
Bernoulli 13(3), 2007, 868–891
DOI: 10.3150/07-BEJ6131

Limit theorems for functionals on the facets
of stationary random tessellations
LOTHAR HEINRICH1, HENDRIK SCHMIDT2 and VOLKER SCHMIDT3

1Institute of Mathematics, University of Augsburg, 86135 Augsburg, Germany.
E-mail: lothar.heinrich@math.uni-augsburg.de
2France Telecom NSM/R&D/RESA/NET, 92794 Issy Moulineaux, Cedex 9, France.
E-mail: hendrik.schmidt@orange-ftgroup.com
3Institute of Stochastics, Ulm University, 89069 Ulm, Germany.
E-mail: volker.schmidt@uni-ulm.de

We observe stationary random tessellations X = {�n}n≥1 in R
d through a convex sampling window W that

expands unboundedly and we determine the total (k − 1)-volume of those (k − 1)-dimensional manifold
processes which are induced on the k-facets of X (1 ≤ k ≤ d − 1) by their intersections with the (d − 1)-
facets of independent and identically distributed motion-invariant tessellations Xn generated within each
cell �n of X. The cases of X being either a Poisson hyperplane tessellation or a random tessellation with
weak dependences are treated separately. In both cases, however, we obtain that all of the total volumes
measured in W are approximately normally distributed when W is sufficiently large. Structural formulae
for mean values and asymptotic variances are derived and explicit numerical values are given for planar
Poisson–Voronoi tessellations (PVTs) and Poisson line tessellations (PLTs).

Keywords: asymptotic variance; β-mixing; central limit theorem; k-facet process; nesting of tessellation;
Poisson hyperplane process; Poisson–Voronoi tessellation; weakly dependent tessellation

1. Introduction

In this paper, we consider stationary random tessellations X = {�n}n≥1 of the d-dimensional
Euclidean space R

d with convex cells �n. We assume that within each cell �n of the initial
tessellation X, a further random tessellation Xn = {�n�}�≥1 of R

d is nested, that is, �n is subdi-
vided into cells �n∩�n�, � ≥ 1, where the sequence of component tessellations (Xn)n≥1 consists
of independent copies of a generic motion-invariant tessellation X0 drawn independently of X.
The assumption of motion-invariance of X0 will play a crucial role in deriving explicit moment
formulae. This type of iterated random tessellation is said to be an X/X0-nesting in R

d . Hav-
ing available only a single observation of such an X/X0-nesting in a presumably large, convex
sampling window W , we are interested in the asymptotic behaviour of the random sums

Z
(d)
k (W) =

∑
n≥1

ϑ(k)
n (W), 1 ≤ k ≤ d − 1, (1.1)

where ‘asymptotic’ means that W ↑ R
d and where the random measures

ϑ(k)
n (·) = νk−1(X

(d−1)
n ∩ �(k)

n ∩ ·), 1 ≤ k ≤ d − 1, (1.2)
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act on the Borel sets of R
d . The functional ϑ

(k)
n (W) measures the (k − 1)-volume of the random

subsets induced in W by the intersection of the motion-invariant manifold process X
(d−1)
n of

(d − 1)-facets of Xn with the union �
(k)
n of all k-faces belonging to the boundary ∂�n of the nth

cell of X (cf. Section 2.1 for details and precise definitions). Note that, by definition, the random
measures ϑ

(k)
1 (·),ϑ(k)

2 (·), . . . in (1.2) are conditionally independent given the tessellation X.
Our results supplement earlier central limits theorems (CLTs) for cumulative measures of sta-

tionary ergodic tessellations modelling the total effect of random internal cell structures ([14]).
Whereas, in the latter reference, the random measures corresponding to those in the sum (1.1) act
on the interiors of the cells �n, the measures ϑ

(k)
n (·) defined in (1.2) are concentrated on the cell

boundaries ∂�n of X. Hence, certain new effects arise due to the interactions between the station-
ary random manifold process

⋃
n≥1 ∂�n of cell boundaries of X and the component tessellations

(Xn)n≥1. It turns out that there are considerable differences between X being a stationary Poisson
hyperplane tessellation (PHT) and X satisfying certain weak dependence assumptions. In the first
case, due to the overnormalization in the CLTs for Poisson hyperplane processes caused by in-
herent long-range dependences, (cf. [15]), the influence of X0 on the Gaussian limit distribution
is relatively weak. The other case seems to be somewhat more delicate because the asymptotic
variance of the existing Gaussian limits are influenced by first and second order characteristics
of both X and X0.

We present our derived CLTs in the general case of R
d , since this allows for a clearer and

more transparent exposition. Clearly, however, the CLTs find their applications in the modelling
of planar, but also spatial, networks as they occur, for example, in cell biology and telecommu-
nications. Indeed, concentrating on the latter example, the problem often arises of handling and
modelling data that represent the geometrical structure of the infrastructure system (e.g., main
roads and side streets) that supports the technical telecommunications equipment. In recent years,
stochastic-geometric modelling approaches have proven useful and are established domains of
research today. In particular, the Stochastic Subscriber Line Model (SSLM) has been developed
as an integrated and easily extendable model for telecommunication access networks (cf. [25]
and the references therein).

The SSLM employs (iterated) random tessellations to describe the geometric network support.
Having identified the best fitting model from a class of potentially suitable tessellations (cf. [8]),
cost functionals and their distributions can be studied along the network geometry (cf. [9]).

Assume that we use a planar X/X0-nesting to model the geometric support. In the framework
of our study, we observe a single value Z

(2)
1 (W), which counts the number of T-crossings in a

sampling region W ⊂ R
2 induced by the intersection of the edges of the tessellation Xn with the

edges of the nth cell �n for n ≥ 1. Figure 1 shows two examples of this situation in differently
shaped sampling windows W . In particular, Figure 1(a) shows a PLT/PLT-nesting through a ball
of radius r > 0 and centered at the origin, whereas, in Figure 1(b), we consider a PVT/PLT-
nesting within a rectangular sampling window.

The analysis of the aforementioned T-crossings, that is, of the connections between main roads
and side streets, plays an important role in telecommunication modelling since these crossings
are the entry points to the blockwise civil engineering of the local network. Let the type of the
initial tessellation X and the type of the nested tessellation X0 be known. Within a suitably
large region W , the distribution of the number of T-crossings is then known through our results.
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Figure 1. Realizations of planar tessellations X, where the nested tessellation X0 is a PLT. The T-crossings
are displayed as thick dots •.

Thus, the engineer is provided with useful information about the local network. For example,
it is possible to deduce the dimensioning and capacity potential for each entry point in order to
provide blockwise optimal connection quality to the subscribers, where one block comprises all
of those subscribers who are situated in the cells formed by the main roads.

In contrast to that, assume that we have, again in a suitably large region W , knowledge
about local information, such as the type of X0, and especially about the value Z

(2)
1 (W) for

the T-crossings. The expression on the left-hand side of (4.1), as well as the expression on the
left-hand side of (5.7), can then be calculated and used to test for normality. Depending on the
(unknown) type of X (representing the main road system), we expect to reject the null hypoth-
esis of normality either for the formula in (4.1) or for the formula in (5.7). This can provide, in
the framework of model selection, a hint as to the structure of X before passing to more refined
fitting procedures.

The paper is organized as follows. In Section 2, we introduce basic notation and recall some
relevant facts from stochastic geometry. Section 3 presents mean value relations and formulae
for (asymptotic) variances. In Sections 4 and 5, we formulate and prove the announced CLTs for
the different cases of initial tessellations X. Finally, in Section 6, we study some examples of
weakly dependent tessellations and discuss possible extensions of our results.

2. Preliminaries

In this section, we introduce the basic notation and present a brief account of some relevant
material on random tessellations and stochastic geometry in general. For a detailed and rigorous
discussion of these topics, we refer to the existing mathematical literature, in particular to [21,22,
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24,27] and [30], which contain many further references, as well as numerous tessellation models
with applications to various fields.

Throughout, let (�,σ (�),P) be a common probability space on which all random objects
occurring in the present paper will be defined. Further, let 〈x, y〉 = ∑d

k=1 xkyk denote the scalar
product of the coordinate vectors x = (x1, . . . , xd)� and y = (y1, . . . , yd)� in R

d . By means of
the Euclidean norm ‖ · ‖ = √〈·, ·〉, we define the closed ball Bd

r = {x ∈ R
d :‖x‖ ≤ r} with radius

r ≥ 0 centered at the origin and the unit sphere S
d−1 = {x ∈ R

d :‖x‖ = 1} in R
d , respectively.

Remember that each affine (d − 1)-dimensional subspace H of R
d , called hyperplane in R

d in
the sequel, admits a parameter representation H(p,v) = {x ∈ R

d : 〈x, v〉 = p}. Here, p ∈ R
1

denotes the signed perpendicular distance of H from the origin and v ∈ S
d−1+ = {(x1, . . . , xd)� ∈

S
d−1 :xd ≥ 0} is the directional vector belonging to the upper unit hemisphere. Further, let νk(·)

denote the Lebesgue or k-volume measure in R
k for k = 0, . . . , d , where we can also just write

νd(·) = | · |. The k-dimensional Lebesgue measure will also be used instead of the k-dimensional
Hausdorff measure on (affine) k-dimensional subspaces in R

d for any k = 0, . . . , d −1. As usual,
ν0(·) coincides with the counting measure, that is, ν0(B) = #B . For brevity, put

κd = |Bd
1 | = πd/2

�
(
d/2 + 1

) , where �(s) =
∫ ∞

0
e−yys−1 dy for s > 0.

The families of all non-empty closed, compact and compact convex sets in R
d are denoted by

F ′
d , K′

d and C′
d , respectively. Note that B(S) stands for the σ -algebra of Borel sets in the metric

space S.

2.1. Random tessellations and random nestings

In this section, we sketch out the mathematically rigorous approach to random tessellations, as
used in stochastic geometry, and we recall some basic facts, where referring [21,22,24,27] and
[30] for a systematic study of these topics.

A tessellation of R
d is a countable family τ = {Cn}n≥1 of convex bodies Cn ∈ C′

d such that
intCn �= ∅ for all n, intCn ∩ intCm = ∅ for all n �= m,

⋃
n≥1 Cn = R

d and
∑

n≥1 1{Cn∩K �=∅} < ∞
for any K ∈ K′

d . Notice that the sets Cn, called the cells of τ , are necessarily polytopes in R
d .

The family of all tessellations in R
d is denoted by T . A random tessellation X = {�n}n≥1 in R

d

is a sequence of random convex bodies �n such that P(X ∈ T ) = 1.
Note that a (stationary) random tessellation X can also be modelled as a (stationary) marked

point process
∑

n≥1 δ[α(�n),�0
n], where α :C′

d → R
d is a B(F ′

d)-measurable mapping such that

α(C) ∈ C and α(C + x) = α(C) + x for any C ∈ C′
d and x ∈ R

d , and where �0
n = �n − α(�n)

is the centered cell corresponding to �n which contains the origin. The point α(C) is called the
associated point of C and is usually chosen to be the centroid or lexicographically smallest point
of C.

Suppose that the stationary marked point process
∑

n≥1 δ[α(�n),�0
n] has positive and finite

intensity γ = E#{n :α(�n) ∈ [0,1)d}. By P0
d , we denote the set of all compact and convex
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d-polytopes whose associated point is located at the origin. The corresponding Palm mark dis-
tribution P 0 of X is then given by

P 0(B) = γ −1E#{n :α(�n) ∈ [0,1)d ,�0
n ∈ B}, B ∈ B(F ′

d) ∩P0
d . (2.1)

The notion of a typical cell of X refers to a random polytope �∗ :� → P0
d whose distribution

coincides with P 0. Since the cells �n are space-filling and non-overlapping (up to a null set), we
have the mean value relationship

1

γ
=

∫
P0

d

|C|P 0(dC), (2.2)

that is, the cell intensity γ equals the reciprocal of E|�∗|.
A (deterministic) iterated tessellation τ = {Cn� ∩ Cn : intCn� ∩ intCn �= ∅} in R

d consists of
an initial tessellation τ = {Cn}n≥1 in R

d and a sequence (τn)n≥1 of component tessellations
τn = {Cn�}�≥1. In order to define a random iterated tessellation, we proceed along the lines of
[19]. Let � be a random convex body in R

d with P-a.s. non-empty interior and let X = {�n}n≥1
be a random tessellation in R

d . Then, the counting measure Y(· | �) defined by Y(B | �) =∑
n≥1 δ�n∩�(B)1{int�n∩int� �=∅} for B ∈ B(F ′

d) is a point process in C′
d describing a random

tessellation of �.
Furthermore, if X = {�n}n≥1 is an arbitrary random tessellation in R

d and if Xn = {�n�}�≥1,
n = 1,2 . . . , are independent copies of a generic random tessellation X0 in R

d drawn indepen-
dent of X, then the random counting measure Y(B) = ∑

n Yn(B | �n), where Yn(B | �n) =∑
�≥1 δ�n�∩�n(B)1{int�n�∩int�n �=∅} for B ∈ B(F ′

d), is called the point-process representation of
an iterated random tessellation (briefly , an X/X0-nesting) in R

d with initial tessellation X and
component tessellations X1,X2, . . . . Clearly, the point process Y is stationary (and isotropic),
provided that both the initial tessellation X and the generic component tessellation X0 are sta-
tionary (and isotropic). Moreover, Y is ergodic if X possesses this property.

Each stationary (motion-invariant) random tessellation X = {�n}n≥1 in R
d induces d sta-

tionary (motion-invariant) random lower-dimensional manifold processes X(k), called k-facet
processes of X for k = 0,1, . . . , d − 1. For example, X(0) is the point process of vertices and
X(1) is the line segment process of edges of X.

To be precise, X(k) is defined to be the union of all of the k-facets of X, whereas �
(k)
n denotes

the union of all k-faces of its nth cell �n. Here, the k-facets of X are k-polytopes in R
k which

arise from a finite intersection of neighbouring cells of X. The (d − 1)-faces of �n are (d − 1)-
polytopes in the boundary ∂�n and k-faces are defined recursively for k = 0, . . . , d − 2 as k-
polytopes in the relative boundaries of the (k + 1)-faces. Note that the set of all k-faces may
differ from the set of k-facets and that, for example in [27], Chapter 6, X(k) is used slightly
differently to denote the point process of k-facets.

A random tessellation X = {�n}n≥1 in R
d is said to be normal (or ordinary) if P-a.s. every

k-facet of X lies in the boundaries of exactly d − k + 1 cells, k = 0, . . . , d − 1. Many-real life
tessellations in R

2 and R
3 possess this property, which motivates the term ‘normal’. There are

important classes of stationary tessellations in R
d whose cells are constructed (realizationwise),

according to specific geometric rules, from the atoms of a stationary point process in R
d . Among
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them are Voronoi and Laguerre tessellations (see, e.g., [24] for details), which turn out to be
normal if the generating point process is Poisson; see [21]. It seems that this fact continues to
hold for a large class of (even instationary) generating point processes which are mixing in a
certain sense and/or whose higher-order moment measures possess Lebesgue densities. In [13],
it is shown that Voronoi tessellations in R

d are normal if the (d + 2)th-order product density
of the generating stationary point process exists. Computations of second-order characteristics
of spatial Poisson–Voronoi tessellations can be found in [11]. Finally, it should be mentioned
that there are more general definitions of tessellations (cf., e.g., [32]), allowing for the rigorous
treatment of random tessellations which do not necessarily consist of only convex cells. Without
doubt, the most prominent example is the Johnson–Mehl tessellation; see also [24] for details. For
this model, CLTs have been proved, based on α-mixing conditions derived from the generating
(Poisson) point process (cf. [4] and [5]).

2.2. Stationary Poisson hyperplane tessellations

Let � = ∑
i≥1 δ[Pi ,Vi ] be a stationary and independently marked Poisson point process on the real

line R
1 with intensity λ and mark distribution � on the mark space S

d−1+ ; see [6]. By means of the
parameter representation H(p,v), (p, v) ∈ R

1 × S
d−1+ , of a hyperplane in R

d , we may represent
a Poisson hyperplane process (PHT) � (defined in [27] as a point process on the space of affine
(d − 1)-dimensional subspaces in R

d ) with intensity λ and (spherical) orientation distribution �

by

� =
∑
i≥1

δH(Pi ,Vi ). (2.3)

The Poisson hyperplane process � given in (2.3) is said to be non-degenerate if �(H(0, v) ∩
S

d−1+ ) < 1 for any v ∈ S
d−1+ . In this case, (2.3) induces stationary k-flat processes �k for

k = 0,1, . . . , d − 1 whose countable support consists of the affine k-dimensional subspaces (k-
intersection flats) H(Pi1 ,Vi1)∩ ·∩H(Pid−k

, Vid−k
) for pairwise distinct indices i1, . . . , id−k ≥ 1.

The union of these k-flats coincides with the k-facet process X(k) of the corresponding stationary
PHT X = {�n}n≥1 generated by (2.3). The cells �n, n ≥ 1, are bounded d-polytopes (P-a.s.) if
and only if � is non-degenerate; see [27], Chapter 6. Furthermore, this property implies that the
stationary k-volume measure ϑk,d(·) associated with �k (resp. X(k)) and defined by

ϑk,d(B) = 1

(d − k)!
∑∗

i1,...,id−k≥1
νk

(
d−k⋂
j=1

H(Pij ,Vij )∩B

)
for bounded B ∈ B(Rd), (2.4)

where
∑∗ denotes summation over pairwise distinct indices, has positive intensity

λk,d = Eϑk,d([0,1)d) = (2λ)d−k

(d − k)!κd

Egk,d(Q0,V0) for k = 0,1, . . . , d − 1. (2.5)
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Here, the function (p, v) �→ g
(d)
k (p, v) is defined on [−1,1] × S

d−1+ by

gk,d(p, v) = Eνk

(
d−k−1⋂

i=1

H(Qi,Vi) ∩ H(p,v) ∩ Bd
1

)
, (2.6)

where (Qi,Vi), i = 0,1, . . . , d −1, are i.i.d. random vectors with independent components. Note
that the generic random variable Q0 is uniformly distributed on [−1,1] and the generic random
vector V0 has the orientation distribution �; see [15].

It is well known from convex geometry (see [26]) Chapter 3.5, that the probability measure �

on S
d−1+ determines a unique, centrally symmetric convex body Z�, called the associated zonoid,

which is given by

h(Z�,u) =
∫

S
d−1+

|〈u,v〉|�(dv) for u ∈ R
d,

where h(K,u) = maxx∈K 〈u,x〉 denotes the support function of an arbitrary K ∈ C′
d .

In [16], the following closed-form expression of gk,d(p, v) in terms of Z� has been derived

gk,d(p, v) = (d − k − 1)!κd−1

2d−k−1
(1 − p2)(d−1)/21[−1,1](p)V

(d−1)
d−k−1(Z

v
�), (2.7)

where Kv denotes the image of K ∈ C′
d under orthogonal projection onto H(0, v) and V

(d−1)
j (K)

stands for the intrinsic j -volume of K ∈ C′
d−1. Using the relationship

jV
(d)
j (Z�) =

∫
S

d−1+
V

(d−1)
j−1 (Zv

�)�(dv) for j = 1, . . . , d

(cf. [31,26], Chapter 3.5 and [16]) combined with (2.5) and (2.7) yields that λk,d = λd−k

× V
(d)
d−k(Z�) for k = 0,1, . . . , d − 1, which has already been stated in [20], Chapter 6.

The stationary Poisson hyperplane process � given in (2.3) is isotropic (and hence motion-
invariant) if and only if � is the uniform distribution, which means that Z� = κd−1

dκd
Bd

1 . This, in
turn, leads to the explicit formula

λk,d =
(

d

k

)
κd

κk

(
κd−1

dκd

)d−k

λd−k for k = 0,1, . . . , d − 1. (2.8)

We are now in a position to formulate a CLT for the total k-volume ϑk,d(Bd
� ) of the support of

the k-flat process �k contained in the ball Bd
� . This result has been proven in [15], even in a

multidimensional version.

Theorem 2.1. Let � = ∑
i≥1 δH(Pi,Vi ) be a stationary, non-degenerate Poisson hyperplane

process with orientation distribution � on S
d−1+ and intensity λ > 0. Then,

ϑk,d(Bd
� ) − λk,d |Bd

� |
|Bd

� |1−1/2d

d−→
g→∞N (0, σ 2

k,d) for k = 0,1, . . . , d − 1, (2.9)
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where

σ 2
k,d = lim

�→∞
Var(ϑ(d)

k (Bd
� ))

|Bd|2−1/d
�

= (2λ)2d−2k−1

((d − k − 1)!)2κ
2−1/d
d

Eg2
k,d (Q0,V0), (2.10)

with gk,d(p, v) and (Q0,V0) defined by (2.6). If, additionally, � is isotropic, that is, � is the
uniform distribution on S

d−1+ , then λk,d is given by (2.8) and σ 2
k,d takes the explicit form

σ 2
k,d = λ2d−2k−1 22d−1κ

1/d
d

(2d − 1)!
(

d − 1

k

)2(
d!κd−1

k!κk

)2(
κd−1

dκd

)2(d−k)

. (2.11)

Note that, even in the anisotropic case, we have

σ 2
d−1,d = λ

22d−1κ2
d−1

(2d − 1)!κ2−1/d
d

, (2.12)

that is, σ 2
d−1,d coincides with the left-hand side of (2.11) for k = d −1. This is due to the fact that

the (d − 1)-volume of the hyperplanes H(Pi,Vi) within the ball Bd
� does not depend on Vi and

so the distribution of ϑk,d(Bd
� ) is independent of the orientation distribution �. Furthermore, we

mention that in [16], Theorem 2.1 could be extended to non-spherical convex sampling windows
W� = �W1 (cf. Section 5 below). However, in this case, the formulae (2.7) and (2.11) depend on
W1 and are less explicit.

3. First- and second-order moment formulae

Let X = {�n}n≥1 be a stationary random tessellation of R
d and let X0 be a motion-invariant

tessellation independent of X. We consider an X/X0-nesting in R
d , as in Section 2.1, observed

within a convex sampling window W . In order to calculate expectation and variance of the ran-
dom variables Z

(d)
k in (1.1) for k = 1, . . . , d − 1, we need two intensity values.

First, we consider λ
(k,d)
0 , the intensity of the stationary (k − 1)-dimensional manifold process

X
(d−1)
0 ∩ L generated by the intersection of the (d − 1)-facet process X

(d−1)
0 with an arbitrary

k-flat L in R
d . Since X

(d−1)
0 is motion-invariant by the assumption of motion-invariance of X0,

we may identify L with R
k so that λ

(k,d)
0 can be defined by

λ
(k,d)
0 = Eνk−1

(
X

(d−1)
0 ∩ R

k ∩ [0,1)k
)
, 1 ≤ k ≤ d − 1. (3.1)

By using quite general stereological relationships derived in [18], we may express λ
(k,d)
0 by the

(full-dimensional) intensity λ
(d,d)
0 = Eνd−1(X

(d−1)
0 ∩[0,1)d) of the manifold process of (d −1)-

facets X
(d−1)
0 through

λ
(k,d)
0 = c

(d)
k λ

(d,d)
0 with c

(d)
k = γ ((k + 1)/2)γ (d/2)

γ (k/2)γ ((d + 1)/2)
, 1 ≤ k ≤ d − 1. (3.2)
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Further, let

µ
(d)
k = Eνk

(
X(k) ∩ [0,1)d

)
(3.3)

denote the intensity of the stationary k-facet process X(k) associated with X. To avoid rather
involved formulae, in particular, for the variance of Z

(d)
k (W), we impose an additional condition

on the tessellation X = {�n}n≥1.

Condition F. For k = 1, . . . , d − 1, assume that there exists a non-random integer m
(d)
k ≥ 1 such

that

m
(d)
k νk(X

(k) ∩ W) =
∑
n≥1

νk(�
(k)
n ∩ W) P-a.s.

for any W ∈ C′
d with |W | > 0.

Condition F means that, for k = 1, . . . , d − 1, each k-facet of X lies in a constant number m
(d)
k

of k-faces of cells �n,n ≥ 1. Obviously, Condition F is satisfied for any planar tessellation with
m

(2)
1 = 2. For d ≥ 3, by the very definition, any normal tessellation X obeys Condition F with

m
(d)
k = d − k + 1, and a non-degenerate stationary Poisson hyperplane tessellation X is easily

seen to satisfy Condition F with m
(d)
k = 2d−k , see [27]. Note, however, that Poisson–Delaunay

tessellations do not satisfy Condition F for d ≥ 3.

Lemma 3.1. Consider an X/X0-nesting in R
d with stationary initial tessellation X = {�n}n≥1

and motion–invariant component tessellation X0. Assume that X satisfies Condition F and that
0 < γ −1 = E|�∗| < ∞ (cf. (2.2)). If µ

(d)
k < ∞ or, equivalently, Eνk(�

∗(k)) < ∞, and λ
(k,d)
0 < ∞

for any k = 1, . . . , d − 1, then

EZ
(d)
k (W) = λ

(k,d)
0 m

(d)
k µ

(d)
k |W | for any W ∈ C′

d , k = 1, . . . , d − 1. (3.4)

Moreover, if, additionally,

Eν2
k

(
X(k) ∩ [0,1)d

)
< ∞ and

∫
P0

d

Eν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC) < ∞, (3.5)

then for W ∈ C′
d and k = 1, . . . , d − 1,

Var(Z(d)
k (W)) = γ

∫
P0

d

∫
Rd

Var
(
νk−1(X

d−1
0 ∩ C(k) ∩ (W − x))

)
dxP 0(dC)

(3.6)
+ (λ

(k,d)
0 m

(d)
k )2 Var

(
νk(X

(k) ∩ W)
)
.

Proof. Let k ∈ {1, . . . , d − 1} be fixed and let EX(·) denote the conditional expectation E(·|X)

given the tessellation X = {�n}n≥1. Hence, we may rewrite the expectation of Z
(d)
k (W) intro-
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duced in (1.1) as

EZ
(d)
k (W) = E

∑
n≥1

EXνk−1(X
(d−1)
0 ∩ �(k)

n ∩ W).

Owing to the motion-invariance of X
(d−1)
0 , we get, together with (3.1), that

EXνk−1(X
(d−1)
0 ∩ �(k)

n ∩ W) = λ
(k,d)
0 νk(�

(k)
n ∩ W)

for any cell �n. In view of Condition F, we may proceed by writing that

EXZ
(d)
k (W) = λ

(k,d)
0

∑
n≥1

νk(�
(k)
n ∩ W) = λ

(k,d)
0 m

(d)
k νk(X

(k) ∩ W). (3.7)

Combined with the stationarity of X(k), this gives Eνk(X
(k) ∩ W) = µ

(d)
k |W |, which, in turn,

proves (3.4). Recall that by using the notion of the typical cell (cf. (2.2)), we have

E

∑
n≥1

νk(�
(k)
n ∩ W) = γ Eνk(�

∗(k))|W |(= m
(d)
k λk,d |W |),

which establishes the relationship Eνk(�
∗,(k)) = m

(d)
k λk,dE|�∗|. To verify (3.6), we start with

the well-known identity

Var(Z(d)
k (W)) = E(VarX Z

(d)
k (W)) + Var(EXZ

(d)
k (W)), (3.8)

where VarX(·) denotes the conditional variance Var(·|X) given X. Since, conditional on the
tessellation X = {�n}n≥1 the random measures ϑ

(k)
1 (·),ϑ(k)

2 (·), . . . in (1.2) are stochastically
independent, we obtain

VarX Z
(d)
k (W) =

∑
n≥1

VarX
(
νk−1(X

(d−1)
0 ∩ �(k)

n ∩ W)
)
. (3.9)

With �n = �0
n +α(�n), we may apply the refined Campbell theorem to the stationary marked

point process
∑

n≥1 δ[α(�n),�0
n] (cf. [6] or [21]), where we find, together with (2.1), that

E(VarX Z
(d)
k (W)) = γ

∫
Rd

∫
P0

d

Var
(
νk−1(X

(d−1)
0 ∩ (C(k) + x) ∩ W)

)
P 0(dC)dx

(3.10)

= γ

∫
P0

d

∫
Rd

Var
(
νk−1

(
X

(d−1)
0 ∩ C(k) ∩ (W − x)

))
dxP 0(dC).

Here, we used (3.5), the stationarity of X
(d−1)
0 , Fubini’s theorem and the fact that

νk−1
(
(B + x) ∩ W

) = νk−1
(
B ∩ (W − x)

)
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for any bounded B ∈ B(Rk−1) and x ∈ R
d . The existence of the inner Lebesgue integral in the

second line of (3.10) is also seen by applying Fubini’s theorem and the second condition of (3.5),
that is, ∫

Rd

Eν2
k−1

(
X

(d−1)
0 ∩ C(k) ∩ (W − x)

)
dx

= E

∫
X

(d−1)
0 ∩C(k)

∫
X

(d−1)
0 ∩C(k)

|(W − u) ∩ (W − v)|νk−1 (du)νk−1 (dv)

≤ Eν2
k−1(X

(d−1)
0 ∩ C(k))|W |.

From (3.7), combined with the first condition in (3.5), it is immediately seen that the second
term on the right-hand side of (3.8) is finite and takes the form

Var(EXZ
(d)
k (W)) = (λ

(k,d)
0 m

(d)
k )2 Var

(
νk(X

(k) ∩ W)
)
.

The latter equality, together with (3.10) and (3.8), confirms the validity of (3.6). �

The second condition of (3.5) imposes restrictions on both the initial and the component tes-
sellation. Note that this condition is fulfilled if

Eν2
k−1

(
X

(d−1)
0 ∩ R

k ∩ [0,1)k
)
< ∞ and EN2

k (�∗)
(
1 + D(�∗)

)2k
< ∞ (3.11)

for k = 1, . . . , d − 1, where Nk(C) and D(C) = sup{‖x − y‖ :x, y ∈ C} denote the number of
k-faces and the diameter of the d-polytope C ∈ P0

d , respectively. To see that (3.11) implies the

second condition in (3.5), we write C(k) as union of the k-faces C
(k)
l , l = 1, . . . ,Nk(C), and use

the motion invariance of X
(d−1)
0 to obtain the estimate

Eν2
k−1(X

(d−1)
0 ∩ C(k)) ≤ E

(
Nk(C)∑
l=1

νk−1(X
(d−1)
0 ∩ C

(k)
l )

)2

≤ N2
k (C)Eν2

k−1

(
X

(d−1)
0 ∩ R

k ∩ [0,D(C))k
)

≤ N2
k (C)

(
1 + D(C)

)2k
Eν2

k−1

(
X

(d−1)
0 ∩ R

k ∩ [0,1)k
)

for k = 1, . . . , d − 1.
Note that if ϑ

(k)
n (·) acts on the interior of �n, as supposed in [14], then the conditional

expectation EXϑ
(k)
n (W) is a constant multiple of |�n ∩ W | and therefore EXZ

(d)
k (W) =∑

n≥1 EXϑ
(k)
n (W) is proportional to |W |. In this case, the second variance term on the right-

hand side of (3.8) vanishes. Due to this fact, the formula for the variance of Z
(d)
k (W) given in [14]

is relatively simple and the ergodicity of the initial tessellation X suffices to prove asymptotic
normality of Z

(d)
k (W).
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4. CLTs for manifold processes on facets of a stationary PHT

In this section, we consider the random measures ϑ
(k)
n (·) given in (1.2) for n ≥ 1 whose support

lies in the cell boundaries ∂�n, more precisely in the k-facets (for k = 1, . . . , d − 1) of a non-
degenerate stationary PHT X = {�n}n≥1 in R

d . For the sake of simplicity, we assume in this
section that the sampling window W is the d-dimensional ball Bd

� centered at the origin and with
radius � > 0. For more general expanding sampling windows, we refer to the comment at the
end of Section 2.2. By Theorem 2.1, combined with the geometric and probabilistic properties
of PHTs, we prove a CLT (as � → ∞) for the total (k − 1)-volume of the sets (contained in
Bd

� ) arising from the intersection of the k-faces of �n with the (d − 1)-facets of the component
tessellations Xn for n ≥ 1.

Theorem 4.1. Let X = {�n}n≥1 be the stationary PHT in R
d generated by a stationary non-

degenerate Poisson hyperplane process � given in (2.3) with orientation distribution � and
intensity λ > 0. Furthermore, let X0 be a motion-invariant random tessellation in R

d having the
intensities λ

(k,d)
0 > 0 (cf. (3.1) and (3.2), resp.) Assume that Eν2

k−1(X
(d−1)
0 ∩ R

k ∩ (0,1]k) < ∞
for k = 1, . . . , d − 1 and that the corresponding X/X0-nesting is observed through the spherical
sampling window Bd

� . Then,

Z
(d)
k (Bd

� ) − µ̃
(d)
k |Bd

� |
|Bd

� |1−1/(2d)
−→
n→∞N (0, σ̃ 2

k,d) for k = 1, . . . , d − 1, (4.1)

where

µ̃
(d)
k = 2d−kλ

(k,d)
0 λk,d , σ̃ 2

k,d = lim
�→∞

Var(Z(d)
k (Bd

� ))

|Bd
� |2−1/d

= (2d−kλ
(k,d)
0 )2σ 2

k,d (4.2)

and λk,d , σ 2
k,d , and λ

(k,d)
0 are defined by (2.5), (2.10) and (3.1), respectively.

Proof. We first recall that in case of a stationary PHT X, we have that m
(d)
k = 2d−k and that the

intensity (3.3) of the k-facet process X(k) coincides with the intensity (2.5) of the k-flat process
�k induced by (2.3), that is, we have that µ

(d)
k = λk,d . Hence, the formulae for the intensities

µ̃
(d)
k = EZ

(d)
k ([0,1)d) of Z

(d)
k (·) follow from (3.4), as stated in (4.2). Next, we rewrite the mean

zero random variable Z
(d)
k (Bd

� ) − µ̃
(d)
k |Bd

� | as

Z
(d)
k (Bd

� ) − µ̃
(d)
k |Bd

� | = S(k)
� + 2d−kλ

(k,d)
0 T (k)

� , (4.3)

where

S(k)
� = Z

(d)
k (Bd

� ) − EXZ
(d)
k (Bd

� ) = Z
(d)
k (Bd

� ) − 2d−kλ
(k,d)
0 νk(X

(k) ∩ Bd
� )

and

T (k)
� = νk(X

(k) ∩ Bd
� ) − µ

(d)
k |Bd

� | = ϑk,d(Bd
� ) − λk,d |Bd

� |.
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From Theorem 2.1, we obtain that

T
(k)
�

|Bd
� |1−1/(2d)

−→
n→∞N (0, σ 2

k,d) for k = 1, . . . , d − 1. (4.4)

By means of Slutsky’s theorem (cf., e.g., [17]), the proof of the CLT (4.1) is complete whenever

S
(k)
�

|Bd
� |1−1/(2d)

P−→
�→∞ 0. (4.5)

In view of Chebychev’s inequality, we need only to prove that

E(S
(k)
� )2

|Bd
� |2−1/d

−→
�→∞ 0, (4.6)

which includes first of all to ensure that E(S
(k)
� )2 < ∞. Since E(S

(k)
� )2 = E VarX(Z

(k)
� ), we ob-

tain, in analogy to the proof of Lemma 3.1 and by taking into account (3.11), that

E(S(k)
� )2 = γ

∫
P0

d

∫
Rd

Var
(
νk−1

(
Xd−1

0 ∩ C(k) ∩ (Bd
� − x)

))
dxP 0(dC)

≤ γ

∫
P0

d

Eν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC)|Bd

� |

≤ γ Eν2
k−1

(
X

(d−1)
0 ∩ R

k ∩ [0,1)k
)
EN2

k (�∗)
(
1 + D(�∗)

)2k|Bd
� |.

Using the distributional properties of the typical cell �∗ of a stationary PHT, in particular that
D(�∗) has an exponential moment (cf. [2]), we find that

EN2
k (�∗)

(
1 + D(�∗)

)2k
< ∞ for k = 1, . . . , d − 1,

which immediately confirms (4.6) for any d ≥ 2 (cf. also [7] and [28]). Finally, using the formula
(3.6) for the variance of Z

(d)
k (Bd

� ), together with the limiting relations (4.6) and (2.10), we find
that

σ̃ 2
k,d = lim

�→∞
Var(Z(d)

k (Bd
� ))

|Bd
� |2−1/d

= (2d−kλ
(k,d)
0 )2σ 2

k,d .

This completes the proof of Theorem 4.1. �

5. CLTs for manifold processes induced on the facets of a
stationary weakly dependent tessellation

Throughout this section, we consider a stationary X/X0-nesting which can be observed through
an expanding family of convex sampling windows W� with shape W� = �W1 for � > 0, where
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W1 ∈ C′
d contains a ball and is itself contained in a ball, that is, Bd

r ⊆ W1 ⊆ Bd
R for some 0 <

r ≤ R < ∞. We assume that the stationary initial tessellation X = {�n}n≥1 is ergodic (cf. [6,
24,27]) and possesses, in contrast to Poisson hyperplane tessellations, further weak dependence
properties. The latter properties ensure asymptotic normality of the total k-volume of the k-facets
in a large sampling window W� . More precisely, we impose on X the following condition.

Condition G. For k = 1, . . . , d − 1, assume that there exists a real number τ 2
k,d ≥ 0 such that

Var(νk(X
(k) ∩ W�))

|W�| −→
�→∞ τ 2

k,d

and

νk(X
(k) ∩ W�) − µ

(d)
k |W�|

|W�|1/2
d−→

n→∞N (0, τ 2
k,d ).

In analogy to Section 4, we shall prove that the centered and normalized cumulative functional
(1.1) on W� , that is,

Z
(d)
k (W�) − η

(d)
k |W�|

|W�|1/2
with η

(d)
k = EZ

(d)
k ([0,1)d), (5.1)

converges in distribution to a Gaussian random variable N (0, τ̃ 2
k,d) for k = 1, . . . , d −1, as W� ↑

R
d . Here, τ̃ 2

k,d denotes the asymptotic variance of the random variable (5.1) as � → ∞, that is

τ̃ 2
k,d = lim

�→∞
Var(Z(d)

k (W�))

|W�| for k = 1, . . . , d − 1, (5.2)

the existence of which is shown in the subsequent lemma.

Lemma 5.1. Let there be given an X/X0-nesting in R
d with stationary (not necessarily ergodic)

initial tessellation X and motion-invariant component tessellation X0 satisfying the assumptions
of Lemma 3.1 such that the asymptotic variance τ 2

k,d in the first part of Condition G exists. Then,

the asymptotic variance τ̃ 2
k,d in (5.2) exists and takes the form

τ̃ 2
k,d = (τ

(k,d)
0 )2 + (λ

(kd)
0 m

(d)
k )2τ 2

k,d for k = 1, . . . , d − 1, (5.3)

where

(τ
(k,d)
0 )2 = γ

∫
P0

d

Var
(
νk−1(X

(d−1)
0 ∩ C(k))

)
P 0(dC). (5.4)

Proof. The proof of (5.3) is based on the representation of the variance of Z
(d)
k (W�) for k =

1, . . . , d − 1 given in Lemma 3.1. From (3.6) and the first part of Condition G, it is easily seen
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that (5.3) holds if and only if the limit

lim
�→∞

E(VarX(Z
(d)
k (W�))

|W�|

= lim
�→∞

γ

|W�|
∫
P0

d

∫
Rd

Var
(
νk−1

(
X

(d−1)
0 ∩ C(k) ∩ (W� − x)

))
dxP 0(dC)

exists and equals (τ
(k,d)
0 )2, as defined in (5.4). To show this, we apply the same arguments as

those already used in the proof of Lemma 3.1 to derive the estimate

E(VarX Z
(d)
k (W)) ≤ γ |W |

∫
P0

d

Eν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC).

By multiple application of Fubini’s theorem, we arrive at

∫
P0

d

∫
Rd

Eν2
k−1(X

(d−1)
0 ∩ C(k) ∩ (W� − x))

|W�| dxP 0(dC)

=
∫
P0

d

E

(∫
Rd

ν2
k−1(X

(d−1)
0 ∩ C(k) ∩ (W� − x))

|W�| dx

)
P 0(dC)

=
∫
P0

d

E

(∫
X

(d−1)
0 ∩C(k)

∫
X

(d−1)
0 ∩C(k)

|(W� − u) ∩ (W� − v)|
|W�| νk−1(du)νk−1(dv)

)
P 0(dC)

−→
�→∞

∫
P0

d

Eν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC).

Note that, in view of lim�→∞ |(W� −u)∩(W� −v)|/|W�| = 1 and |(W� −u)∩(W� −v)| ≤ |W�|,
together with (3.5), we may apply Lebesgue’s dominated convergence theorem. Likewise, we
obtain that∫

P0
d

∫
Rd

(Eνk−1(X
(d−1)
0 ∩ C(k) ∩ (W� − x)))2

|W�| dxP 0(dC)

= (λ
(k,d)
0 )2

∫
P0

d

∫
Rd

ν2
k (C(k) ∩ (W� − x))

|W�| dxP 0(dC)

= (λ
(k,d)
0 )2

∫
P0

d

∫
C(k)

∫
C(k)

|(W� − u) ∩ (W� − v)|
|W�| νk(du)νk(dv)P 0(dC)

−→
�→∞(λ

(k,d)
0 )2

∫
P0

d

ν2
k (C(k))P 0(dC) =

∫
P0

d

(
Eνk−1(X

(d−1)
0 ∩ C(k))

)2
P 0(dC),

which completes the proof of Lemma 5.1. �
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Under Condition F, we may decompose the normalized cumulative functionals given in (5.1),
in analogy to (4.3), as

Z
(d)
k (W�) − η

(d)
k |W�|

|W�|1/2
= U(k)

� + m
(d)
k µ

(d)
k V (k)

� , (5.5)

where

U(k)
� = Z

(d)
k (W�) − EX(Z

(d)
k (W�))

|W�|1/2
and V (k)

� = νk(X
(k) ∩ W�) − λ

(k,d)
0 |W�|

|W�|1/2
.

Notice the fact that, for k = 1, . . . , d − 1 and any fixed � > 0, the random variables U
(k)
� and

V
(k)
� are uncorrelated. Obviously, V (k)

� is a (measurable) function of X and EX(U
(k)
� ) = 0 (P-a.s),

so

E(U(k)
� V (k)

� ) = E(EX(U(k)
� V (k)

� )) = E(EX(U(k)
� )V (k)

� ) = 0.

The following theorem states that, for any k = 1, . . . , d − 1, the two-dimensional vector
(U

(k)
� ,V

(k)
� )� converges in distribution to a mean zero Gaussian vector with independent com-

ponents as � → ∞. This, in turn, implies the desired asymptotic normality of (5.1).

Theorem 5.1. Consider an X/X0-nesting in R
d observed through the increasing family of win-

dows W� with motion invariant component tessellation X0 and stationary ergodic initial tessel-
lation X = {�n}n≥1 satisfying EDd(�∗) < ∞, as well as (3.5), Conditions F and G Then,(

U
(k)
�

V
(k)
�

)
d−→

n→∞N
((

0
0

)
,

(
(τ

(k,d)
0 )2 0

0 τ 2
k,d

))
for k = 1, . . . , d − 1. (5.6)

In particular, this implies that

Z
(d)
k (W�) − η

(d)
k |W�|

|W�|1/2
−→
n→∞N (0, τ̃ 2

k,d) for k = 1, . . . , d − 1, (5.7)

where

η
(d)
k = λ

(k,d)
0 m

(d)
k µ

(d)
k and τ̃ 2

k,d = (τ
(k,d)
0 )2 + (λ

(k,d)
0 m

(d)
k )2τ 2

k,d .

Proof. We employ the method of characteristic functions (cf., e.g., [17] for details). Hence, we
must show that the characteristic function f�(s, t) of the random vector (U

(k)
� ,V

(k)
� )� defined by

f�(s, t) = E exp{isU(k)
� + itV (k)

� }
converges to the characteristic function of the Gaussian random vector that occurs as limit in
(5.6), that is,

f�(s, t) −→
�→∞ exp

{
− s2

2
(τ

(k,d)
0 )2 − t2

2
τ 2
k,d

}
for all s, t ∈ R

1.
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For this, we introduce the decomposition f�(s, t) = ∑3
i=1 f

(i)
� (s, t), where

f (1)
� (s, t) = E

[
EX

(
exp{isU(k)

� } − exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

})
exp{itV (k)

� }
]
,

f (2)
� (s, t) = E

[(
exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

}
− exp

{
− s2

2
(τ

(k,d)
0 )2

})
exp{itV (k)

� }
]

and

f (3)
� (s, t) = exp

{
− s2

2
(τ

(k,d)
0 )2

}
E exp{itV (k)

� }.

In view of Condition G, the continuity theorem for (one-dimensional) characteristic functions
yields that

lim
�→∞f (3)

� (s, t) = exp

{
− s2

2
(τ

(k,d)
0 )2

}
lim

�→∞ E exp{itV (k)
� }

= exp

{
− s2

2
(τ

(k,d)
0 )2 − t2

2
τ 2
k,d

}
for all s, t ∈ R

1. Hence, it remains to prove f
(i)
� (s, t)−→�→∞ 0 for i = 1,2. For this, we subse-

quently show that

VarX(Z
(d)
k (W�))

|W�| = 1

|W�|
∑
n≥1

VarX
(
νk−1(X

(d−1)
0 ∩ �(k)

n ∩ W�)
) a.s.−→

�→∞(τ
(k,d)
0 )2, (5.8)

where the first equality follows from (3.9) and the almost sure convergence of the argued sum in
(5.8) can be argued by some modified ergodic theorem for random tessellations (cf. Theorem 4.1
in [14]), which states that

1

|W�|
∑
n≥1

1{�n∩W� �=∅}g(�n ∩ W�)
a.s.−→

�→∞γ Eg(�∗) (5.9)

for any B(F ′
d)-measurable, translation invariant set function g(·) defined on sets of the form

C ∩ W , where C is a d-polytope and W ∈ C′
d , and satisfying the monotonicity property g(C ∩

W) ≤ g(C ∩W ′) for W ⊆ W ′. It is easily verified, by checking the proof of Theorem 4.1 in [14],
that these restrictions imposed on g(·), together with EDd(�∗) < ∞ and Eg(�∗) < ∞, suffice
for (5.9) to hold. Applying (5.9) to g1(C ∩ W) = Eν2

k−1(X
(d−1)
0 ∩ C(k) ∩ W) and g2(C ∩ W) =

(λ
(k,d)
0 )2ν2

k (C(k) ∩ W), where C(k) denotes the union of k-faces of the d-polytope C, we see
that (5.9) also holds for g = g1 −g2. Thus, (5.8) is proved. From (5.8) and Lebesgue’s dominated
convergence theorem, we conclude that

|f (2)
� (s, t)| ≤ E

∣∣∣∣ exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

}
− exp

{
− s2

2
((τ0)

(k,d))2
}∣∣∣∣ −→

�→∞ 0. (5.10)
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To show that f
(1)
� (s, t) becomes arbitrarily small as W� grows large, we start with the obvious

estimate

|f (1)
� (s, t)| ≤ E

∣∣∣∣EX exp{isU(k)
� } − exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

}∣∣∣∣ (5.11)

for k = 1, . . . , d − 1. Next, we express U
(k)
� in terms of the centered measures θ

(k)
n (·) =

νk−1(X
(d−1)
n ∩ �

(k)
n ∩ (·)) − λ

(k,d)
0 νk(�

(k)
n ∩ (·)), which are conditionally independent given the

initial tessellation X = {�n}n≥1. We have

U(k)
� = 1

|W�|1/2

∑
n≥1

1{W�∩�n �=∅}θ(k)
n (W�)

and introduce, for fixed δ ≥ 0, the conditional Lindeberg function

L(k)
� (δ) = 1

|W�|
∑
n≥1

1{W�∩�n �=∅}EX(θ(k)
n (W�))21{|θ(k)

n (W�)|≥δ|W�|1/2}. (5.12)

Further, for any ε > 0 and δ > 0, we define the events

G�(e, δ) = {L(k)
� (δ) ≤ ε} and H�(ε) = {|L(k)

� (0) − (τ
(k,d)
0 )2| ≤ ε}.

Since L
(k)
� (0) = VarX(Z

(d)
k (W�))/|W�|, it follows from (5.8) that P(Hc

�(ε))−→�→∞ 0. Below,

we also need that P(Gc
�(ε, δ))−→�→∞ 0, following from the stronger result L�(δ)

a.s.−→�→∞ 0,

which we can show in the following way. Replacing θ
(k)
n (W�) in (5.12) by ξ

(k)
n (�

(k)
n ∩ W�) =

νk−1(X
(d−1)
n ∩ �

(k)
n ∩ W�) + λ

(k,d)
0 νk(�

(k)
n ∩ W�) leads to the inequality

L(k)
� (a|W�|−1/2) ≤ 1

|W�|
∑
n≥1

1{W�∩�n �=∅}EX(ξ
(k)
0 (�(k)

n ∩ W�))21{ξ (k)
0 (�

(k)
n ∩W�)≥a}

for any a > 0. The set function g(C ∩ W) = EX(ξ
(k)
0 (C(k) ∩ W))21{ξ (k)

0 (C(k)∩W)≥a} is translation

invariant (due to the stationarity of X0) and increases whenever W expands. Hence, g(·) fulfills
the conditions needed to establish the almost sure convergence in (5.9). This implies that

P

(
lim sup
�→∞

L�(a|W�|−1/2) ≤ γ

∫
P0

d

EX(ξ
(k)
0 (C(k)))21{ξ (k)

0 (C(k))≥a}P
0(dC)

)
= 1.

Consequently, by (3.5), P(lim sup�→∞ L
(k)
� (δ) ≤ ε) = 1 for any ε > 0, that is, L(k)

� (δ)
a.s.−→�→∞ 0.

A suitable upper bound of the right-hand side of (5.11) can be obtained when both events
G�(ε, δ) and H�(ε) occur. From (5.11), it is easily seen that |f (1)

� (s, t)| does not exceed the
sum

E1{G�(ε,δ)∩H�(ε)}
∣∣∣∣EX exp{isU(k)

� } − exp

{
− s2

2
L�(0)

}∣∣∣∣ + 2P
(
Gc

�(ε, δ) ∪ Hc
�(ε)

)
. (5.13)
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We proceed with the factorization of the conditional characteristic function of U
(k)
� given X,

using the conditional independence of the random variables θ
(k)
n (W�), and obtain

EX exp{isU(k)
� } =

∏
n≥1

EX exp{is|W�|−1/2θ(k)
n (W�)}.

Expressing the first equality in (5.8) by the centered measures θ
(k)
n (·), we have

exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

}
=

∏
n≥1

exp

{
− s2

2|W�|EX(θ(k)
n (W�))2

}
.

By means of the elementary inequality |x1 · · ·xn − y1 · · ·yn| ≤ |x1 − y1| + · · · + |xn − yn| for
complex numbers xi, yi lying on the unit disc, we arrive at the estimate∣∣∣∣EX exp{isU(k)

� } − exp

{
− s2

2|W�| VarX(Z
(d)
k (W�))

}∣∣∣∣
(5.14)

≤
∑
n≥1

1{�n∩W� �=∅}
∣∣∣∣EX exp

{
is

θ
(k)
n (W�)√|W�|

}
− exp

{
− s2

2|W�|EX(θ(k)
n (W�))2

}∣∣∣∣.
Further, using the well-known inequality |eix − ∑n−1

k=0
(ix)k

k! | ≤ |x|n
n! (with x ∈ R

1) for n = 2 and
n = 3, we find that, for any δ > 0,∣∣∣∣EX

(
exp

{
is

θ
(k)
n (W�)√|W�|

}
− 1 − is

θ
(k)
n (W�)√|W�| + s2

2|W�|EX(θ(k)
n (W�))2

)∣∣∣∣
≤ s2

|W�|EX(θ(k)
n (W�))21{|θ(k)

n (W�)|≥δ
√|W�|} (5.15)

+ |s|3
6|W�|3/2

EX

∣∣θ(k)
n (W�)

∣∣3
1{|θ(k)

n (W�)|≤δ
√|W� |}.

Analogously, applying the inequality |e−x − 1 + x| ≤ x2/2 for x ≥ 0 gives∣∣∣∣ exp

{
− s2

2|W�|EX(θ(k)
n (W�))2

}
− 1 + s2

2|W�|EX(θ(k)
n (W�))2

∣∣∣∣
(5.16)

≤ s4

4|W�|2 (EX(θ(k)
n (W�))2)2 ≤ s4

4|W�|EX(θ(k)
n (W�))2(δ2 + L(k)

� (δ)
)
,

where we have used, in addition, that, for any n ≥ 1 and δ > 0,

EX(θ(k)
n (W�))2 ≤ δ2|W�| + EX(θ(k)

n (W�))21{|θ(k)
n (W�)|≥δ

√|W� |} ≤ |W�|(δ2 + L(k)
� (δ)

)
.
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Finally, combining the above estimates (5.14), (5.15) and (5.16) and taking into account both the
abbreviation (5.12) and the fact that EXθ

(k)
n (W�) = 0, we find that∣∣∣∣EX exp{isU(k)

� } − exp

{
− s2

2
L(k)

� (0)

}∣∣∣∣ ≤ s2L(k)
� (δ) + |s|3δ

6
L(k)

� (0) + s4

2
L(k)

� (0)
(
δ2 + L(k)

� (δ)
)
.

Regarding the latter inequality on the event {G�(ε, δ) ∩ H�(ε)}, we obtain from (5.13) that

lim sup
�→∞

|f (1)
� (s, t)| ≤ s2ε +

( |s|3δ
6

+ s4

2
(δ2 + ε)

)(
ε + (τ

(k,d)
0 )2)

for arbitrary ε, δ > 0. Thus, lim�→∞ f
(1)
� (s, t) = 0 which completes the proof of (5.6). The proof

of Theorem 5.1 ends with an application of (5.6) and the continuous mapping theorem (cf. [17])
to the linear combination (5.5), which proves (5.7). �

6. Examples of weakly dependent random tessellations

There are only a few papers (e.g., [3,10]) concerning weak dependence properties of stationary
random tessellations apart from ergodicity. In fact, the assumption of ergodicity turns out to
be the weakest form of asymptotic independence of distant parts of a stationary tessellation
X = {�}n≥1. Due to the individual spatial ergodic theorem (cf. [6]) ergodicity guarantees strong
consistency for a number of intensity estimators based on a single observation in an expanding
sampling window. To establish asymptotic normality of these estimators, the distribution of X

must satisfy certain mixing conditions expressed in terms of corresponding mixing coefficients.
In the context of random tessellations X = {�}n≥1 in R

d , the α- and β-mixing condition have
proved meaningful with mixing coefficients defined by

α(AX(F1),AX(F2)) = sup
A1∈AX(F1),A2∈AX(F2)

|P(A1 ∩ A2) − P(A1)P(A2)|,
(6.1)

β(AX(F1),AX(F2)) = E sup
A2∈AX(F2)

∣∣P(A2|AX(F1)) − P(A2)
∣∣,

where F1,F2 are disjoint closed subsets of R
d and AX(F ) denotes the σ -algebra generated by

the random closed set (
⋃

n≥1 ∂�n ∩ F in the sense of Matheron (cf. [20] and also [10]). It is
easily verified that α(AX(F1),AX(F2)) ≤ β(AX(F1),AX(F2)). However, the behaviour of both
mixing coefficients is nearly the same for most of the models in stochastic geometry when the
distance between F1 and F2 becomes large (cf. [12]). To verify Condition G, we are faced with
two problems. First, to find, from the model assumptions, sharp bounds on the above mixing
coefficients for F1 = F(a) := [−a, a]d and F2 := G(b) = R

d \ (−b, b)d for b > a and, second,
to prove a suitable CLT (or to use a known CLT) for weakly dependent random fields whose
assumptions follow from the derived estimates. For more details on CLTs of random fields and
mixing conditions, including the influence of the dimension, the reader is referred to [23].
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In [10], the β-mixing coefficient β(AX(F (a)),AX(G(a + r))) could be estimated for Voronoi
tessellations in terms of the β-mixing coefficient and certain void probabilities of the generat-
ing stationary point process of nuclei. In the special case of Voronoi tessellations generated by
Poisson cluster processes with cluster radius R0 satisfying E exp{hR0} < ∞ for some h > 0, the
general bound decays exponentially in r . More precisely, it can be shown that

β
(
AX(F (a)),AX

(
G(a + r)

)) ≤ c1

((
r

a

)d−1

+
(

a

r

)d−1)
exp{−c2r} (6.2)

for any r ≥ 1 and a ≥ 1/2, where the positive constants c1, c2 depend only on the dimension
d , h > 0 and the intensity of the Poisson process of cluster centers. An estimate similar to (6.2)
holds for Poisson soft-core processes (cf. [29]), provided the soft-core radius R0 possesses an
exponential moment. Furthermore, Condition G could be verified in [10] for stationary random
tessellations X = {�}n≥1 in R

d satisfying E(νk(X
(k) ∩ [0,1)d))2+δ < ∞ for 1 ≤ k ≤ d − 1 and

some δ > 0 and

β
(
AX(F (a)),AX

(
G(a + r)

)) ≤ ad−1β1(r)1[1,ca](r) + β2(r)1(ca,∞)(r)

for any a ≥ 1/2 and r ≥ 1, where c ≥ 2 is a constant independent of both a and r . Furthermore,
β1(·) and β2(·) are non-increasing functions on [1,∞) such that

r2d−1β1(r) −→
�→∞ and

∑
r≥1

rd−1(β2(r))
δ/(2+δ) < ∞.

Hence, from (6.2), we obtain, for a Voronoi tessellation X = {�}n≥1 in R
d generated by a sta-

tionary Poisson process with intensity γ > 0, that

|W�|−1/2(νk(X
(k) ∩ W�) − µ

(d)
k (ν)γ (d−k)/d |W�|) d−→

n→∞N (0, τ 2
k,d (ν)γ (d−2k)/d) (6.3)

for k = 1, . . . , d − 1, where the mean value µ
(d)
k (ν) = E(νk(X

(k) ∩ [0,1)d) and the asymp-
totic variance τ 2

k,d(ν) refer to a PVT with intensity γ = 1. The scaling rates in (6.3) are easily

seen from the scaling property of the stationary Poisson process in R
d giving νk(X

(k) ∩ W�) =
γ −k/dνk(X

(k) ∩ W�γ 1/d ), where X
(k)

denotes the union of k-facets of a PVT with unit intensity.

An explict formula for the intensity µ
(d)
k (ν) was first found (by R. Miles) to be

µ
(d)
k (ν) = (2π)d−k+1�(d − k + k/d)

(d − k + 1)!d
κd(d−k)+k−2

κd(d−k)+k−1

κk−1

(κd)k/d

(
κd−1

κd

)d−k

and derived in a different way in [21], page 64, whereas, for τ 2
k,d (ν), no analytic expression

is currently known. In the planar case, it is well known that µ
(2)
1 (ν) = 2 and the approximate

value τ 2
1,2(ν) = 1.0445685 was found in [1] by numerical evaluation of rather involved multiple

integrals.
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We are now in a position to establish the CLT in (5.7) in a more explict form for the case of a
planar X/X0-nesting with initial tessellation X being a PVT with cell intensity γ > 0 and com-
ponent tessellation X0 being either a PLT generated by a motion-invariant Poisson line process
with intensity λ > 0 or another PVT with cell intensity λ > 0. In both cases, we have

Z
(2)
1 (W�) − η

(2)
1 |W�|

|W�|1/2
d−→

n→∞N (0, τ̃ 2
1,2), (6.4)

where

η
(2)
1 = 4λ

(1,2)
0

√
λ and τ̃ 2

1,2 = (τ
(1,2)
0 )2 + 1.6934(λ

(1,2)
0 )2.

From (3.2) we get λ
(1,2)
0 = c

(2)
1 λ

(2,2)
0 with c

(2)
1 = 2/π and λ

(2,2)
0 = 2

√
λ if X0 is a PVT (cf.

[24]), page 314 and λ
(2,2)
0 = λ if X0 is a PLT (cf (2.8)). To calculate

(τ
(1,2)
0 )2 = γ

∫
P0

d

Var
(
ν0(X

(1)
0 ∩ C(1))

)
P 0(dC),

we first consider the case when X0 is a PLT with intensity λ. Then, ν0(X
(1)
0 ∩ C(1)) equals twice

the number N(C) of Poisson lines hitting the polygon C. It is well known that N(C) is Poisson
distributed with mean (and variance) λP (C)/π , where P(C) denotes the perimeter of C. Hence,
by EP(�∗) = 4γ −1/2 (cf. [24], page 314) we obtain

(τ
(1,2)
0 )2 = γ

4λEP(�∗)
π

= 16

π

√
γ λ.

If X0 is a PVT with cell intensity λ, we may again exploit the scaling properties of PVTs, giving

(τ
(1,2)
0 )2 = √

γ λE VarX
(
ν0(X

(1)

0 ∩ �
∗,(1)

)
)
,

where X and X0 are independent planar PVTs, both with unit cell intensity, and where

X
(1)

0 ∩ �
∗,(1)

denotes the finite set of points on the boundary of the typical cell of X induced

by the 1-facets of X0. A large-scale simulation study yields E VarX(ν0(X
(1)

0 ∩�
∗,(1)

)) = 2.7023.

Summarizing the above results, we obtain the following expressions for η
(2)
1 and τ̃ 2

1,2 in (6.4),
namely,

η
(2)
1 = 8

π

√
γ λ and τ̃ 2

1,2 = 16

π

√
γ λ + 1.6934λ2 (if X0 is a PLT with intensity λ),

η
(2)
1 = 16

π

√
γ λ and τ̃ 2

1,2 = 2.7023
√

γ λ + 6.7736λ (if X0 is a PVT with intensity λ).

To conclude, it should be mentioned that Condition G can also be verified for a large class of
Laguerre tessellations generated by Poisson-based point processes. The values of the variances
in the previous formulae for higher dimensions can only be obtained by extensive simulation
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studies. Several generalizations of Theorems 4.1 and 5.1 are possible. For example, the manifold
process X

(d−1)
0 of (d −1)-facets can be replaced by the union of k-facets of X0 for 1 ≤ k ≤ d −2.

In case of anisotropic component tessellations, the rose of directions of X0 is needed to express
the mean and variance of Z

(d)
k (W�).
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