is given in Section 3.3.

Objective of the paper. The local inequality (3) specialized to different families of kernels K ∈
P (K) allows us to derive minimax and adaptive results in various settings. This is the feature that
characterizes the power of the estimator F̂K and usefulness of the upper bound in (3). In order to
demonstrate universality of our selection procedure, we discuss its application to the following
nonparametric estimation problems.
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(i) Pointwise adaptive estimation in the single index model. Here, we assume that F(t) =
f (ωT t), where f : R → R is an unknown function, ω ∈ Sd−1 is an unknown direction
vector and S

d−1 is the unit sphere in R
d . Suppose, also, that f belongs to the one-

dimensional Hölder ball with unknown parameters. The objective is to estimate F at
a single given point x ∈ D0.

(ii) Pointwise minimax estimation over a union of anisotropic Hölder classes. In this setting,
it is assumed that F belongs to the union of anisotropic Hölder classes Hd(α,L) (see
Definition 2) over all α = (α1, . . . , αd) satisfying

∑d
i=1 1/αi = 1/γ , where γ > 0 is a

given number. The objective is to estimate F(x) at a given point x ∈ D0.
(iii) Global minimax estimation over isotropic Besov classes. Assume that F belongs to the

isotropic Besov class. The objective is to estimate F globally on D0 with small Lr -risk,
RLr

[F̃ ;F ], r ∈ [1,∞).

We are not aware of any results on problem (i) reported in the literature. For this problem,
our procedure provides a minimax adaptive estimator in the sense of (6) with F

∗
s being the one-

dimensional Hölder class H1(α,L) and the parameter s = (α,L) including smoothness index α

and constant L. Thus, in the setup of problem (i), there is no price to pay for adaptation to the
unknown smoothness parameters α and L.

Problems (ii) and (iii) were considered in Klutchnikoff (2005) and Kerkyacharian et al. (2001),
respectively. We note, however, that the methods proposed in these papers are highly special-
ized and are tailored to the problem in question. In contrast to this, we arrive at the solution
to these problems by applying the same general selection procedure for different collections of
estimators. In particular, our selection procedure applied to the collection F (KSI ) provides a so-
lution to problem (i). The minimax estimators for problems (ii) and (iii) are constructed by using
the proposed scheme on certain subcollections of F (K H,E ). Moreover, we show that all of the
problems (i)–(iii) can be solved simultaneously by the same selection procedure applied to the
collection of estimators F (K H,E ).

Derivation of minimax and adaptive results. Let us briefly discuss how to derive minimax and
adaptive results from local inequalities of type (3).

In the framework of the minimax approach, F is assumed to belong to some given set F
∗. The

objective is to find an estimator F̂ such that

sup
F∈F∗

Rr [F̂ ;F ] 	 inf
F̃

sup
F∈F∗

Rr [F̃ ;F ] as ε → 0,

where inf is taken over all possible estimators. Here and in what follows, a 	 b means that
0 < c1 ≤ a/b ≤ c2 < ∞ for some constants c1 and c2. If, for a fixed family of kernels K ∈ P (K),
it is shown that F

∗ ⊂ F(K) and

sup
F∈F∗

UK,F (x) 	 inf
F̃

sup
F∈F∗

Rr [F̃ ;F ] as ε → 0,

then the estimator F̂K is minimax on F
∗.

The minimax global results can be also derived from local inequalities of type (3). Indeed,
suppose that we are interested in estimating F with small Lr -risk

RLr
[F̂ ;F ] := {EF ‖F̂ − F‖r

r}1/r , r > 0,
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where ‖ · ‖r is the standard Lr -norm on D0. Then, by the use of Fubini’s theorem, we obtain
from (3) that

RLr
[F̂K;F ] ≤ ‖UK,F (·)‖r .

If, for a fixed family of kernels K ∈ P (K), one can prove that F
∗ ⊂ F(K) and

sup
F∈F∗

‖UK,F (·)‖r 	 inf
F̃

sup
F∈F∗

RLr
[F̃ ;F ] as ε → 0,

then the corresponding estimator F̂K is minimax on F
∗ with respect to Lr -risk. Local inequal-

ities (3) are powerful tools for derivation of global minimax results in problems of estimating
functions with inhomogeneous structure.

Local and global minimax adaptive results are obtained in a similar way. In the framework of
the minimax adaptive approach, F is assumed to belong to

⋃
s∈S F

∗
s , where {F∗

s , s ∈ S} is a given
collection of sets. The objective is to find an estimator F̂ such that for every s ∈ S,

sup
F∈F∗

s

Rr [F̂ ;F ] 	 inf
F̃

sup
F∈F∗

s

Rr [F̃ ;F ] as ε → 0. (6)

If, for some K ∈ P (K), one can show that F
∗
s ⊂ F(K) for all s ∈ S and

sup
F∈F∗

s

UK,F (x) 	 inf
F̃

sup
F∈F∗

s

Rr [F̃ ;F ] as ε → 0,

then the estimator F̂K is minimax adaptive for the collection {F∗
s , s ∈ S}. Moreover, if F

∗
s ⊂

F(K),∀s ∈ S and

sup
F∈F∗

s

‖UK,F (·)‖r 	 inf
F̃

sup
F∈F∗

s

RLr
[F̃ ;F ] as ε → 0,

then F̂K is minimax adaptive for {F∗
s , s ∈ S} with respect to the Lr -risk.

The rest of the paper is organized in the following way. In Section 2, we introduce notation and
assumptions that are used throughout the paper and prove some preparatory results. In Section 3,
we present our selection procedure, discuss its connections to other procedures and state the
main result of this paper (Theorem 1). In Section 4, we apply the developed selection procedure
to the aforementioned nonparametric estimation problems (i)–(iii). Section 5 contains the proof
of Theorem 1. In Section 6, we prove all the results appearing in Section 4. Auxiliary results and
proofs are collected in Appendix.

2. Preliminaries

We will use the following notation: ‖ · ‖p denotes the Lp(D0)-norm, while ‖ · ‖p,∞ denotes the
Lp,∞(Rd × D0)-norm,

‖G‖p,∞ = sup
x∈D0

(∫
Rd

|G(t, x)|p dt

)1/p

, p ∈ [1,∞].
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We also write | · |2 for the Euclidean norm.

Basic families of kernels. Let � ⊂ R
m be a compact set and consider a parameterized family

of kernels K� = {Kμ,μ ∈ �}, where Kμ : Rd × R
d → R. Throughout the paper, we consider

families of kernels K� satisfying the following conditions.

(K0) Let D1 be an open interval in Rd such that D0 ⊂ D1 ⊂ D. For all μ ∈ �, one has

supp(Kμ(·, y)) ⊆ D1 ∀y ∈ D0,
(7)∫

D
Kμ(t, y)dt = 1 ∀y ∈ D1.

Moreover,

σ(K�) := sup
μ∈�

‖Kμ‖2,∞ < ∞, (8)

M(K�) := sup
μ∈�

‖Kμ‖1,∞ < ∞. (9)

Note that (7) implies that M(K�) ≥ 1. Conditions (7)–(9) are standard in the context of kernel
estimation.

In the construction of our selection rule, we use the auxiliary kernel collection K�×� =
{Kμ,ν,μ, ν ∈ �}, Kμ,ν : Rd × Rd → R, defined as

Kμ,ν(t, x) :=
∫

D1

Kμ(t, y)Kν(y, x)dy, t ∈ D, x ∈ D0.

In what follows, we will assume that the following “commutativity property” is fulfilled for the
kernels from K�:

(K1)

Kμ,ν ≡ Kν,μ ∀μ,ν ∈ �. (10)

Remark 1. Assumption (K1) is crucial for the construction of our selection procedure. Although
this is a restriction on the family K�, (10) is trivially fulfilled for kernels Kμ(t, x) = Kμ(t − x)

that correspond to standard kernel estimators.

The next statement establishes an important property of the kernel Kμ,ν,μ, ν ∈ �. With any
function F , we associate the quantities

Bμ,ν(x) =
∫

D
Kμ,ν(t, x)F (t)dt − F(x), (11)

Bν(x) =
∫

D
Kν(t, x)F (t)dt − F(x), x ∈ D0. (12)
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Proposition 1. Let (7) hold. Then for any x ∈ D0 and F ∈ Cb(D), one has

Bμ,ν(x) − Bν(x) =
∫

D
Kν(y, x)Bμ(y)dy. (13)

The proof of the proposition is given in the Appendix.

Remark 2. Note that Kν,μ is a kernel for all μ,ν ∈ �, that is,
∫

D Kμ,ν(t, x)dt = 1, ∀x ∈ D0.
This fact follows immediately from (13) if we put F ≡ 1.

Auxiliary estimators and selection statistics. With the collections K� and K�×�, we associate
the following families of linear estimators via (2):

F (K�) = {F̂μ = F̂ Kμ,μ ∈ �};
F (K�×�) = {F̂μ,ν = F̂ Kμ,ν ,μ, ν ∈ �}.

It is easily seen that

F̂μ(x) − F(x) = Bμ(x) + εξμ(x),

F̂μ,ν(x) − F(x) = Bμ,ν(x) + εξμ,ν(x),

where

ξμ(x) =
∫

Kμ(t, x)W(dt), ξμ,ν(x) =
∫

Kμ,ν(t, x)W(dt).

Thus, the quantities Bμ(x) and Bμ,ν(x) defined in (11)–(12) represent the bias of F̂μ(x) and
F̂μ,ν(x), respectively. In addition, we denote σ 2

μ(x) = var{F̂μ(x)} = ‖Kμ(·, x)‖2
2.

Our selection procedure will be based on the statistics {F̂μ,ν(x) − F̂ν(x),μ, ν ∈ �}. It is clear
that

F̂μ,ν(x) − F̂ν(x) = Bμ,ν(x) − Bν(x) + ε[ξμ,ν(x) − ξν(x)], (14)

where ξμ,ν(x) − ξν(x) is a Gaussian zero-mean random variable with variance

σ 2
μ,ν(x) := var{F̂μ,ν(x) − F̂ν(x)} = ‖Kμ,ν(·, x) − Kν(·, x)‖2

2.

Also, note that F̂μ,ν(x) = F̂ν,μ(x), in view of (K1) .

Integrated bias and variance. With any estimator F̂μ, μ ∈ �, we associate the following two
quantities:

B̃μ(x) := sup
ν∈�

|Bμ,ν(x) − Bν(x)| ∨ |Bμ(x)|; (15)

σ̃μ(x) := sup
ν∈�

∫
|Kν(y, x)|σμ(y)dy ∨ σμ(x). (16)
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In words, B̃μ is the maximum among the maximal integrated (with kernels Kν ) bias and the
bias of F̂μ, while σ̃μ is the maximum among the maximal integrated standard deviation of F̂μ

and standard deviation of F̂μ. In what follows, with slight abuse of terminology, we will refer to
B̃μ(x) and σ̃ 2

μ(x) as the integrated bias of F̂μ and the integrated variance of F̂μ, respectively.
It follows from (13) and (9) that

B̃μ(x) ≤ M(K�) sup
y

|Bμ(y)|, σ̃μ(x) ≤ M(K�) sup
y

σμ(y). (17)

We also have the following upper bound on σμ,ν(x) in terms of σ̃μ(x) and σ̃ν(x): for all μ,ν ∈ �,

σμ,ν(x) ≤ ‖Kμ,ν(·, x)‖2 + ‖Kν(·, x)‖2
(18)

≤ σ̃μ(x) + σν(x) ≤ σ̃μ(x) + σ̃ν(x).

Here, we have used the triangle inequality and the Minkowski inequality for integrals.
In what follows, point x is fixed. So, in our notation, we will not indicate dependence on x

when this does not lead to confusion.

3. Selection procedure and main result

In this section, we introduce our selection rule.

3.1. Majorant

We begin with the definition of the majorant, the main ingredient of our construction.
Let 
� := {σ̃μ :μ ∈ �} ⊂ R+ and define σmin := inf
�, σmax := sup
�. Thus, 
� is the

image of � under the mapping μ �→ σ̃μ, where σ̃μ is defined in (16). Let

eK�
(σ ) := sup

μ∈�

E sup
ν:σ̃ν≤σ

|ξμ,ν − ξν |, σ ∈ 
�. (19)

Remark 3. By definition, the function eK�
(·) is non-decreasing on 
�. For any given σ ∈ 
�,

eK�
(σ ) is the maximal (over μ ∈ �) expectation of supremum of the Gaussian zero-mean ran-

dom process {ξμ,ν − ξν} with the index set {ν : σ̃ν ≤ σ } ⊆ �. The covariance structure of this
process is completely determined by the family of kernels K�. Thus, the function eK�

(·) can be
computed, for example, using Monte Carlo simulations. Alternatively, useful analytical bounds
on eK�

(·) can be derived from the theory of Gaussian processes.

(E) Let e(σ ) be a continuous non-decreasing function on 
� such that

(i) e(σ ) ≥ eK�
(σ ), ∀σ ∈ 
�,

(ii) there exist absolute constants 1 < ce ≤ Ce such that

ce ≤ e(2σ)

e(σ )
≤ Ce ∀σ ∈ 
�. (20)
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Remark 4. The function e(·) is an upper bound on eK�
(·). Such a bound can be derived from

general inequalities on suprema of Gaussian processes. Condition (20) holds, for example, if
e(σ ) = cσL(σ), where c is a constant and L(σ) is a slowly varying function. In fact, for our
purposes, it is sufficient to require that inequalities in (20) hold for the ratio e(aσ )/e(σ ) for
some a > 1.

We are now in a position to define the majorant:

Q(σ) := κ0e(σ ) + σ

√
1 + κ1 ln

σ

σmin
, σ ∈ 
�, (21)

where κ0 = 2Ce and κ1 = 128r(1 ∨ lnCe/ ln 2).

Remark 5. Loosely speaking, the majorant uniformly bounds from above the random process
ξμ,ν − ξν,μ, ν ∈ �, with prescribed probability. The function Q consists of two terms. The first
term bounds the expectation of the supremum of a zero-mean Gaussian random process, while
the second term controls the deviation of this supremum from its expectation. In fact, the first
term characterizes “massiveness” of the subset of estimators from F (K�) with variance less than
a prescribed level. The second term involves a logarithm of the ratio of estimator variances in
the family. It can be regarded as a price to be paid for considering families of estimators with
different variances.

3.2. Selection rule

We are now in a position to define our selection rule.
For any μ ∈ �, let

R̂μ := sup
ν:σ̃ν≥σ̃μ

{|F̂μ,ν − F̂ν | − 1
2εQ(σ̃ν)

}
. (22)

Let δ = 1
4εQ(σmin) and let μ̂ ∈ � be such that

R̂μ̂ + εQ(σ̃μ̂) ≤ inf
μ∈�

{R̂μ + εQ(σ̃μ)} + δ. (23)

We then define

F̂ = F̂μ̂. (24)

Several remarks on the above definition are in order. First, observe that R̂μ may be negative;
however, by definition,

R̂μ ≥ − 1
2εQ(σ̃μ) ∀μ ∈ �, (25)

so that R̂μ + εQ(σ̃μ) is always positive. Second, in order to ensure that there exists a measurable
choice of μ̂ satisfying (23), one needs to impose additional conditions on the family of kernels
K�. The next assumption provides such conditions.
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(K2) There exist positive constants L̄ and γ ∈ (0,1] such that

sup
μ,μ′∈�

‖K̃μ − K̃μ′ ‖2,∞
|μ − μ′|γ2

≤ L̄, (26)

sup
μ,μ′∈�

supx |1 − ‖Kμ(·, x)‖2/‖Kμ′(·, x)‖2|
|μ − μ′|γ2

≤ L̄, (27)

where K̃μ(·, x) = Kμ(·, x)/‖Kμ(·, x)‖2, ∀μ ∈ �.

In the proof of Theorem 1, we show that (K0)–(K2), and boundedness and continuity of F imply
that there exists a measurable choice of μ̂ ∈ � such that (23) holds. Thus, our selection rule is
well defined.

3.3. Discussion

In this section, we explain the main idea underlying the construction of our selection scheme and
discuss connections to other procedures in the literature.

The pointwise selection procedures were developed by Lepski (1990, 1991), Lepski et al.
(1997), Lepski and Spokoiny (1997) and Kerkyacharian et al. (2001). In those papers, the pro-
cedures are two-staged: first, a collection of admissible estimators is constructed using a “bias–
variance” comparison scheme; second, among admissible estimators, an estimator with minimal
variance is selected. The procedure in Lepski (1990, 1991) (and its refinements in Lepski et al.
(1997), Lepski and Spokoiny (1997)) selects from the collection F (K1) of one-dimensional ker-
nel estimators (see Example 1 in Section 1) discretized in an appropriate way. In our notation, it
reads as follows:

select the estimator with maximal bandwidth μ ∈ [hmin, hmax]# such that

|F̂μ − F̂ν | ≤ T (μ, ν) ∀ν ∈ [hmin, hmax]# :σν ≥ σμ, (28)

where A# stands for a discretization of a set A and T (μ, ν) is a certain threshold.

Here, the set of admissible estimators contains all estimators F̂μ, μ ∈ [hmax, hmin]# satisfy-
ing (28) and at the selection stage, the estimator with minimal variance (maximal bandwidth)
is chosen. This scheme exploits monotonicity properties of the bias and variance with respect to
the bandwidth which, in general, do not hold in the multidimensional case.

A generalization of (28) to the multidimensional case was developed in Kerkyacharian et al.
(2001). Their procedure is designed for selection from the properly discretized collection F (K H)

(see Example 2, Section 1) and can be represented as follows:

For μ = (μ1, . . . ,μd) ∈ H# and ν = (ν1, . . . , νd) ∈ H#, define μ∨ ν = (μ1 ∨ ν1, . . . ,μd ∨
νd) and consider the auxiliary estimator F̂μ,ν ≡ F̂μ∨ν . The estimator F̂μ, μ ∈ H#, is called
admissible if

|F̂μ,ν − F̂ν | ≤ T (ν) ∀ν ∈ H# :σν ≥ σμ, (29)
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where T (ν) is an appropriate threshold. Note that (29) can be rewritten as

sup
ν∈H# : σν≥σμ

[|F̂μ,ν − F̂ν | − T (ν)] ≤ 0. (30)

At the selection stage, we choose the admissible estimator with minimal variance.

Note that the scheme (29) involves an auxiliary estimator F̂μ,ν and its construction can only
be used for selection from the collection F (K H). Specifically, the procedure (29) cannot be
applied for selection from the collection of kernel estimators F (KSI ) (see Example 3, Section 1)
corresponding to the single index model.

Our selection procedure (22)–(24) also uses an auxiliary estimator F̂μ,ν , but, in contrast
to (29), the construction of F̂μ,ν is universal and fits a wide variety of kernel collections. In
addition, instead of pairwise comparisons with a threshold (as in (28) and (29)), we define the
majorant function and use direct minimization. Our rule (23) is very much in the spirit of (30). In-
deed, the procedure of Kerkyacharian et al. (2001) minimizes σμ subject to constraint (30), while
in (23), we minimize, with respect to μ, the expression supν:σν≥σμ

[|F̂μ,ν − F̂μ|− 1
2T (ν)]+T (μ)

and T (μ) is “roughly” proportional to σμ.
Summing up, the proposed selection method differs from other pointwise selection procedures

in: (a) construction of the auxiliary estimators F̂μ,ν ; (b) selection by direct minimization. These
features enable a wide variety of kernel collections to be treated in a unified way and the dis-
cretization of the parameter space � to be avoided.

3.4. Upper bound

In order to present an upper bound on the risk of the proposed estimator, we need the following
definition.

For any function F ∈ Cb(D) and given collection K�, define

�F (K�) := {μ ∈ � :∀σ ≥ σ̃μ, σ ∈ 
� ∃θ ∈ � such that σ̃θ = σ and B̃θ ≤ 1
4εQ(σ̃θ )

}
.

In what follows, we will consider functions F for which �F (K�) is non-empty. This condition
is closely related to the existence of estimators in F (K�) realizing the bias-variance trade-off.

Remark 6. Clearly, �F (K�) is non-empty for any constant function F since, by (13) and (15),
B̃θ ≡ 0 for all θ ∈ �. For the same reason, if Kθ is orthogonal to all polynomials of degree ≤ l,
then �F (K�) is non-empty for any F which is a polynomial of degree ≤ l. In general, the size of
the set of functions F for which �F (K�) is non-empty is completely determined by the family
K�. For example, if F (K�) is the family of standard kernel estimators with a bounded kernel Kθ

and bandwidth θ = (h1, . . . , hd) ∈ [ε2,1/2]d , then �F (K�) is non-empty for any F ∈ Cb(D).

Finally, we put

μ∗ = arg inf
μ∈�F (K�)

σ̃μ. (31)
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Theorem 1. Suppose that assumptions (K0)–(K2) and (E) hold. Then, for any F ∈ Cb(D) such
that �F (K�) �= ∅, and for all ε small enough, one has

Rr [F̂ ;F ] ≤ CεQ(σ̃μ∗),

where C is a numerical constant depending only on r , ce and Ce .

4. Applications

In this section, we show how the upper bound of Theorem 1 can be used for the derivation
of minimax and adaptive minimax results. In particular, in Sections 4.2–4.4, we consider three
particular problems:

• pointwise adaptive estimation in the single index model;
• pointwise minimax estimation over a union of anisotropic Hölder classes;
• global minimax estimation over isotropic Besov classes.

Our goal here is to show how a careful choice of the family of kernels leads to estimators with op-
timal statistical properties. Note that in each particular case, the estimators are different, although
all of them are obtained by the same computational routine presented in Section 3.

In Section 4.5, we demonstrate that the choice of a rather huge kernel collection allows a single
estimator to be constructed which is simultaneously optimal (up to a log-factor) for these three
entirely different problems.

4.1. General kernel collection

Let G : Rd → R be a function supported on [−1/2,1/2]d and satisfying the conditions∫
G(t)dt = 1,

∫
trG(t)dt = 0 ∀|r| = 1, . . . , l, sup

t
|∇G(t)|2 ≤ M, (32)

where r = (r1, . . . , rd), ri ≥ 0, |r| = r1 + · · · + rd and tr = t
r1
1 · · · t rdd .

Let E denote the set of d ×d orthogonal matrices and let H = [hmin, hmax]d , where 0 < hmin ≤
hmax ≤ 1/2 are given real numbers.

Define, for all h ∈ H and all E ∈ E ,

Gh(t) =
[

d∏
i=1

h−1
i

]
G

(
t1

h1
, . . . ,

td

hd

)
, Gh,E(t, x) = Gh(E

T [t − x]) (33)

and consider the following collection of kernels:

K H,E = {Gh,E, (h,E) ∈ H × E }. (34)
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Remark 7.

1. For the family K H,E , we have

σh,E(x) = σh,E = ‖G‖2

d∏
i=1

h
−1/2
i ∀x ∈ D0, ∀E ∈ E

and, therefore, σ̃h,E(x) = ‖G‖1σh,E , ∀x ∈ D0,

σmin = ‖G‖1‖G‖2 h
−d/2
max , σmax = ‖G‖1‖G‖2 h

−d/2
min .

2. Assumptions (K0)–(K2) are fulfilled for the family K H,E . Indeed, (K0) holds trivially; here,
M(K H,E ) = ‖G‖1. Assumption (K2) is fulfilled because K H,E consists of convolution
kernels. Boundedness of the gradient of G in (32), along with (K0) and (K1), implies (K2)
(see Lemmas 1 and 2 in Section 6.1).

In order to construct estimators in the aforementioned problems, we will consider families cor-
responding to different subsets of K H,E . The family of estimators F (K H,E ) will be considered
in Section 4.5.

4.2. Pointwise adaptive estimation in the single index model

Consider the model (1) with F(t) = f (ωT t), where f : R → R is an unknown function from the
Hölder ball H1(α,L) with unknown parameters α > 0 and L > 0, and ω ∈ S

d−1 is an unknown
direction vector. We refer to this model as the single index model.

Definition 1. We say that function F belongs to the functional class FSI (α,L) if there exists
a direction vector ω ∈ S

d−1, parameters α > 0, L > 0 and a univariate function f ∈ H1(α,L)

such that F(t) = f (ωT t).

Define H1 = {h ∈ H :h = (h1, hmax, . . . , hmax)}, �SI = H1 × E and consider the following
subset of K H,E :

KSI = {Gh,E : (h,E) ∈ �SI }. (35)

The corresponding family of estimators is given by

F (KSI ) =
{
F̂h,E(x) =

∫
Gh,E(t, x)Y (dt), (h,E) ∈ �SI

}
.

Remark 8. In view of Remark 7, we have

σ̃h,E = ‖G‖1σh,E = ‖G‖1‖G‖2 h
−(d−1)/2
max

[
1/
√

h1
]; (36)

σmin = h
−d/2
max ‖G‖1‖G‖2, σmax = h

−(d−1)/2
max ‖G‖1‖G‖2

[
1/
√

hmin
]
. (37)

Note that σh,E does not depend on E.
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Let e(σ ) = C0σ
√

lnσ , where C0 is a numerical constant depending only on d and G. It is
shown in Lemma 3 of Section 6 that e(σ ) ≥ eKSI

(σ ) for all σ ∈ 
�SI
. The majorant Q is given

by

Q(σ) = σ
[
κ0C0

√
lnσ +√1 + κ1 ln (σ/σmin)

]
. (38)

Note that assumption (E) is trivially fulfilled with ce = 2 and

Ce = 2
(
1 +√ln 2/ lnσmin

)≤ 2
(
1 +√2/d

)
.

Let F̂SI be the estimator derived from the collection F (KSI ), in accordance with our general
selection rule, with the majorant (38), where κ0 = 4(1 + √

ln 2/ lnσmin) and κ1 = 320r .

Theorem 2. Fix some 0 < αmax < ∞, let hmin = ε2, hmax = ε2/(2αmax+1) and assume that (32)
holds with l ≥ �αmax�.

Then, for any 0 < α ≤ αmax ≤ l, L > 0 and ε small enough, one has

sup
F∈FSI (α,L)

Rr [F̂SI ;F ] ≤ CL1/(2α+1)

(
ε

√
ln

1

ε

)2α/(2α+1)

, (39)

where C depends only on α, G, d and r .

Remark 9. If the parameters α and L of the class H1(α,L) are known and the direction vector ω

is unknown, then we consider the following subset of KSI :

K′
SI = {Gh,E,h = h∗,E ∈ E },

where h∗ = (h∗
1, hmax, . . . , hmax), h∗

1 = L−2/(2α+1)[ε√ln 1/ε]2/(2α+1). Under these circum-
stances,

σh∗,E = h
−(d−1)/2
max (h∗

1)
−1/2‖G‖2

does not depend on E (see also Remark 8) and therefore

σmin = σmax = σ ∗ := ‖G‖1σh∗,E = h
−(d−1)/2
max (h∗

1)
−1/2‖G‖2 ‖G‖1.

The corresponding majorant is given by Q(σ ∗) = κ0C0σ
∗√lnσ ∗ + σ ∗ so that the first term is

dominating (all estimators in F (K′
SI ) have the same variance). The resulting selected estimator

for this family will then satisfy the same upper bound of Theorem 2. One can prove a lower
bound that shows that even if α and L are known, the rate of convergence on the right-hand side
of (39) cannot be improved.

4.3. Pointwise minimax estimation over a union of anisotropic Hölder
classes

We start with the definition of the anisotropic Hölder class of functions.
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Definition 2. Let α = (α1, . . . , αd), αi > 0 and L > 0. We say that f : [−1/2,1/2]d → R be-
longs to the anisotropic Hölder class Hd(α,L) if for all i = 1, . . . , d and all t ∈ [−1/2,1/2]d ,

|Dm
i f (t)| ≤ L ∀m = 1, . . . , �αi�

and ∣∣D�αi�
i f (t1, . . . , ti + z, . . . , td ) − D

�αi�
i f (t1, . . . , ti , . . . , td )

∣∣≤ L|z|αi−�αi� ∀z ∈ R,

where Dm
i f denotes the mth order partial derivative of f with respect to the variable ti and �αi�

is the largest integer strictly less than αi .

Fix γ > 0 and introduce the functional class

FAH (γ,L) =
⋃

α∈Aγ

Hd(α,L), where Aγ =
{

α :
d∑

i=1

1/αi = 1/γ,αi > 0, i = 1, d

}
.

Remark 10. It is well known (see, e.g., Kerkyacharian et al. (2001) and Bertin (2004))
that for any α ∈ Aγ , the minimax rate of convergence on Hd(α,L) is given by ε2γ /(2γ+1).
Thus, FAH (γ,L) is the union of functional classes with prescribed accuracy of estimation.
Klutchnikoff (2005) showed that the rate ε2γ /(2γ+1) is not achievable on FAH (γ,L) and proved
that the minimax rate of convergence on FAH (γ,L) is given by

ϕε := [ε√ln ln(1/ε)
]2γ /(2γ+1)

.

In this section, we show that the application of our general selection rule with a specific choice
of the kernel collection KAH ⊂ K H,E leads to the minimax estimator on FAH (γ,L).

Define the set of bandwidths Hγ ⊂ H

Hγ :=
{

h ∈ [hmin, hmax]d :
d∏

i=1

h
γ

i = ϕε

}
(40)

and consider the following subset of the family of kernels K H,E :

KAH = {Gh,E : (h,E) ∈ �AH := Hγ × {Id}}, (41)

where Id is the d × d identity matrix.
The corresponding family of estimators is given by

F (KAH ) =
{
F̂h(x) =

∫
Gh(t − x)Y (dt), h ∈ Hγ

}
.

For all h ∈ Hγ , we have

σ̃h = ‖G‖1σh = ‖G‖1‖G‖2

d∏
i=1

h
−1/2
i = ‖G‖1‖G‖2

[
ε
√

ln ln(1/ε)
]−1/(2γ+1)

.
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Thus, the set 
�AH
consists of the single point ‖G‖1 ‖G‖2[ε√ln ln(1/ε) ]−1/(2γ+1).

Let e(σ ) = C1σ
√

ln ln(hmax/hmin), where C1 is a numerical constant depending only on d

and G. Lemma 3 of Section 6 shows that e(σ ) is an upper bound on eKAH
(σ ). Note that assump-

tion (E) is trivially fulfilled with ce = Ce = 2 and the majorant in our procedure can be taken as
follows:

Q(σ) = σ
[
1 + 4C1

√
ln ln(hmax/hmin)

]
. (42)

Let F̂AH be the estimator derived from the collection F (KAH ), in accordance with our general
selection rule, with the majorant (42).

Theorem 3. Fix 0 < αmax < ∞. Let hmin = ε2, hmax = 1/2 and assume that (32) holds with
l ≥ �αmax�. Then, for any α ∈ Aγ ∩ (0, αmax]d ,

sup
F∈Hd (α,L)

Rr [F̂AH ;F ] ≤ CL1/(2γ+1)

(
ε

√
ln ln

1

ε

)2γ /(2γ+1)

,

where C depends only on G, d , r and γ .

4.4. Global minimax estimation over isotropic Besov classes

We begin with the definition of the isotropic Besov class of functions on D0.
For all x ∈ D0 and a ∈ R

d such x + a ∈ D, define

�1
aF (x) = F(x + a) − F(x).

For any integer l ≥ 2, let �l
aF (x) denote the (l − 1)-fold iteration of the operator �1

aF (x).

Definition 3. Let s > 0,p ∈ [1,∞) and L > 0 be given constants. Let B
s
p,∞(d,L) denote the set

of all functions satisfying

sup
a

|a|−s
2

∥∥��s�+2
a F (·)∥∥

p
≤ L,

where �s� is the largest integer strictly less than s. We call B
s
p,∞(d,L) the isotropic Besov class

of functions.

The considered classes were first introduced in approximation theory by Nikolskii (1975).
They represent a particular case of the Besov classes B

s
p,q(d,L) with q = ∞ which appear

more often in the statistical literature. More general anisotropic Besov functional classes were
considered in Kerkyacharian et al. (2001).

On the class B
s
p,∞(d,L), we introduce the maximal risk

RLr
(F̃ ) = sup

F∈B
s
p,∞(d,L)

{EF ‖F̃ − F‖r
r}1/r , r ∈ [1,∞),
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where F̃ is an estimator of F . It is well known (Delyon and Juditsky (1996)) that

ϕε =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εs/(s+d/2), if sp >

d(r − p)

2
,

[ε√ln 1/ε]s/(s+d/2)[ln 1/ε]1/r , if sp = d(r − p)

2
,

[ε√ln 1/ε]s−d(1/p−1/r)/(s−d(1/p−1/2)), if sp <
d(r − p)

2

is the minimax rate of convergence on B
s
p,∞(d,L) if sp �= d(r−p)

2 and differs from minimax rate

of convergence by ln(1/ε)-factor if sp = d(r−p)
2 .

In this section, we present the estimator which attains the rate ϕε on B
s
p,∞(d,L). As before,

this estimator is the output of our general selection procedure.
Let

G(t) = G∗(t) :=
�s�+2∑
j=1

(−1)j+1
( �s� + 2

j

)
1

jd
g

(
t

j

)
, t ∈ R

d,

where g : Rd → R is a bounded, compactly supported function with
∫

g = 1. It is easily seen that
the function G∗ satisfies assumption (32).

Consider the following subset of K H,E :

KB = {G∗
h,E : (h,E) ∈ �B := HB × {Id}},

where H ⊃ HB := {h = (h1, . . . , hd) ∈ H :hi = hj , i, j = 1, d}. Note that the family KB con-
sists of isotropic kernels having the same bandwidth in each direction. The corresponding family
of estimators is given by

F (KB) =
{
F̂h : F̂h(x) =

∫
G∗

h(t − x)Y (dt), h ∈ HB

}
.

Let F̂B be the estimator derived from the collection F (KB) in accordance with our general
selection rule, where the majorant Q is given by

Q(σ) = C(s, g)σ
√

1 + κ1 ln(σ/σmin) =: C1σQ∗(σ/σmin).

Here, Q∗(z) = z
√

1 + ln z, z ≥ 1 and C1 = C(s, g, d, r) is the numerical constant.

Theorem 4. Suppose that s > d/p and choose hmin = ε2 and

hmax =

⎧⎪⎨⎪⎩
ε2/(2s+d), if sp >

d(r − p)

2
,

1/2, if sp ≤ d(r − p)

2
.

Then, for all ε > 0 small enough,

RLr
(F̂B) ≤ C(d, s,p, r, g)ϕr

ε ,
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where C(d, s,p, r, g) > 0 is a numerical constant.

Remark 11. The result described in Theorem 4 was first obtained by Delyon and Juditsky (1996)
using wavelet techniques. Lepski et al. (1997) used the pointwise approach in order to develop
minimax theory on the Besov balls. All results in Lepski et al. (1997) were obtained for the one-
dimensional case d = 1 and the selection rule proposed there, being a modification of Lepski’s
method, cannot be directly extended to dimensions greater than one. Generalization to an arbi-
trary dimension was proposed in Kerkyacharian et al. (2001). This allowed minimax results to
be developed for the anisotropic Besov-type functional classes. The class studied in this section
can be viewed as a particular case of the anisotropic one and in Theorem 4, we reproduce the
results from Lepski et al. (1997).

4.5. Mixture of problems

Consider the family of estimators

F (K H,E ) =
{
F̂h,E : F̂h,E(x) =

∫
G∗

h,E(t, x)Y (dt), h ∈ H,E ∈ E
}

and let F̂ be the estimator derived from the collection F (K H,E ) in accordance with our general
selection rule, where the majorant Q is given by

Q(σ) = C2σ
√

1 + ln (1/ε).

Here, C2 = C2(d, r, g) is a numerical constant.

Theorem 5. Choose hmin = ε2, hmax = 1/2 and suppose that G satisfies assumption (32). Then,
for all ε > 0 small enough,

1. under the conditions of Theorem 2 the estimator F̂ is minimax, that is, it satisfies (39);
2. under the conditions of Theorem 3, we have

sup
F∈Hd (α,L)

Rr [F̂ ;F ] ≤ CL1/(2γ+1)

(
ε

√
ln

1

ε

)2γ /(2γ+1)

,

where C depends only on g, d , r and γ ;
3. under the conditions of Theorem 4, we have

RLr
(F̂ ) ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
ε
√

ln 1/ε
]s/(s+d/2)

, if sp >
d(r − p)

2
,[

ε
√

ln 1/ε
]s/(s+d/2)[ln 1/ε]1/r , if sp = d(r − p)

2
,[

ε
√

ln 1/ε
]s−d(1/p−1/r)/(s−d(1/p−1/2))

, if sp <
d(r − p)

2
,

where C depends only on g, d , r and γ .
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The proof of the theorem is along the same lines as the proofs of Theorems 2–4 and is hence
omitted.

Remark 12.

1. Comparing the results from Theorems 3 and 5, we conclude that the rate provided by the
estimator F̂ differs from the minimax rate of convergence on FAH by a [ln (1/ε)/ ln ln(1/

ε)]2γ /(2γ+1)-factor.
2. Comparing the results from Theorems 4 and 5, we conclude that the estimator F̂ is minimax

adaptive up to a
√

ln (1/ε)-factor for all values of parameters s and p. Moreover, F̂ is a
minimax adaptive estimator on the isotropic Besov balls of functions for all s and p such
that sp <

d(r−p)
2 . A wavelet thresholding estimator which is nearly minimax adaptive over

a scale of one-dimensional Besov balls was developed in Donoho et al. (1995).

5. Proof of Theorem 1

In the proof below, c, c1, c2, . . . denote constants depending only on r , ce and Ce; they can be
different on different occasions.

00. We begin the proof by showing that under the premise of the theorem, the selection
rule (22)–(24) is well defined, that is, there exists a measurable choice of μ̂ ∈ � such that (23) is
fulfilled.

It follows from Lemma 1 and assumptions (K2) and (K0) that there exists a separable modifi-
cation of the Gaussian random process {ξμ,ν(x) − ξν(x), (μ, ν) ∈ � × �} that with probability
one belongs to the 2m-dimensional isotropic Hölder space with regularity index 0 < τ < γ (see
Lifshits (1995), Section 15). In addition, if (K2) holds and F is uniformly bounded, then the
integral

∫
Kν(y, x)Bμ(y)dy, considered as a function of (μ, ν), belongs to the 2m-dimensional

Hölder space with regularity index γ . Then, by (14) and (13), we obtain that |F̂μ,ν(x) − F̂ν(x)|
is continuous in (μ, ν). It also follows from (26) and (27) that σν(x) (and σ̃ν(x)) are continuous
functions of ν ∈ �. Hence, Q(σ̃ν) is also continuous in ν; thus, the random function under the
supremum on the RHS of (22) is continuous in (μ, ν). R̂μ is then a random variable for every
μ ∈ �.

We now describe the construction of the measurable choice μ̂ ∈ � satisfying (23). Let

R̂μ,ν = |F̂μ,ν − F̂ν | − 1
2εQ(σ̃ν), μ, ν ∈ �.

For any δ > 0, there exists a simple function, say R̃μ,ν , on � × � such that |R̂μ,ν − R̃μ,ν | ≤ δ

for all μ,ν ∈ �. Then, clearly,

|R̂μ − R̃μ| ≤ δ ∀μ ∈ �, (43)

where we have defined R̃μ := supν:σ̃ν≥σ̃μ
R̃μ,ν . We now observe that R̃μ is a simple function of

μ ∈ � and define μ̂ = arg infμ∈�{R̃μ + εQ(σ̃μ)}. Since the function R̃μ assumes a finite number
of values and Q(σ̃μ) is continuous in μ, μ̂ is measurable and belongs to �. (43) then implies (23)
if δ is chosen to be 1

4εQ(σmin).
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10. We write

{EF |F̂ − F |r }1/r ≤ {EF |F̂ − F |r1(σ̃μ̂ ≤ σ̃μ∗)}1/r + {EF |F̂ − F |r1(σ̃μ̂ > σ̃μ∗)}1/r (44)

and our current goal is to bound the two terms on the right-hand side.
20. By the triangle inequality,

|F̂μ̂ − F |1(σ̃μ̂ ≤ σ̃μ∗) ≤ [|F̂μ̂,μ∗ − F̂μ̂| + |F̂μ̂,μ∗ − F̂μ∗ | + |F̂μ∗ − F |]1(σ̃μ̂ ≤ σ̃μ∗)

=: [J1 + J2 + J3]1(σ̃μ̂ ≤ σ̃μ∗).

By the definitions of F̂μ,ν , F̂μ and B̃μ,

J1 1(σ̃μ̂ ≤ σ̃μ∗) ≤ [|Bμ̂,μ∗ − Bμ̂| + ε|ξμ̂,μ∗ − ξμ̂|]1(σ̃μ̂ ≤ σ̃μ∗)

≤ sup
ν∈�

|Bν,μ∗ − Bν | + ε sup
ν:σ̃ν≤σ̃μ∗

|ξν,μ∗ − ξν |

≤ B̃μ∗ + ε sup
ν:σ̃ν≤σ̃μ∗

|ξν,μ∗ − ξν |.

Therefore, in view of Lemma A.1 in the Appendix,

{EF J r
1 1(σ̃μ̂ ≤ σ̃μ∗)}1/r ≤ B̃μ∗ + ε

{
E sup

ν:σ̃ν≤σ̃μ∗
|ξν,μ∗ − ξν |r

}1/r

≤ B̃μ∗ + Crε{e(σ̃μ∗) + 2σ̃μ∗} (45)

≤ cεQ(σ̃μ∗),

where we have used the definitions of μ∗ and Q(·).
Furthermore,

J21(σ̃μ̂ ≤ σ̃μ∗) ≤ {|F̂μ̂,μ∗ − F̂μ∗ | − 1
2εQ(σ̃μ∗)

}
1(σ̃μ̂ ≤ σ̃μ∗) + 1

2εQ(σ̃μ∗)

≤ R̂μ̂ + 1
2εQ(σ̃μ∗)

≤ R̂μ∗ + 3
2εQ(σ̃μ∗) + δ,

where the second inequality follows from (22) and the third is a consequence of (23). Hence,

{EF J r
2 1(σ̃μ̂ ≤ σ̃μ∗)}1/r ≤ {EF R̂r

μ∗1(R̂μ∗ > 0)}1/r + 3
2εQ(σ̃μ∗) + δ.

Because

R̂μ∗ = sup
ν:σ̃ν≥σ̃μ∗

[|F̂μ∗,ν − F̂ν | − 1
2εQ(σ̃ν)

]
(46)

≤ B̃μ∗ + ε

[
sup

ν:σ̃ν≥σ̃μ∗
|ξμ∗,ν − ξν | − 1

2Q(σ̃ν)

]
+
, ([·]+ = max{·,0}),
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we obtain

{EF J r
2 1(σ̃μ̂ ≤ σ̃μ∗)}1/r

≤ B̃μ∗ + ε

{
E

[
sup

ν:σ̃ν≥σ̃μ∗
|ξμ∗,ν − ξν | − 1

2Q(σ̃ν)

]r

+

}1/r

+ 3
2εQ(σ̃μ∗) + δ

(47)
≤ B̃μ∗ + 3

2εQ(σ̃μ∗) + δ + cεσmin

≤ cεQ(σ̃μ∗),

where the second inequality follows from Lemma A.2 (see Appendix) and the last inequality
follows from the definitions of μ∗ and Q(·).

The bound on {EF J r
3 1(σ̃μ̂ ≤ σ̃μ∗)}1/r is immediate:

{EF J r
3 1(σ̃μ̂ ≤ σ̃μ∗)}1/r ≤ B̃μ∗ + ε[E|ξμ∗ |r ]1/r ≤ B̃μ∗ + cεσμ∗ ≤ cεQ(σ̃μ∗). (48)

Combining (45), (47) and (48), we obtain that there exists a constant c depending only on r such
that

{EF |F̂μ̂ − F |r1(σ̃μ̂ ≤ σ̃μ∗)}1/r ≤ cεQ(σ̃μ∗). (49)

30. To bound the second term on the right-hand side of (44), we proceed as follows. Define
the events Ak = {2k−1σ̃μ∗ ≤ σ̃μ̂ < 2kσ̃μ∗}, k = 1,2, . . . , and let μk ∈ �F (K�) be such that the

corresponding estimators F̂μk
∈ F (K�) have the following properties:

(i) σ̃ 2
μk

= var{F̂μk
} = 2kσ̃μ∗ ;

(ii) B̃μk
≤ 1

4εQ(σ̃μk
).

The existence of estimators F̂μk
satisfying (i) and (ii) is guaranteed by the fact that �F (K�) is

non-empty and μ∗ ∈ �F (K�). We can then write

|F̂μ̂ − F |1(σ̃μ̂ ≥ σ̃μ∗) ≤
∞∑

k=1

[|F̂μ̂,μk
− F̂μ̂| + |F̂μ̂,μk

− F̂μk
| + |F̂μk

− F |]1(Ak)

(50)

=:
∞∑

k=1

[I1,k + I2,k + I3,k]1(Ak).

We have

I1,k1(Ak) ≤ [B̃μk
+ ε|ξμ̂,μk

− ξμ̂|]1(Ak)

≤
[

1

2
εQ(σ̃μk

) + ε sup
ν:σ̃ν≤σ̃μk

|ξν,μk
− ξν |

]
1(Ak),
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where the second inequality follows from the definition of μk . Hence, by the Cauchy–Schwarz
inequality and Lemma A.1,

{EF I r
1,k1(Ak)}1/r

≤ 1
2εQ(σ̃μk

)P
1/r
F (Ak) + ε

{
EF sup

ν:σ̃ν≤σ̃μk

|ξν,μk
− ξν |2r

}1/2r

[PF (Ak)]1/2r

(51)
≤ 1

2εQ(σ̃μk
)P

1/r
F (Ak) + cε{e(σ̃μk

) + σ̃μk
}[PF (Ak)]1/2r

≤ cεQ(σ̃μk
)[PF (Ak)]1/2r .

Furthermore,

I2,k1(Ak) ≤ [|F̂μ̂,μk
− F̂μk

| − 1
2εQ(σ̃μk

)
]
1(Ak) + 1

2εQ(σ̃μk
)1(Ak)

≤ [R̂μ̂ + 1
2εQ(σ̃μk

)
]
1(Ak)

≤ [R̂μ∗ + 3
2εQ(σ̃μk

) + δ
]
1(Ak)

≤ [R̂μ∗1(R̂μ∗ > 0) + 3
2εQ(σ̃μk

) + δ
]
1(Ak),

where the second inequality follows from the definition of R̂μ and the third from the definition
of μ̂ and the monotonicity of Q(·). Arguing as in (46) and (47), and using the Cauchy–Schwarz
inequality, we obtain

{EF I r
2,k1(Ak)}1/r

≤ {EF R̂2r
μ∗1(R̂μ∗ > 0)}1/2r [PF (Ak)]1/2r + ( 3

2εQ(σ̃μk
) + δ

)[PF (Ak)]1/r

(52)
≤ (B̃μ∗ + cεσmin)[PF (Ak)]1/2r + ( 3

2εQ(σ̃μk
) + δ

)[PF (Ak)]1/r

≤ cεQ(σ̃μk
)}[PF (Ak)]1/2r .

Finally,

{EF I r
3,k1(Ak)}1/r ≤ B̃μk

[PF (Ak)]1/r + ε{E|ξμk
|2r }1/2r [PF (Ak)]1/2r

≤ 1
2εQ(σ̃μk

)[PF (Ak)]1/r + cεσ̃μk
[PF (Ak)]1/2r (53)

≤ cεQ(σ̃μk
)[PF (Ak)]1/2r ,

where we have used the definition of μk . Combining (51), (52) and (53), we obtain

{EF I r
1,k1(Ak)}1/r + {EF I r

2,k1(Ak)}1/r + {EF I r
3,k1(Ak)}1/r ≤ cεQ(σ̃μk

)}[PF (Ak)]1/2r . (54)

In order to complete the proof, we need to bound PF (Ak) from above.
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40. Note that for any integer 1 < m < k, by definition of μ̂, we have Ak ⊆ {σ̃μ̂ > σ̃μk−m
}.

Hence,

Ak ⊆ {σ̃μ̂ > σ̃μk−m
}

⊆ {R̂μ̂ + εQ(σ̃μ̂) < R̂μk−m
+ εQ(σ̃μk−m

) + δ}
(55)

⊆ {R̂μk−m
+ εQ(σ̃μk−m

) > 1
2εQ(σ̃μ̂) − δ

}
⊆ {R̂μk−m

+ εQ(σ̃μk−m
) > 1

2εQ(σ̃μk−1) − δ
}
,

where the second inclusion is by (25) and the third is by the monotonicity of Q(·). Furthermore,
using assumption (E), we have

1

2
Q(σ̃μk−1) − Q(σ̃μk−m

)

= 1

2
κ0e(σ̃μk−1) + 1

2
σ̃μk−1

√
1 + κ1 ln

σ̃μk−1

σmin
− κ0e(σ̃μk−m

) − σ̃μk−m

√
1 + κ1 ln

σ̃μk−m

σmin

≥
[

1

2
cm−1
e − 1

]
κ0e(σ̃μk−m

) + σ̃μk−2

√
1 + κ1 ln

σ̃μk−2

σmin
− σ̃μk−m

√
1 + ln

σ̃μk−m

σmin

≥ 1

2
κ0e(σ̃μk−m

) + 1

2
σ̃μk−m

√
1 + κ1 ln

σ̃μk−m

σmin

= 1

2
Q(σ̃μk−m

),

provided that m ≥ 3 ∨ [1 + (ln 3/ ln ce)]. Choosing

m = m0 := �1 + (ln 3/ ln ce)� ∨ 3, (56)

we obtain that

PF (Ak) ≤ PF

{
R̂μk−m0

>
1

2
εQ(σ̃μk−m0) − δ

}
≤ PF

{
B̃μk−m0

+ ε sup
ν:σ̃ν≥σ̃μk−m0

[
|ξμk−m0,ν − ξν | − 1

2
Q(σ̃μk−m0)

]
>

1

4
εQ(σ̃μk−m0)

}
(57)

≤ PF

{
sup

ν:σ̃ν≥σ̃μk−m0

[
|ξμk−m0,ν − ξν | − 1

2
εQ(σ̃μk−m0)

]
> 0

}

≤ 4

(
σmin

σ̃μk−m0

)κ1/64

,
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where the first inequality is by (55), the second is by the bound on R̂μ (see (46)), the definition
of δ and the monotonicity of Q(·), the third is in view of the definition of the μk’s and the fourth
inequality follows from Lemma A.2.

50. Now using (54) and (57), we bound {EF |F̂μ̂ − F |r1(σ̃μ̂ ≥ σ̃μ∗)}1/r ; see (50).
Let m0 be given by (56) and, for the sake of brevity, set γ = κ1/64. Then,

∞∑
k=m0+1

[PF (Ak)]1/2r ≤ c

(
σmin

σ̃μ∗

)γ /(2r)

2m0γ /(2r)
∞∑

k=m0+1

2−kγ /(2r) ≤ c

(
σmin

σ̃μ∗

)γ /(2r)

2m0γ /(2r).

Moreover, using assumption (E), we obtain

∞∑
k=m0+1

Q(σ̃μk
)[PF (Ak)]1/2r

≤ c

∞∑
k=m0+1

[
κ0e(σ̃μk

) + σ̃μk

√
1 + κ1 ln

σ̃μk

σmin

](
σmin

σ̃μk−m0

)γ /(2r)

≤ c1κ02m0γ /(2r)

(
σmin

σ̃μ∗

)γ /(2r)

e(σ̃μ∗)
∞∑

k=m0+1

Ck
e 2−kγ /(2r)

(58)

+ c22m0γ /(2r)σ̃μ∗
(

σmin

σ̃μ∗

)γ /(2r) ∞∑
k=m0+1

2k−kγ /(2r)

√
1 + κ1 ln

2kσ̃μ∗

σmin

≤ c2m0γ /(2r)

(
σmin

σ̃μ∗

)γ /(2r)(
κ0e(σ̃μ∗) + σ̃μ∗

√
1 + κ1 ln

σ̃μ∗

σmin

)
,

≤ c2m0γ /(2r)

(
σmin

σ̃μ∗

)γ /(2r)

Q(σ̃μ∗)

because, by our choice of κ1, γ = κ1/64 ≥ 2r(lnCe/ ln 2), which implies that the sums on the
right-hand side are finite. In addition,

m0∑
k=1

Q(σ̃μk
) =

m0∑
k=1

[
κ0e(σ̃μk

) + σ̃μk

√
1 + κ1 ln

σ̃μk

σmin

]

≤ κ0e(σ̃μ∗)
m0∑
k=1

Ck
e + σ̃μ∗

√
1 + κ1 ln

σ̃μ∗

σmin

m0∑
k=1

2k + 2σ̃μ∗
√

κ1 ln 2
m0∑
k=1

2k
√

k (59)

≤ cQ(σ̃μ∗);

here, we have used assumption (E).
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Therefore, combining (54), (50), (58) and (59), we finally obtain

{EF |F̂μ̂ − F |r1(σ̃μ̂ ≥ σ̃μ∗)}1/r

≤ c1ε

m0∑
k=1

Q(σ̃μk
) + c2ε

∞∑
k=m0+1

Q(σ̃μk
)[PF (Ak)]1/2r ≤ cεQ(σ̃μ∗).

This inequality and (49) lead to the statement of the theorem.

6. Proofs of Theorems 2, 3 and 4

The proofs of Theorems 2, 3 and 4 use upper bounds on the function eK�
(·) defined in (19).

Therefore, we begin this section with two lemmas establishing such bounds. We then present the
proofs of Theorems 2, 3 and 4.

6.1. Bounds on function eK�(·)

For fixed x ∈ D0, consider the random process {ημ,ν(x),μ, ν ∈ �} given by

ημ,ν(x) = ξμ,ν(x) − ξν(x) =
∫

[Kμ,ν(t, x) − Kν(t, x)]W(dt), μ, ν ∈ �.

For λ,λ′ ∈ �, define

ρ(λ,λ′) = ‖K̃λ − K̃λ′ ‖2,∞, K̃λ(·, x) = Kλ(·, x)/‖Kλ(·, x)‖2;
ρ(λ,λ′) = sup

x

∣∣1 − ‖Kλ(·, x)‖2
/‖Kλ′(·, x)‖2

∣∣.
The next lemma establishes an upper bound on the intrinsic semi-metric of the process

{ημ,ν(x),μ, ν ∈ �}.

Lemma 1. Let

ρ[(μ, ν), (μ′, ν′)] :=
√

E|ημ,ν(x) − ημ′,ν′(x)|2.

(i) Then, for all μ,ν,μ′, ν′ ∈ �, we have

ρ[(μ, ν), (μ′, ν′)] ≤ 2σ̃ν(x)[ρ(ν, ν′) + ρ(ν, ν′)] + σ̃μ(x)[ρ(μ,μ′) + ρ(μ,μ′)]. (60)
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(ii) In addition, suppose that � = ⊗l
j=1 �j and θ = (θ1, . . . , θl), where θj ∈ �j , j =

1, . . . , l. Given �θj ∈⊗l
i=1,i �=j �i and λj ∈ �j , write K�θj ,λj

= Kθ1,...,θj−1,λj ,θj+1,...,θl
. Then,

ρ(λ,λ′) ≤
l∑

j=1
λj �=λ′

j

sup
�θj

‖K̃ �θj ,λj
− K̃�θj ,λ′

j
‖2,∞ ∀λ,λ′ ∈ �. (61)

Proof. (i) We have

ρ[(μ, ν), (μ′, ν′)] = ∥∥(Kν,μ(·, x) − Kν(·, x)
)− (Kν′,μ′(·, x) − Kν′(·, x)

)∥∥
2

≤ ‖Kν,μ(·, x) − Kν′,μ′(·, x)‖2 + ‖Kν(·, x) − Kν′(·, x)‖2

≤ ‖Kν,μ(·, x) − Kν′,μ(·, x)‖2 + ‖Kν′,μ(·, x) − Kν′,μ′(·, x)‖2

+ ‖Kν(·, x) − Kν′(·, x)‖2

= ‖Kν,μ(·, x) − Kν′,μ(·, x)‖2 + ‖Kμ,ν′(·, x) − Kμ′,ν′(·, x)‖2

+ ‖Kν(·, x) − Kν′(·, x)‖2,

where the last line follows from assumption (K1).
Thus, to prove (60), it suffices to show that for all λ,λ′ ∈ �,

sup
θ∈�

‖Kλ,θ (·, x) − Kλ′,θ (·, x)‖2 ≤ σ̃λ(x)
(
ρ(λ,λ′) + ρ(λ,λ′)

)
. (62)

Let us prove (62). Indeed, using the Minkowski inequality, we get, for all θ ∈ �,

‖Kλ,θ (·, x) − Kλ′,θ (·, x)‖2 =
√∫ (∫

Kθ(y, x)[Kλ(t, y) − Kλ′(t, y)]dy

)2

dt

≤
∫

|Kθ(y, x)|‖Kλ(·, y) − Kλ′(·, y)‖2 dy.

Moreover, for all y,

‖Kλ(·, y) − Kλ′(·, y)‖2 ≤ ‖Kλ(·, y)‖2‖K̃λ(·, y) − K̃λ′(·, y)‖2 + ∣∣‖Kλ(·, y)‖2 − ‖Kλ′(·, y)‖2
∣∣

≤ ‖Kλ(·, y)‖2(ρ(λ,λ′) + ρ(λ,λ′)).

It remains to note that by definition,

σ̃ν(x) = sup
θ∈�

∫
|Kθ(y, x)|‖Kν(·, y)‖2 dy ∨ σν(x).

(ii) The statement follows immediately from the triangle inequality. �

Using general results of Lemma 1, we now establish an upper bound on the intrinsic semi-
metric of the Gaussian process ημ,ν with index set � = H × E .
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Lemma 2. Let K H,E be the family of kernels defined in (34). Then, for all μ,ν, ν′ ∈ H × E , we
have

ρ[(μ, ν), (μ, ν′)] ≤ 2σ̃ν(x)

{
M

(
d∑

i=1

∣∣∣∣1 − hi

h′
i

∣∣∣∣2
)1/2

+ 2

∣∣∣∣∣1 −
d∏

i=1

h′
i

hi

∣∣∣∣∣+ Mdh−1
min|E − E′|2

}
.

Proof. Let ν = (h,E), ν′ = (h′,E′) ∈ H × E . Our current goal is to bound ρ(ν, ν′) from above.
For this purpose, we apply Lemma 1 with � = H × E .

In view of (33), (34) and Remark 7, we have

‖σ−1
h,EGh,E − σ−1

h′,EGh′,E‖2

= ‖G‖−1
2

{∫ ∣∣∣∣∣
(

d∏
i=1

1

h
1/2
i

)
G

(
t1

h1
, . . . ,

td

hd

)
−
(

d∏
i=1

1

[h′
i]1/2

)
G

(
t1

h′
1
, . . . ,

td

h′
d

)∣∣∣∣∣
2

dt

}1/2

= ‖G‖−1
2

{∫ ∣∣∣∣∣G(t1, . . . , td ) −
(

d∏
i=1

√
hi/h′

i

)
G

(
h1

h′
1
t1, . . . ,

hd

h′
d

td

)∣∣∣∣∣
2

dt

}1/2

≤ ‖G‖−1
2

{∫ ∣∣∣∣∣G(t1, . . . , td) − G

(
h1

h′
1
t1, . . . ,

hd

h′
d

td

)∣∣∣∣∣
2

dt

}1/2

(63)

+ ‖G‖−1
2

∣∣∣∣∣1 −
d∏

i=1

√
hi/h′

i

∣∣∣∣∣
{∫

G2
(

h1

h′
1
t1, . . . ,

hd

h′
d

td

)
dt

}1/2

≤ ‖G‖−1
2 M

{
d∑

i=1

∣∣∣∣1 − hi

h′
i

∣∣∣∣2
}1/2

+
d∏

i=1

√
h′

i/hi

∣∣∣∣∣1 −
d∏

i=1

√
hi/h′

i

∣∣∣∣∣
≤ M

{
d∑

i=1

∣∣∣∣1 − hi

h′
i

∣∣∣∣2
}1/2

+
∣∣∣∣∣1 −

d∏
i=1

√
h′

i/hi

∣∣∣∣∣;
here, we have taken into account (32) and the fact that ‖G‖2 ≥ 1.

Furthermore, if H = diag(h1, . . . , hd}, then

‖σ−1
h,EGh,E − σ−1

h,E′Gh,E′ ‖2 = σ−1
h,E‖Gh,E − Gh,E′ ‖2

= ‖G‖−1
2

d∏
i=1

h
1/2
i

{∫
|Gh(E

T t) − Gh((E
′)T t)|2 dt

}1/2

= ‖G‖−1
2

{∫
|G(H−1ET t) − G(H−1(E′)T t)|2 dt

}1/2

(64)

≤ ‖G‖−1
2 M

{∫
|H−1(E − E′)T t |22 dt

}1/2

≤ Mdh−1
min|E − E′|2.
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Combining (63), (64) and using (61), we obtain

ρ(ν, ν′) ≤ M

{
d∑

i=1

∣∣∣∣1 − hi

h′
i

∣∣∣∣2
}1/2

+
∣∣∣∣∣1 −

d∏
i=1

√
h′

i/hi

∣∣∣∣∣+ Mdh−1
min|E − E′|2.

Observe, also, that

ρ(ν, ν′) = |1 − σh,E/σh′,E′ | =
∣∣∣∣∣1 −

d∏
i=1

√
h′

i/hi

∣∣∣∣∣.
Applying Lemma 1(i), we complete the proof. �

Lemma 3. There exist constants C1, C2 and C3 depending on G and d such that the following
statements hold:

(i) if KSI is the family of kernels defined in (35) and σ ≥ 1, then

eKSI
(σ ) ≤ C1σ

√
lnσ ∀σ ∈ 
�SI

;
(ii) if KAH is the family of kernels defined in (41) and ln(hmax/hmin) ≥ 1, then

eKAH
(σ ) ≤ C2σ

[√
ln ln(hmax/hmin) + 1

] ∀σ ∈ 
�AH
;

(iii) if KB is the family of kernels defined in Section 4.4 and σ ≥ 1, then

eKB
(σ ) ≤ C3σ

√
ln(1 + ln(σ/σmin)).

Proof. Throughout the proof, c, c1, c2, . . . denote positive constants depending only on G and d .
They can be differ from appearance to appearance.

10. Let KSI be the family of kernels defined in (35). Let σmin and σmax be as defined in (37)
and fix σ ∈ [σmin, σmax]. Here, ν = (h,E) and the index set of the corresponding random process
{ξμ,ν − ξν} is given by {ν : σ̃ν ≤ σ } = [hσ ,hmax] × E , where hσ = c1h

−d+1
max σ−2 (see (36)).

Lemma 2 implies that the following upper bounds holds on the semi-metric ρSI of this process:

ρSI [(μ, ν), (μ, ν′)] ≤ 2σ

{
M

∣∣∣∣1 − h1

h′
1

∣∣∣∣+ 2

∣∣∣∣1 − h′
1

h1

∣∣∣∣+ Mdh−1
σ |E − E′|2

}
,

for all ν, ν′ such that σ̃ν ∨ σ̃ν′ ≤ σ . Note, also, that by (18),

sup
ν:σ̃ν≤σ

var(ξμ,ν − ξν) ≤ 2 sup
ν : σ̃ν≤σ

σ̃ν = 2σ. (65)

The number of balls N1(ζ ) of radius ζ in semi-metric c2σ {|1−h1/h′
1|+|1−h′

1/h1|} covering
the set [hσ ,hmax] = [c1h

−d+1
max σ−2, hmax] admits the following upper bound:

N1(ζ ) ≤ ln(c3σ
2hd

max) ln−1(1 + c4ζσ−1).
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The number of balls N2(ζ ) of radius ζ in the semi-metric c5σ |E − E′|2 covering E does
not exceed (c6σh−1

σ ζ−1)d−1 = (c7σ
3hd−1

max ζ−1)d−1. Thus, the total number of balls covering
[hσ ,hmax] × E equals N1(ζ )N2(ζ ). Hence, using the bounds on N1(ζ ) and N2(ζ ), (65) and the
bound on the supremum of a Gaussian process in terms of the Dudley integral (see, e.g., Lifshits
(1995), Section 14), we conclude that∫ σ

0

[√
lnN1(ζ ) +√lnN2(ζ )

]
dζ ≤ cσ

√
lnσ .

The first statement of the lemma is proved.
20. For the family of kernels KAH of Section 4.3, we have ν = h ∈ Hγ , where Hγ is defined

in (40). Note that the set 
�AH
consists of the single point

σ ∗ = ‖G‖1‖G‖2
[
ε
√

ln ln(1/ε)
]−1/(2γ+1)

.

It follows from Lemma 2 that the semi-metric ρAH of this process admits the following upper
bound:

ρAH [(μ, ν), (μ, ν′)] ≤ 2σ ∗M
(

d∑
i=1

∣∣∣∣1 − hi

h′
i

∣∣∣∣2
)1/2

.

The number of balls N(ζ) of radius ζ in the above semi-metric covering the index set Hγ does
not exceed

N(ζ) ≤ [ln(hmax/hmin) ln−1(1 + c1ζ/σ ∗)]d .

Hence, applying Lemma A.4 (see Appendix), we obtain∫ σ ∗

0

√
lnN(ζ)dζ ≤ c2σ

∗[√ln ln(hmax/hmin) + 1
]
.

30. For family of kernels KB , we have ν = h1 ∈ [hmin, hmax] and

σ̃h1 = ‖G∗‖1‖G∗‖2h
−d/2
1 , σmin = ‖G∗‖1‖G∗‖2h

−d/2
max , σmax = ‖G∗‖1‖G∗‖2h

−d/2
min .

According to Lemma 2,

ρB [(μ, ν), (μ, ν′)] ≤ 2σ

{
Md

∣∣∣∣1 − h1

h′
1

∣∣∣∣+ 2

∣∣∣∣1 −
(

h′
1

h1

)d ∣∣∣∣}
for all ν = h1, ν′ = h′

1 such that σ̃h1 ∨ σ̃h′
1
≤ σ .

For fixed σ ∈ [σmin, σmax], we set hσ = (‖G∗‖1‖G∗‖2σ
−1)d/2. The number of balls N(ζ) of

radius ζ in the semi-metric ρB covering the set [hσ ,hmax] does not exceed

N(ζ) ≤ ln(c1hmaxσ
d/2) ln−1(1 + c2[ζσ−1]1/d).
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Hence, ∫ σ

0

√
lnN(ζ)dζ ≤ cσ

√
ln
(
1 + ln(σ/σmin)

)
. �

6.2. Proof of Theorem 2

Throughout the proof, c, c1, c2, . . . stand for constants depending only on d , G and r .
We show that �F (KSI ) is non-empty for any F ∈ FSI (α,L). Assume that F(t) = f (ωT

0 t),
ω0 ∈ S

d−1, where f ∈ H1(α,L).
First, we note that in view of (36) and (38), there exist constants c1, c2 such that

c1

√
1

h1
ln

1

h1
≤ Q(σ̃h,E) ≤ c2

√
1

h1
ln

1

h1
∀(h,E) ∈ H1 × E . (66)

Consider the family of kernels K0
SI := {Gh,E :h ∈ H1,E = E0} ⊂ KSI , where E0 is a fixed

orthogonal matrix whose first column is ω0. Clearly, for any estimator associated with kernel
Gh,E0 from K0

SI , we have the following bound on the bias: |Bh,E0(x)| ≤ Lhα
1 for all x. Moreover,

by (17) and the fact that M(KSI ) = ‖G‖1, we obtain

B̃h,E0(x) ≤ ‖G‖1 sup
y

|Bh,E0(y)| ≤ ‖G‖1Lhα
1 ∀h ∈ H1.

Let h∗ = (h∗
1, hmax, . . . , hmax) be defined by the balance equation

‖G‖1L(h∗
1)

α = 1
2εQ(σ̃h∗,E0).

It then follows from (66) that

h∗
1 = c3

[
(ε/L)

√
ln(ε/L)

]2/(2α+1)
. (67)

Note that for ε small enough, h∗
1 ∈ [hmin, hmax] and by definition of h∗

1, B̃h∗,E0 ≤ 1
2εQ(σ̃h∗,E0).

We now show that (h∗,E0) ∈ �F (KSI ). To that end, fix σ ∈ [σ̃h∗,E0 , σmax]. Consider the
estimator associated with parameter (h′,E0) such that σ̃h′,E0 = σ . Hence, by (36), h′

1 = cσ−2 ≤
cσ̃−2

h∗,E0
= h∗

1 so that, in view of the monotonicity of the function Q(·),

B̃h′,E0 ≤ ‖G‖1h(h′
1)

α ≤ ‖G‖1L(h∗
1)

α = 1
2εQ(σ̃h∗,E0) ≤ 1

2εQ(σ̃h′,E0).

This shows that (h∗,E0) ∈ �F (KSI ). Then, applying Theorem 1, we obtain

{EF |F̂SI (x) − F(x)|r }1/r ≤ cεQ(σ̃h∗,E0).

Substitution of (67) completes the proof.
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6.3. Proof of Theorem 3

If F ∈ FAH (γ,L), then there exists α∗ = (α∗
1 , . . . , α∗

d) ∈ Aγ such that F ∈ Hd(α∗,L). Note that
under the premise of the theorem, we have, for any h ∈ Hγ , that

εQ(σ̃h) = c1ε

(
d∏

i=1

h
−1/2
i

)√
ln ln(hmax/hmin) = c2

[
ε
√

ln ln(1/ε)
]2γ /(2γ+1) = c2ϕε.

Define h∗ = (h∗
1, . . . , h

∗
d) by the following relation:

d‖G‖1L(h∗
i )

α∗
i = 1

2
εQ(σ̃h∗) = c2

2
ϕε ∀i = 1, . . . , d. (68)

For ε small enough, h∗ ∈ [hmin, hmax]d and, clearly, h∗ ∈ Hγ . Let F̂h∗ be the estimator from
F (KAH ) associated with kernel Gh∗ (see (33)). We have the following upper bound on the bias
of this estimator: supx |Bh∗(x)| ≤ L

∑d
i=1(h

∗
i )

α∗
i . Moreover, by (17),

B̃h∗(x) ≤ ‖G0‖1 sup
x

|Bh∗(x)| ≤ ‖G‖1L

d∑
i=1

(h∗
i )

α∗
i ≤ d‖G‖1L(h∗

1)
α∗

1 = 1
2εQ(σ̃h∗), (69)

where the last inequality on the right-hand side follows from (68). Because the set 
� is the
singleton {σ̃h∗}, inequality (69) implies that �F (KAH ) is non-empty. Application of Theorem 1
yields

{EF |F̂AH (x) − F(x)|r }1/r ≤ c3εQ(σ̃h∗) = c4ϕε.

The theorem is thus proved.

6.4. Proof of Theorem 4

Before turning to the proof of the theorem, let us make some remarks which will be used in the
subsequent proof.

1. Let s[q] = [s − d/p + d/q] ∧ s, q ∈ [1,∞]. Then, due to the inclusion theorem for Besov
balls (Nikolskii (1975)), we have

B
s
p,∞(d,L) ⊆ B

s[q]
q,∞(d,L). (70)

In particular,

B
s
p,∞(d,L) ⊆ B

s−d/p∞,∞ (d,L) ⊂ C(D0). (71)

The last inclusion follows from the assumption of the theorem that s − d/p > 0. It also implies
s[q] > 0.
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2. Let us introduce the following notation. For any h ∈ (0, hmax], let h(h) = (h, . . . ,h) ∈ HB

and define

Bh(·) :=
∫

G∗
h(h)(t − ·)F (t)dt − F(·) =: Bμ(x), μ = h(h),

Bh,h′(·) := Bμ,ν(·) − Bν(x) =
∫

G∗
h(h′)(y − ·)Bh(y)dy, ν = h(h′), (72)

B̃h(·) := sup
h′∈(0,hmax]

|Bh,h′(·) − Bh′(·)| ∨ |Bh(·)|.

Let Kb(x), x ∈ D0, be the cube centered at x with side length equal to b. The possible values of
b are found from the condition x + b ∈ D for all x ∈ D0 and, later, supb denotes the supremum
over this set.

Assuming, without loss of generality, that the support of the function g belongs to [−1/2(�s�+
2),1/2(�s� + 2)]d (it also implies that the support of G∗ belongs to [−1/2,1/2]d), we obtain
from (72) that for all x ∈ D0 and h ∈ (0, hmax],

B̃h(x) ≤ C1(s, g) sup
b

1

bd

∫
Kb(x)

|Bh(y)|dy =: C1(s, g)B
(max)
h

(x), (73)

where C1(s, g) is a constant depending only on ‖g‖∞ and s. To obtain (73), we used the fact
that B̃h(x) is a continuous (even uniformly continuous) function of h, since F is uniformly
continuous on D0 and G∗ is bounded. The uniform continuity of F follows from (71) and the
compactness of D0. Note that B

(max)
h

(·) is the Hardy–Littlewood maximal function of Bh(·) (see,

e.g., Wheeden and Zygmund (1977), Chapter 9, Section 3).
3. The operator �l

a has the following representation:

�l
aF (x) =

l∑
j=0

(
l

j

)
(−1)j+lF (x + ja) ∀l ≥ 1, ∀a > 0.

Therefore,

(−1)l+1�l
aF (x) =

[
l∑

j=1

(
l

j

)
(−1)j+1F(x + ja)

]
− F(x).

Using this formula and the definition of the function G∗, we obtain, for any h ∈ (0, hmax],

Bh(x) =
∫

G∗(u){F(x + uh) − F(x)}du

=
�s�+2∑
j=1

(−1)j+1
( �s� + 2

j

)
1

jd

∫
g(u/j){F(x + uh) − F(x)}du
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=
∫

g(v)

{�s�+2∑
j=1

(−1)j+1
( �s� + 2

j

)
F(x + vjh) − F(x)

}
dv

= (−1)�s�+3
∫

g(v)�
�s�+2
vh

F(x)dv.

Therefore,

|Bh(x)| ≤ C2(g)

∫
[−1/2,1/2]d

∣∣��s�+2
vh

F(x)
∣∣dv =: C2(g)Bh(x) ∀x ∈ D0, (74)

where C2(g) is a constant depending only on ‖g‖∞. Here, we used the fact that the support of g

belongs to [−1/2,1/2]d .
Finally, from (73) and (74), we get

B̃h(x) ≤ C3(s, g)B(max)
h

(x) ∀h ∈ (0, hmax], ∀x ∈ D0, (75)

where, as before, B(max)
h

(·) is the Hardy–Littlewood maximal function of Bh(·) and C3(s, g) =
C1(s, g)C2(g).

The next important property of B(max)
h

(·) follows from the definition:

sup
h∈[τ/2,τ ]

B(max)
h

(x) ≤ 2d B(max)
τ (x) ∀τ ∈ (0, hmax], ∀x ∈ D0. (76)

Indeed, for any h ∈ [τ/2, τ ], we have

Bh(·) := h−d

∫
[−h/2,h/2]d

∣∣��s�+2
u F (·)∣∣du ≤ 2dτ−d

∫
[−τ/2,τ/2]d

∣∣��s�+2
u F (·)∣∣du

= 2d Bτ (·).
4. Since ‖G∗

h(h)
‖2 = ‖G∗‖2h

−d/2 =: σh, the majorant can be rewritten in the form

Q(h) := Q(σh) = Ch
−d/2
max Q∗

d(hmax/h),

where Q∗
d(z) = zd/2

√
1 + d ln z, z ≥ 1.

Thus, for our particular problem, the set �F (KB) is

�F (KB) = �x
F (KB) = {h ∈ (0, hmax] : B̃h′(x) ≤ 1

2εQ(h′),∀h′ ≤ h
}
, x ∈ D0.

Note that (75) and (71) imply that for all F ∈ Bs
p,∞(d,L) and all h ∈ (0, hmax],

‖B̃h‖∞ ≤ C3(s, g)
∥∥B(max)

h

∥∥∞ = C3(s, g)‖Bh‖∞ ≤ 2dC3(s, g) sup
v∈[−1,1]d

∥∥��s�+2
vh

F
∥∥∞

≤ 2dC3(s, g)
[
h
√

d
]s−d/p

sup
a

|a|−s+d/p

2

∥∥��s�+2
a F

∥∥∞ ≤ LC4(s, g,p, d)hs−d/p.
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Therefore, there exists a constant c, depending only on s, g,p, d and L, such that

(0, εc] ⊂ �x
F (KB) ∀F ∈ B

s
p,∞(d,L), ∀x ∈ D0. (77)

Putting, for all F ∈ B
s
p,∞(d,L) and all x ∈ D0,

hF (x) = sup{h :h ∈ �x
F (KB)},

we obtain from Theorem 1 that

RLr
(F̃ ) ≤ Crεr sup

F∈B
s
p,∞(d,L)

∫
D0

Qr(hF (x))dx.

Proof of Theorem 4. As already mentioned, the function B̃h(·) is continuous in h. Evidently,
the function Q(h) is also continuous. Therefore, in view of the definition of hF (x), we have

B̃hF (x)(x) = 1
2εQ(hF (x)) ∀x ∈ D0 :hF (x) < hmax. (78)

Let kmax ∈ N
∗ be chosen in such a way that 2−kmaxhmax ≤ hmin < 21−kmaxhmax, where hmin = εc.

Set

�0 = {x ∈ D0 :hF (x) = hmax},
�k = {x ∈ D0 : 2−khmax ≤ hF (x) < 21−khmax}, k = 1, kmax.

Note that the sets (�k, k = 1, kmax) form the partition of D0 since hF (x) ≥ hmin for all x ∈ D0,
in view of (77). Therefore,

I (F ) := εr

∫
D0

Qr(hF (x))dx = εr

kmax∑
k=0

∫
�k

Qr(hF (x))dx =:
kmax∑
k=0

Ik(F ). (79)

Let qk ∈ (1, r], k ∈ N
∗, be a sequence of real numbers, to be specified later. Then, in view of (78),

we get ∀k = 1, kmax,

Ik(F ) = εr−qk 2qk

∫
�k

Qr−qk (hF (x))
(
B̃hF (x)(x)

)qk dx. (80)

It follows from (75) and (76) that

B̃hF (x)(x) ≤ 2dC3(s, g)B(max)

21−khmax
(x) ∀x ∈ �k. (81)

Moreover,

Q(hF (x)) ≤ Q(2−khmax) = Ch
−d/2
max 2kd/2

√
1 + kd ln 2 ∀x ∈ �k. (82)

Thus, we have, from (80), (81) and (82), that

Ik(F ) ≤ C1[εh−d/2
max ]r−qk 2kd(r−qk)/2k(r−qk)/2

∥∥B(max)

21−khmax

∥∥qk

qk
. (83)
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Here and later, we denote by C1,C2, . . . , the constants depending on d, s,p, r, g,L, but inde-
pendent of F and ε.

We have, for all h ∈ (0, hmax] and all F ∈ B
s
p,∞(d,L),

∥∥B(max)
h

∥∥qk

qk
≤ C(qk)‖Bh‖qk

qk
= C(qk)

∥∥∥∥∫[−1/2,1/2]d
∣∣��s�+2

vh
F
∣∣dv

∥∥∥∥qk

qk

≤ C(qk)

[∫
[−1/2,1/2]d

∥∥��s�+2
vh

F
∥∥

qk
dv

]qk

(84)

≤ C2

[
hs[qk] sup

a
|a|−s[qk]

2

∥∥��s�+2
a F

∥∥
qk

]qk

≤ (LC2h
s[qk])qk = C3h

qks[qk].

Let us comment on the proof of (84). The first inequality follows from (Wheeden and Zyg-
mund (1977), Theorem 9.16), where the constant C(qk) depends only on qk and, moreover,
sup1≤q≤r C(q) < ∞ for any fixed r . The second inequality follows from the Minkowski in-
equality for integrals. The last inequality is a consequence of (70).

Substituting h = 21−khmax in (84), we finally obtain, from (79) and (83), that for any F ∈
B

s
p,∞(d,L),

I (F ) ≤ C4

[(
ε

h
d/2
max

)r

+
kmax∑
k=1

(εh
−d/2
max )r−qk (hmax)

qks[qk]2−kλk k(r−qk)/2

]
,

(85)
λk = qks[qk] − (r − qk)d/2, k = 1, kmax.

Let us now consider three cases.
Case 1. sp >

d(r−p)
2 . Choose qk = r ∧ p for all k = 1, kmax and recall that hmax = ε2/(s+d/2).

Therefore,

s[qk] = s, λk = λ := s(r ∧ p) − d(r − r ∧ p)

2
> 0.

Moreover,

(hmax)
s = ε

h
d/2
max

= ϕε.

Thus, we obtain from (85), for any F ∈ B
s
p,∞(d,L),

I (F ) ≤ C4

[
ϕr

ε + ϕr
ε

∞∑
k=1

2−kλk(r−r∧p)/2

]
≤ C5ϕ

r
ε .

Case 2. sp = d(r−p)
2 . Choose qk = p for all k = 1, kmax and recall that hmax = 1/2. Therefore,

s[qk] = s, λk = 0.
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Taking into account that kmax ∼ ln (1/ε), we obtain from (85) that for any F ∈ B
s
p,∞(d,L),

I (F ) ≤ C6
[
εr + εr−p[ln (1/ε)](r−p)/2+1]≤ C7ϕ

r
ε .

The last inequality follows from the relation r − p = 2rs
2s+d

.

Case 3. sp <
d(r−p)

2 . Recall that hmax = 1/2 and ϕε = [ε√ln 1/ε]s−d(1/p−1/r)/(s−d(1/p−1/2)).
Let hε = [ε√ln 1/ε]z, z = 1/(s − d/p + d/2), and define

qk =
{

p, if 1 ≤ k < k∗,
r, if k ≥ k∗,

where k∗ ∈ N
∗ is chosen from the relation 2−(k∗+1) < hε ≤ 2−k∗

. Noting that

λk =
{

λ1 := sp − d(r−p)
2 < 0, if 1 ≤ k ≤ k∗,

λ2 := (s − d/p + d/r)r, if k ≥ k∗ + 1

and again taking into account that kmax ∼ ln (1/ε), we get, from (85), that for any F ∈
B

s
p,∞(d,L),

I (F ) ≤ C8

[
εr + [ε√ln 1/ε

]r−p
k∗∑

k=1

2−kλ1 +
∞∑

k=k∗+1

2−kλ2

]

≤ C9
[[

ε
√

ln 1/ε
]r−p2−k∗λ1 + 2−(k∗+1)λ2

]
≤ C9

[[
ε
√

ln 1/ε
]r−p

hλ1
ε + hλ2

ε

]
.

To obtain the second inequality, we used the fact that λ1 < 0 and λ2 > 0. It remains to note that,
in view of the definition of hε , [

ε
√

ln 1/ε
]r−p

hλ1
ε = hλ2

ε = ϕr
ε . �

Appendix

Proof of Proposition 1. We have, for all μ,ν ∈ � and all x ∈ D0,

Bμ,ν(x) =
∫

D
Kμ,ν(t, x)F (t)dt − F(x) =

∫
D

[∫
D1

Kμ(t, y)Kν(y, x)dy

]
F(t)dt − F(x)

=
∫

D1

Kν(y, x)

[∫
D

Kμ(t, y)F (t)dt

]
dy − F(x)

=
∫

D1

Kν(y, x)

[∫
D

Kμ(t, y){F(t) − F(y) + F(y)}dt

]
dy − F(x)
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=
∫

D1

Kν(y, x)Bμ(y)dy +
∫

D1

Kν(y, x)F (y)dy − F(x)

=
∫

D
Kν(y, x)Bμ(y)dy +

∫
D

Kν(y, x)F (y)dy − F(x)

=
∫

D
Kν(y, x)Bμ(y)dy + Bν(x).

The fifth and sixth equalities follow from the second and first lines of (7), respectively. �

Lemma A.1. For any μ ∈ � and r > 0, we have{
E sup

ν:σ̃ν≤σ̃μ

|ξν,μ − ξν |r
}1/r

≤ Cr{eK�
(σ̃μ) + 2σ̃μ},

where

Cr =
⎧⎨⎩

1, r ≤ 1,[
8r

∫ ∞

0
(t ∨ 1)r−1 exp

(
− t2

2

)
dt

]1/r

, r > 1.

Proof. For brevity in the proof below, we will write e(·) = eK�
(·).

The statement for r ≤ 1 follows immediately from the definition of the function e(·). If r > 1,
then

E sup
ν:σ̃ν≤σ̃μ

|ξν,μ − ξν |r = r

∫ ∞

0
t r−1

P

{
sup

ν:σ̃ν≤σ̃μ

|ξν,μ − ξν | > t

}
dt

≤ er(σ̃μ) + r

∫ ∞

e(σ̃μ)

t r−1
P

{
sup

ν:σ̃ν≤σ̃μ

|ξν,μ − ξν | > t

}
dt

= er(σ̃μ) + r

∫ ∞

0
[t + e(σ̃μ)]r−1

P

{
sup

ν:σ̃ν≤σ̃μ

|ξν,μ − ξν | − e(σ̃μ) > t

}
dt

≤ er(σ̃μ) + 2r

∫ ∞

0
[t + e(σ̃μ)]r−1 exp

{
− t2

2 supν:σ̃ν≤σ̃μ
σ 2

μ,ν

}
dt,

where the last inequality follows from the fact that e(σ ) ≥ e0(σ ) and Lemma A.3 below; recall
that var(ξν,μ − ξν) = σ 2

μ,ν . Inequality (18) implies that supν:σ̃ν≤σ̃μ
σμ,ν ≤ 2σ̃μ; hence, continuing

the preceding chain of inequalities, we obtain

≤ er(σ̃μ) + 2r

∫ ∞

0
[t + e(σ̃μ)]r−1 exp

{
− t2

8σ̃ 2
μ

}
dt

= er(σ̃μ) + 4rσ̃μ

∫ ∞

0
{2t σ̃μ + e(σ̃μ)}r−1 exp(−t2/2)dt
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≤ er(σ̃μ) + 4rσ̃μ[2σ̃μ + e(σ̃μ)]r−1
∫ ∞

0
(t ∨ 1)r−1 exp(−t2/2)dt

≤ 8r[2σ̃μ + e(σ̃μ)]r
∫ ∞

0
(t ∨ 1)r−1 exp(−t2/2)dt.

This completes the proof. �

Lemma A.2. Let assumption (E) hold and let the function Q be given by (21) with κ0 ≥ 2Ce

and κ1 ≥ 64. Then, for any μ ∈ � and t ≥ 0,

P

{
sup

ν:σ̃ν≥σ̃μ

[
|ξμ,ν − ξν | − 1

2
Q(σ̃ν)

]
> t

}
≤ 4

(
σmin

σ̃μ

)κ1/64

exp

{
− t2

16σ̃ 2
μ

}
. (86)

Moreover, if κ1 ≥ 128r , then{
E

[
sup

ν:σ̃ν≥σ̃μ

|ξμ,ν − ξν | − 1
2Q(σ̃ν)

]r

+

}1/r

≤ Cσmin, (87)

where C is a constant depending only on r .

Proof. As previously, we will write e(·) = eK�
(·).

Define Nk = {ν : 2k−1σ̃μ ≤ σ̃ν < 2kσ̃μ} for k = 1,2, . . . and write

P

{
sup

ν:σ̃ν≥σ̃μ

[|ξμ,ν − ξν | − 1
2Q(σ̃ν)] > t

}
≤

∞∑
k=1

P

{
sup
ν∈Nk

[|ξμ,ν − ξν | − 1
2Q(σ̃ν)] > t

}
. (88)

Since Q(σ) is monotone increasing in σ ,

P

{
sup
ν∈Nk

[
|ξμ,ν − ξν | − 1

2
Q(σ̃ν)

]
> t

}

≤ P

{
sup
ν∈Nk

|ξμ,ν − ξν | > t + 1

2
Q(2k−1σ̃μ)

}

≤ P

{
sup

ν:σ̃ν≤2k σ̃μ

|ξμ,ν − ξν | − e(2kσ̃μ) > t + 1

2
Q(2k−1σ̃μ) − e(2kσ̃μ)

}

= P

{
sup

ν:σ̃ν≤2k σ̃μ

|ξμ,ν − ξν | − e(2kσ̃μ) > t + 1

2
κ0e(2

k−1σ̃μ)

+ 2k−2σ̃μ

√
1 + κ1 ln

2k−1σ̃μ

σmin
− e(2kσ̃μ)

}

≤ P

{
sup

ν:σ̃ν≤2k σ̃μ

|ξμ,ν − ξν | − e(2kσ̃μ) > t + 2k−2σ̃μ

√
1 + κ1 ln

2k−1σ̃μ

σmin

}
,



1188 A. Goldenshluger and O. Lepski

where the last inequality follows by assumption (E) and choice of the constant κ0. By (18),

sup
ν:σ̃ν≤2k σ̃μ

var(ξμ,ν − ξν) = sup
ν:σ̃ν≤2k σ̃μ

σ 2
μ,ν ≤ 22k+1σ̃ 2

μ ;

hence, using Lemma A.3, we obtain

P

{
sup
ν∈Nk

[
|ξμ,ν − ξν | − 1

2
Q(σν)

]
> t

}
≤ 2 exp

{
−1

2

(t + ak)
2

b2
k

}
,

where we have denoted for brevity

ak = 2k−2σ̃μ

√
1 + κ1 ln(2k−1σ̃μ/σmin), bk = 2k+1/2σ̃μ.

Noting that

exp

{
− (t + ak)

2

2b2
k

}
≤ exp

{
− t2

2b2
k

}
exp

{
− a2

k

2b2
k

}

≤ exp

{
− t2

16σ̃ 2
μ

}
2−(k−1)κ1/64

(
σmin

σ̃μ

)κ1/64

,

we have

P

{
sup
ν∈Nk

[
|ξμ,ν − ξν | − 1

2
Q(σν)

]
> t

}
≤ 21−(k−1)κ1/64 exp

{
− t2

16σ̃ 2
μ

}(
σmin

σ̃μ

)κ1/64

. (89)

Summing up over k = 1,2, . . . and taking into account (88), we arrive at (86).
We now prove (87). Using (89), we have

E

[
sup
ν∈Nk

|ξμ,ν − ξν | − 1

2
Q(σ̃ν)

]r

+
≤ 21−(k−1)κ1/64

(
σmin

σ̃μ

)κ1/64

r

∫ ∞

0
t r−1 exp

{
− t2

16σ̃ 2
μ

}
dt

≤ c2−(k−1)κ1/64
(

σmin

σ̃μ

)κ1/64

σ̃ r
μ.

This implies that{
E

[
sup

ν:σν≥σμ

|ξμ,ν − ξν | − 1

2
Q(σ̃ν)

]r

+

}1/r

≤
{ ∞∑

k=1

E

[
sup
ν∈Nk

|ξμ,ν − ξν | − 1

2
Q(σ̃ν)

]r

+

}1/r

≤ cσ̃μ

(
σmin

σ̃μ

)κ1/(64r)
{ ∞∑

k=0

2−kκ1/64

}1/r

≤ cσ̃μ

(
σmin

σ̃μ

)2

≤ cσmin,
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because of our choice of κ1. �

The next result can be found in, for example, Adler and Taylor (2007).

Lemma A.3 (Borell, Tsirelson and Sudakov). Let Xt , t ∈ T , be a centered Gaussian process,
a.s. bounded on T . Then, for all u > 0,

P

{
sup
t∈T

Xt > E sup
t∈T

Xt + u

}
≤ exp{−u2/2σ 2

T }

and hence

P

{
sup
t∈T

|Xt | > E sup
t∈T

|Xt | + u

}
≤ 2 exp{−u2/2σ 2

T },

where σ 2
T = supt∈T var(Xt ).

Lemma A.4. Let a > 0 and aσ < exp(1) − 1. Then,∫ σ

0

√
ln ln−1(1 + ηa)dη ≤ exp(1)

a

√
ln ln−1(1 + aσ)

ln(1 + aσ)

{
1 + 1

2 ln ln−1(1 + aσ)

}
.

The proof is immediate.
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