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Recently there has been growing interest in applying elliptical distributions to risk management. Under
certain conditions, Hult and Lindskog show that a random vector with an elliptical distribution is in
the domain of attraction of a multivariate extreme value distribution. In this paper we study two
estimators for the tail dependence function, which are based on extreme value theory and the structure
of an elliptical distribution. After deriving second-order regular variation estimates and proving
asymptotic normality for both estimators, we show that the estimator based on the structure of an
elliptical distribution is better than that based on extreme value theory in terms of both asymptotic
variance and optimal asymptotic mean squared error. Our simulation study further confirms this.
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1. Introduction

Let (X, Y), (X1, 1), (X3, Y3), ... be independent random vectors with common distribution
function F and continuous marginals Fy and Fy. Define the tail dependence function

1
Ax, y) = ling n Pr(l1 — Fx(X) s &x, 1 — Fy(Y) < ty)
1—

for x, y = 0. Then A(1, 1) is called the upper tail dependence coefficient (see Definition 2.3
of Hult and Linskog 2002), and I(x, y):=x+ y—A(x, y) is called the stable tail
dependence function (Huang 1992: 26). For more details on copulae and tail
dependence, see Joe (1997). Assuming that (X, Y) is in the domain of attraction of a
bivariate extreme value distribution, there exist several estimators for /(x, y); see Huang
(1992), Einmahl er al. (1993) and de Haan and Resnick (1993). The optimal rate of
convergence for estimating /(x, y) is given by Drees and Huang (1998), and a weighted tail
approximation is provided by Einmahl et al. (2006). An alternative method for estimating
I(x, y) is via estimating the spectral measure; see Einmahl et al. (1997, 2001). On modelling
the dependence of extremes parametrically, we refer to Tawn (1988) and Ledford and Tawn
(1997).

Triggered by financial risk management problems, we observe growing interest in
elliptical distributions as natural extensions of the normal family allowing for the modelling
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of heavy tails and extreme dependence; see Chapters 3 and 5 of McNeil et al. (2005) and
Abdous et al. (2005). The vector (X, Y) is elliptically distributed if

(X, V)" = p+ GAU?, (D

where g = (uy, uy)" is a location vector, G > 0 is a random variable, called a generating
variable, A € R**? is a deterministic matrix with

AAT = 3 0% pov
T \pov VP

and rank(X) = 2, U is a two-dimensional random vector uniformly distributed on the unit
sphere S; :={z € R? : ||z|]| = 1}, and U® is independent of G. Throughout we use the
Euclidean norm.

Note that p is termed the linear correlation coefficient of X. Under certain conditions,
Theorem 4.3 of Hult and Lindskog (2002) shows that regular variation of Pr(G > -) with
index a>0, ie lim Pr(G>&)/Pr(G>¢=x"* for all x>0 (notation:
Pr(G > -) € R_,), implies regular variation of (X, Y) with the same index a > 0; see
Section 5.4.2 of Resnick (1987) for the definition of multivariate regular variation.
Moreover, if Pr(G > ) € R_,, then

7t/2 7t/2 -1
an=([ " ospran (| wosorag) e
(1t/2—arcsin p)/2 0

Here we are interested in estimating the tail dependence function A(x, y) by assuming
that Pr(G > ) € RV_, for some a > 0. With the help of elliptical distributions, some part
of the tail dependence function can be estimated via the whole sample and another part by
only employing the data in the tail region of the sample. Therefore, modelling the
dependence of multivariate extremes via elliptical distributions avoids the difficulty of the
dimensional curse and provides a robust way of dealing with tail structures. Another
advantage of employing elliptical distributions in modelling extremes is the simplicity of
simulating multivariate extremes. Since Pr(G > -) € RV_, implies that (X, Y) is in the
domain of attraction of an extreme value distribution, a naive procedure is to apply Huang’s
estimator by ignoring the structure of the elliptical distribution, i.e.

n

“Hu 1
AIIL(IHmn(xa y) = A Z I(Xt = X(n—kaHuj,n)a Yl = Y(n—Lkauj,n))s (3)

Hu

i=1

where X, <...< X, and Yy, <...<Y,, denote the order statistics of
Xy, ..., X,and Y, ..., Y, respectively, ky, = kHu(n)'ﬂCoo and ky,/n "2°0. The same
estimator has been analysed by Schmidt and Stadtmiiller (2006); see their equation (4.13).
The aim of this paper is twofold. Firstly, we suggest a new estimator which exploits the
structure of an elliptical distribution similar to (2). Secondly, we aim to determine the optimal
number of order statistics to be used in both estimators. The choice will be based on the
asymptotic mean squared error of the estimators.

The paper is organized as follows. We first derive an expression for A(x, y) which
generalizes equation (2), and then construct a new estimator for A(x, y) via this expression;
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see Section 2 for details. After deriving the second-order behaviours for elliptical
distributions and the limiting distributions of these two estimators in Section 2, we show
that the new estimator is better than the naive empirical estimator from Huang in terms of
both asymptotic variance and optimal asymptotic mean squared error in Section 3. More
importantly, the optimal choice of the sample fraction for the new estimator is the same as
that for Hill’s estimator (Hill 1975). That is, all data-driven methods for choosing the
optimal sample fraction for Hill’s estimator can be applied to our new estimator directly. A
simulation study is provided in Section 3 as well. All proofs are summarized in Section 4.

2. Methodology and main results

The following theorem gives an expression for A(x, y) which will be employed to construct
an estimator.

Theorem 1. Suppose (X, Y), defined in (1), holds with 0 >0, v>0, |p|<!l and
Pr(G > ) € R_, for some a > 0. Further, define

g(t) := arctan((¢ — p)/+/ 1 — p?) € [—arcsin p, 7/2], t=0.
Then, for x, y =0

g/ '

Ax, y) = (Jm xX(cos p)* dgp +J

a((x/ )

/2 -
X (J (cos p)* d¢> .
—n/2
In order to derive the asymptotic normality of ilzru,n(x, y), it is known that a second-
order condition is needed. Here we seck the relation of the second-order behaviour among
the tail dependence function A(x, y), vV X2+ Y2 and G; see the next two theorems for
details.
In the setting of (1), assume that there exists A(f) — 0 such that, for all x > 0 and some

p=0,

Wpeosg+/T— psing)* d¢>)

—arcsin p

Pr(G > tx)/Pr(G > 1) — x“ F—1
i PG> /PG>0 —x™ o 1 0
o A1) B
where <0 is called a second-order regular variation parameter; see de Haan and
Stadtmiiller (1996) for more details on second-order regular variation. Additionally, we
assume that

lim P2A(t) =: a € [—o0, oo, )

Since 4 € Rg, a=0 for f < -2 and |a| = oo for B € (=2, 0].
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The following two theorems derive the corresponding second-order condition for
VX2 +Y?2 and the tail dependence function A(x, y). Note that pcos¢ +
V1 — psin¢ = sin(¢ + arcsin p).

Theorem 2. Assume that the conditions of Theorem 1, (1) and (2) hold. Further, define, for
¢ € (—75/2, ﬂ:/2)!

di(¢) = o*(cos ¢)? + v*(sin(¢ + arcsin p))?,

d>(¢) = uxo cos @ + uyvsin(¢ + arcsin p).

Then, for all x >0,

fim Pr(VX2+Y2> ) /Pr(VX24+Y2>1) —x¢
=0 2+ [A()]

T -1 s _ 1 T
= ([ @) {5 @

1

+
1+ |a]

SE - 1)]_ (di(@)* ™ [alda(9))? + di()(w + #2y)]d¢}- 3)

Also, for all x>0 and V(x) :=inf{y : Pr(v X2+ Y2 > y) < x!},

lim V(tx)/V(t) —x'/*
o (Fy (L= D) 2 [AGFy (1= D)

. L e\ —CABD/
_ 1/a o2 Joo(di(9)*? dop
g (Jn(‘“"”) d¢) (v&fg‘(sinwdqs

a xPle—1/(" ap)2
« {m — (Jn(d”’)) d¢>)

1 7T
E(x—Z/a - 1)]7 (d1(@)™ > aldr(9))* + d1(p) i + ui)]dqb}

_l’_
1+ |a]

= xl/aB(4)(x), (4)

where F~ denotes the generalized inverse of E In particular, when uy = uy = 0, we have,
for all x >0,
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V() V() —xte Pl )
Jim AF, (-1 0 aﬁ(Jn(dl((p)) d¢>

7 7T a2 ng) pla
di(p)) P/ g Laldi(@)*” dp
><L< () ¢< iy dp

= xl/“B(s)(x). (5)

Theorem 3. Assume that the conditions of Theorem 1 and (1) hold. Define, for x <,

—Bla _ 1 7T -1 7T
Be)(x) := —xxT (J (sin ¢)* d¢> (J (sing)* P dq)) (6)

0 0

and
Sy ={zeR*:z=0and |z = 1}.

Then

lim tT'PH(Fy(X)=1—tx, Fy(Y)=1—ty) — Ax, )

=0 A(Fy (1 = 1))

/2 -1 X 7/2
— (J (cos )" d¢> {_ | eeos ) cos gyl
2 B Jaori

y g((x/ ")
+ i J [y~#/%(sin(¢ + arcsin p))*# — (sin(¢ + arcsin p))*]d¢

—arcsin p

/2 &/ NV

(cos @)* do + Bes( y)J (sin(¢p + arcsin p))* d¢

—arcsin p

+ B(@(X)J
a((x/ V)

1
B

=: Bpy(x, y) (7

holds for all x, y = 0 and uniformly on S .

- /l(x’ y)

7/2
j (cosgCeos ) - 1)d¢}

We are now ready to define our new estimator. Set Z; = \/X? + Y2, for i=1, ..., n,
and let Z , < ... < Z(,  denote their order statistics. First we estimate the index a by
Hill’s estimator, which is defined as

1 kel -1
FH
akEl,’l = k—El Z In Z(n—i+l,n) —In Z(n—kﬁl,n) ,
i=1
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where kg = kgi(n) — co and kg /n— 0 as n — oo. Now let (X, Y) and (X, Y) be
independently and identically elliptically distributed. Then it follows from Theorem 4.2 of
Hult and Lindskog (2002) that 7 = (2/m)arcsin p, where 7 is called Kendall’s tau and is
defined by

7:=Pr((X — X)(Y — ¥) > 0) — Pr((X — X)(Y — Y) < 0).
As usual, we estimate Kendall’s tau by

2

Ty =———
n(n—1)

Z sign((X; — X)(Y; — ¥))),

Sisjsn

which results in estimating p by

N . (J'c ; )
p=sin{—=17,].
P 2
Hence, we can estimate A(x, y) by replacing p and a in Theorem 1 by p, and dI,;'Ebn,
respectively. Let us denote this estimator by

Agon%s 9). ®)

We remark that /1],2] ,(1, 1) was mentioned in Section 6 of Schmidt (2003) but without
further study. The following theorem shows the asymptotic normality of l (% y) and
kE] .(x, »), which allows us to compare these two estimators theoretically.

Theorem 4. Assume that the conditions of Theorem 1 and (1) hold. Suppose ky, =
kiu(n) == 00, kyy/n'—> 0 and

Vi A(Fy (1 = ko /1) =2 Kt

Sor |Kmu| < 0o. Then, as n — oo,

sup
O=x,y<T

V kHu(AkHu ()C, J’) - l(x’ J’)) - ]CHUBU)(X’ J’) - B(X, y)' = Op(l)s (9)
for every T >0, where B)(x, y) is defined in Theorem 3,
0 0
B(.X, y) = W(X, y) - (1 _8_)'()(9 y)) W(X, 0) - (1 _6_)'()(9 y)) W(Os y),
x v

and W(x, y) is a Wiener process with zero mean and covariance structure

E(W(x1, y)W(x2, ¥2))
=x1AXa+ Y1 Ayp — AL A xp, Y1) — A(x1 A xa, y2) — Alxy, y1 A )
— A(x2, y1 A y2) + Ax1, y2) + A2, y1) + A1 Axz, yi A ya).

Therefore, for every fixed x, y > 0,
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Vi (e, 9) = A )~ N (KiuBey(x, ¥), 03

kHu,

as n — 0o, where

B 2 B) 2
Olz-lu = X(ai(x, y)) +y (a_yll(xﬂ y))

1 0 o} 0 0

+ 21(}6, J/) <2 - a;{(x’ J’) - aiy)“(x’ J’) + al(xa Y)afyfl(% J’)> s (10)
9 /2 -1 71/2
e = (J (cos ) d¢) | " ospren. (i

/2 g((x/ V)

d ( /2 )1 2/ ')
—Ax, y) = J (cos p)* do J (sin(¢p + arcsin p))* dep. (12)
ay —n/2 —arcsin p

Theorem 5. Assume that the conditions of Theorem 1 and (1) hold. Further, assume (2) holds
when p # 0. Suppose kg = kgi(n, p) rgcoo, kei/n =20 and

n—0oQ

Ve(Fy (1= ke /)2 + |AFy (1 — kg /n)) = Kgi,  p #0,

VkaA(Fy (1 = kei/n) —: Ka,  u =0,
Jor |Kgi| < co. Then, as n — oo,

sup [vEka(A2 (x, ») = A, 1) = Bas®, »)Zo| = 0,(1), (13)

O=x,y<T
where Zy ~ N (—OLZICE|B(14), az) with
1
8(14) — { J‘O 8(4)(1/S)dsa H 7& 09
Iy Be(1/s)ds,  m =0,
By(s) and Bs)(s) are defined in Theorem 2 and

(14)

/2 -1 /2
Bus(x, ) i= (J /Z(cosqs)“dqs) {J ¥(c0s )" In(cos ¢)dp

- g((x/ V%)

g/ ")
+ J y(sin(¢ + arcsin p))* In(sin(¢ + arcsin p))d¢

—arcsin p

/2
—A(x, y)Ji /2(COS ¢)* In(cos ¢)d¢}. (15)

Therefore, for every fixed x,y > 0,
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2 d
Vi, (xs ¥) = Ax, ) == N (=*KaBuaBas)(x, ), a*Bas(x »)).

The next corollary gives the optimal choice of the sample fraction for both estimators.
As our criterion we use the asymptotic mean squared error of /1%: and ’1]1?51 »» denoted by
amseyy(kyy) and amseg(kg;), respectively.

NG

Corollary 6. Assume that the conditions of Theorems 4 and 5 hold. Further, suppose that
ACFy (1= 1) = bot P11+ o(1)),
(Fy (1= 0) 2+ [A(Fy (1 = )] = byt® 1+ o(1))
for some by, by > 0 as t — 0, and define

bztfﬂZ/a _ blt(Z/\(*ﬁ))/a’ u#0,
boliﬁ/a, R = 0.

Then
amsepu(kiu) = O kigy + (boCkia/m) 7/ *Beyy(x, )y
and
amsepi(kp1) = (Bas)(x, ») (kg + (aPba(kei/n) P *Biiay)?).

Let k;’{{f and kgft denote the optimal sample fraction in the sense of minimizing amsey, and
amseg), respectively. Then

o a/(a~28)
K= oy n~2B/(=2p),
2pby(Br)(x, ¥))

byt = (=22ab3(Baay)?) /2P 202,

amseglput = amseHu(kifut) = nzﬁ/(“’zﬁ)béa/mdﬁ) <1 - ;ﬁ)

X ((OZHu)iﬁ/aBm(x, y)\/Tﬂ/a)Za/(afzﬁ)’

- a
amse" := amsep (k") = p2f2/ (@2 plel (=2 (1 _ _)

262
X a2 (Bis)(x, Y)A(V/—20BaB1ay) /).

Remark 1. (i) Note that kX' is independent of x and y, but k;}, depends on x and y. If g = 0,
both amse;l: and amseX" depend on n, @, B, p, v, x, y and by, amse}" additionally depends

. t t . .
on o, but the ratio amseyr, /amsey] is independent of n and by.
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(i1) Since the optimal k%ﬁ’t is the same as that for Hill’s estimator, when g = 0, all data-
driven methods for choosing the optimal sample fraction for Hill’s estimator can be applied
to l],:;él,n(x, y) directly.

(iii)) The location parameter g is the median of (X, Y) and the mean of (X, Y) when
a > 1. Hence, we could estimate g by the sample median, say @i = ({ix, iiy). Therefore,
consider the new estimator iil’n(x, y) with  Z;=./X?+7Y? replaced by

V(X; — fax)? + (Y; — fiy)*. Similar to the proofs in Ling and Peng (2004), we can show
that Theorem 5 and Corollary 6 hold with g = 0 for this new estimator. U

3. Comparisons and simulation study
First, we compare 0%, and op® given in Theorems 4 and 5. Note that both only depend on
a, p, x and y. In Figure 1 we plot the ratio O%I(a)/oéu(a) for x = y =1 as a function of
a, and each curve corresponds to a different correlation p € {0.1, ..., 0.9}. From Figure 1,
we conclude that l%n is always better in terms of asymptotic variance.

Second, we compare the two estimators in terms of optimal asymptotic mean squared
errors. Since the ratio of the optimal asymptotic mean squared error depends on a, 5, X, u,
x, y, we consider elliptical distributions with 0 =v =1, uy = uy = 0. In Figure 2 we

p=10.9
|
o
0.85
O
=S 08
o
P
S
wbﬁ 0.75
; |
0.7
0.65
0.4 0.45~——0.5 —0.55 0.6
=
0 10 20 30 40 50
«

Figure 1. Ratio 0%(a)/0%,(a) for different correlations p.
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Figure 2. Ratio amse%‘f‘(a) / amsef{lﬁ(a) for different correlations p and 8 = —a.
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Figure 3. Ratio amseg‘f‘(a) / amse;put (a) for different correlations p and = —1.
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Figure 4. Ratio amsej) (@)/amsefh(a), ||(x, y)|| = V2, for different (a, p) and f = —1.
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Figure 5. Mean of estimators j.l;’“n(l, 1) and /i?n(l, 1) for 1000 samples of length » = 1000 and
different £ with 0 =v =1, g =0, G ~ Fréhet(a), and different pairs (a, p).
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Figure 6. Mean of estimators il,j};(l, 1) and /:Lffn(l, 1) for 1000 samples of length » = 1000 and
different £ with 0 =v =1, g =0, G ~ Pareto(a), and different pairs (a, p).

consider G ~ Fréchet(a), i.e. Pr(G > x) = exp(—x~%), x > 0; hence, (1) is satisfied with
B = —a. In Figure 3 we consider G ~ Pareto(a), i.e. Pr(G > x) = (1 +x)~* for x > 0,
hence (1) is satisfied with 8 = —1. Under the above set-up, the ratio of optimal asymptotic
mean squared errors depends only on a, p, x, y. Similar to Figure 1, we plot the ratio
amsep) (a)/amseHu(a) for x =y =1 as a function of « for different ps in Figures 2 and 3.
We conclude from both figures that /1],5(1,1 always performs better than /11,?; in terms of
optimal asymptotic mean squared errors as well.

Third, we examine the influence of x and y on the ratio of asymptotic mean squared
error. We plot the ratio amsep) (a)/amseom(a) for ||(x, y)|| = V2 and G ~ Pareto(a) in
Figure 4, where each curve corresponds to a different pair (o, p) € {(20, 0.9),
(10, 0.6), (5, 0.3), (1, 0.1)}. This figure further confirms that i%ln always has a smaller
optimal asymptotic mean squared error than l],;hi,

Fourth, we study the finite-sample behaviour of the two estimators A% k. ' (x, ) and
llzun(x y). As above, we consider two elliptical distributions with 0 =v =1, uy = uy =0,
G ~ Fréchet(a) in Figure 5 and G ~ Pareto(a) in Figure 6. We generate 1000 random
samples of size n=1000 from these elliptical distributions with (a, p) €
{(20, 0.9), (10, 0.6), (5, 0.3), (1, 0.1)}, and plot l?n(l 1) and /1 w(1, 1) against k=1,
5,10, ...,300 for different pairs (@, p) where the solid line corresponds to }.El L1, 1)
and glle dashed line to /l (1, 1). This simulation study also confirms the better performance
of A,



Tail dependence function of an elliptical distribution 241

s=11 §=15
5 e o - /A'I:Iu
l)\\‘?l:l g B /\k.n
(<8 (<o -~ A =0.413
S AL
5 A=0.122 g
0 50 100 150 200 250 300 0 50 100 150 200 250 300
k k
§=25 5=17
N R\ 8
) A= 0.68 am
& El i o
= A (<3 X=0896 _

0.55
0.85

|
\y

0 50 100 150 200 250 300 0 50 100 150 200 250 300
k k

Figure 7. Mean of estimators j.l,i”,,(l, 1) and /:L?n(l, 1) for 1000 samples of length » = 1000 and
different k£ with Fix y)(x, y) = Cs(Fx(x), Fy(y)), where Fy and Fy are Pareto(5) and Cs is the
Gumbel copula with parameter o.

Finally, we examine the robustness of the new estimator against the assumption of having
an elliptical distribution. Consider the random vector (X, Y) with distribution
Foxr(x, y) = Cs(Fx(x), Fy(y)), where the marginal distributions Fy and Fy are Pareto
(5) and Cy is the Gumbel copula, i.e. for O € [1, c0),

Cs(u, v) := exp(—((—=Inu)® + (=Inv)*)!/%), 0<u,v<l.

Then Fx y is not elliptic. As before, we generate 1000 random samples of size n = 1000
with ¢ € {1.1, 1.5, 2.5, 7}. Note that A(1, 1) =2 — 2!/° (see Theorem 4.12 of Joe 1997). In
Figure 7 we plot lk ,(1, 1) and /1 (1 1) against k=1, 5, 10, ..., 300 for the different 0,
where the solid line corresponds to AL kn(l 1) and the dashed hne to /ll,j‘;(l 1). We are not
surprised to notice that A x.n 18 sensitive to the assumptions of having an elliptical distribution.

4. Proofs

Proof of Theorem 1. Without loss of generality, we assume g = 0. Let @ ~ unif(—m, ) be
independent of G and let F; (x) denote the generalized inverse of Fy(x), i = 1, 2. Then, by
Theorem 4.3 of Hult and Lindskog (2002) and its proof,
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Fi(u) = %F;(u), for 0 < u <1,
lim, . (1 — Fi(tx))/(1 — Fi(¢)) = x~¢, forx>0andi=1,2,. (16)
(X, Y) 4 (0 G cos D, vG sin(arcsin p 4+ P))

Therefore, for x, y > 0
TIPH(Fy(X) > 1 — tx, Fy(Y) > 1—ty)

= t"'"Pr(Gcos ® > F3 (1 — tx)/v, Gsin(arcsinp + ®) > F5 (1 — ty)/v)

%2 1 .
LJ Pr(GBFY(l m,_Fyd- >d¢. (17)

27t ) aresing vcos¢p  wvsin(arcsinp + @)

Note that
t=Pr(X > Fy(1 — 1)) =Pr(Gcos® > F} (1 — £)/v)

1 ("2 Fy(1—
=— J Pr( G> ( )) )
21 J_qp vcos ¢
and that, for ¢ € (—m/2, m/2), we have 1= Pr(G > x/cos¢)/Pr(G > x) —=(cos ¢)*.
Hence, we can apply the dominated convergence theorem and obtain

-1

1 1 -0 J“/z ‘ 1
=—Pr(G>Fy, (1 - 1)/v)— cos)*d = . 18
B~ 2 PG> Py (= 0/0) ( eosordp )
Next, we obtain, for ¢ € (—arcsin p, 7/2),
Fy(1— tx) Fy(—1t) Fy(1—1t) s1n(arcsinp +¢)

vcos ¢ ) sin(arcsinp + ¢)  Fy (1 — tx) cos ¢

Note that sin(arcsin p + ¢)/cos ¢ is strictly increasing, hence its inverse exists and equals
arctan((- — p)/+/1 — p?). Therefore,
Frd—m_  Fy(l-u)

vcos ¢ v sin(arcsin p + @)

- FyAd—op)/Fyd—m)—p)  (Fy(-1n))
S 9= arctan< r \/lj—pz ) =: g(ﬁ) =: h(x, y, t).

Since 1 — Fy € R_g, b}g Proposition 1.7(9) of Geluk and de Haan (1987) we have
Fy(1—m)/Fy(1—0)=x1% ie.

h(x, . 0= g((/ ). (20)

It follows from (17) and (19) that

(19)
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TIPH(Fy(X) > 1 —ix, Fy(Y) > 1— 1)

. - Pr(G>F (1=t Fy (1— rx))
J a0

N veosgp Fy(l1-1)
Basy(D) Jne,yy PG> Fy (1 —1)/v)

Fy(—1)  F5(1—1y)
1 Jh(x,y,t) PI‘(G > vsin(a)rcsin p+¢) Fyy(lft))
+
Bgy (1)

. 21

vy PG> Fy(I—njn) 7 @D

Hence, the theorem follows from (18), (20) and Potter’s inequality; see (1.20) in Geluk and
de Haan (1987). O

Proof of Theorem 2. Since (X, Y) = (uX + 0Gcos D, uy + vGsin(®P + arcsin p)), we have
X2+ V22 G2 dy(®) + 2Gda (D) + 3 + u?. Define, for x >0 and 0 € (—n/2, 7/2),

di(¢)
Since Pr(X? + Y? > 12) = Pr(G > ds(¢, ®)) holds for large ¢, we obtain
Pr(X? + V2> %%
Pr(X2 + Y2 > 2)

_([F PG > di(tx, ¢)) T PG >dy(d) )\ .
- (J Pr(G > 1) d¢) (J Pr(G > 1) d¢) -

(" [Pr(G > ds(1x, ) (] —a
B {J_n | PG>0 <td3(tx, ¢)> }dqﬁ

PG> s ) o
*L BT ( s ¢)> ]d‘p

e e - T P (G>dy(t, P) )\
; Jﬂ_(;dsux,q») s (;dgo,(p)) ]dqs}(jn—mm) d¢)

Pr(G > ds(1, §))
Pr(G > 1) d¢’)

1
dy(x, §) == — ( o) + 1\ BP) — (@) i + i} x2>)

—a

=:(J1() + T2(0) + T3(1) <r

Since |p| < 1, it is straightforward to check that

lim 11 ds(1, ) = (di(¢)"%, 0< sup di(¢) <oo, and  sup |da(¢)| < oo.

—n<S¢=n —nsS¢p=n
(22)
Hence, similarly to the proof of Theorem 1,

Jﬂ Pr(G > di(1, $))
Pr(G > 1)

lim

t—o0o | _

a=[ @@y, @3
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By Lemma 5.2 of Draisma et al. (1999), for every ¢ > 0, there exists #, > 0 such that for all
t =1y, d3(x, ¢) = to,
Pr(G > ds(tx, ¢))
Pr(G > 1)

— (t7" da(x, ) -1 s
—1 —a (t d3(txa ¢)) —1
A0 — (1 d3(x, ¢)) 3

< e(1+ (7" ds(tx, §) ™% + (7" ds(tx, $))" P exp{e|In(r~" ds(x, p))|}). (24)

Using (22), for every fixed x > 0, we can choose 7, large enough such that ds(tx, ¢) = 1y
uniformly for ¢ € [—m, ]. That is, for every fixed x >0, (24) holds uniformly for
¢ € [—m, t]. Therefore, by the dominated convergence theorem and (23), for x > 0,

Jun _ 1 8 @p)2 _ a2
Jim =g j (P (d(9) (di(9)*/*)do (25)
and
Jao() 1 @p)2 _ /2
Jim =g J,n((d @) (i (@) )d. 26)
It follows from (22) and a Taylor expansion, for x > 0, that
T =t lax ! - 1)J (d\(@)** P dy(p)dgp + (1) 27)
S 1)J (@) [aldo @) + dr(@) e + 1)]d.
Recall that sin(¢ + arcsinp) = pcos¢ + /1 — p?sin¢g. Then, splitting the integral into
integrals over [ —n/2), [-m/2, 0), [0, 7t/2), [/2, 7] and using the symmetry of sine and

cosine, we obtam
| @@y —o (28)

Hence (3) follows from (25)—(28). Note that

i POVAZ Y2 > 1)

—00 Pr(G > 1)

~| @@y

and, since ¥ < uy + vGsin ® with ® ~ unif(—, ),

Pr(Y > 1)

AR PG> 1) L (sin )" dg.

Therefore, we have, as t — oo,

V(t)—lnf{y Pr(G>y)J (di(@)**dp =<~ }(1+0(1))
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and
Fy(l— = inf{y 1 Pr(G > yo* r(simj))“ dp < ¢! }(1 + o(1)).
0

Hence,

0 (f‘n(dl(qs))a/z d¢> e

li =
Py Fy(l—+¢h v jg‘(sin ¢)*do

i.e. since 2|A(1)] == oo for —2 < <0,

i 20 = 2 AP = )] (P 2ag) =
o V(@) + |4 ()] v* [ (sin ) dep

Note that, by Taylor expansion,
V(t.x) _ai 1 7171/(1 V(tx) l/a V(tx) l/OL
< V(t)) =3 ax 70 X +o0 70 X . (30)

Therefore, replacing ¢ and x in (3) by V(¢) and V(tx)/V(t), respectively, and using (29) and
(30), we obtain (4). Let uy = uy = 0; then J3(f) = 0 and we obtain (5). (I

Proof of Theorem 3. For the purposes of this proof, we can assume uyx = uy = 0 since
A(x, y) is independent of margins. We also set v = 1 and give the correction at the end of the
proof. Using (16) we can also, equivalently, write y< Gsin®, where @ ~ unif(—um, ) is
independent of G. Then write

Pr(Y >m) [y PG> ux/sing)dp
P(Y >0 [TPHG > t/sing)dg

B ”Pr(G>t/sin¢)d “[FIPH(G > 1x/sin ¢) x \ ¢
([ "re 5 e) U e en” (ag) |

_o [P(G > t/sin ) 1\
- { PG>0 (sinqb) ]d‘b}'

Then, by (1), we have, for x > 0,
. 1 (Pr(Y > tx) —a
lim —(————x
t—oo A(t) \ Pr(Y > 1)

B _ 7 -1 s
—x? 5 ! (L (sin )" d¢> (L (sin ¢)“5d¢).

Replacing ¢ and x in the latter equation by Fy (1 —s) and Fy(1—sy)/Fy(l—ys),
respectively, we obtain, for y > 0,

—a
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. 1 Fy( —sp)\ ¢ B
I AFT = 5) (( (i~ s)> - ) = Bo0- Gh

Denote f(#) := Fy (1 — ). Then, by (21), we can write

tTIPr(Fy(X) > 1 — tx, Fy(Y) > 1— 1)

_ ! r/z PG > ég(st; J}((tg)) - < S (1) )a do
Bagy(®) | Jayn| Pr(G > f(1)) F(t)cos ¢
/2 flx) 7" 5, ,0)
- - 7 _ a d ad
e Kf(t)cos ¢> x(cosg) } o+ | oy SOV AP

h(x, y,t)

(32)

Pr(G > sz 1) ( J(®) ) d
Pr(G > f(1)) f(#)sin(arcsin p + ¢)

J —arcsin p

h(x,y,t) —a
i i K f() Sinéfg?ﬂ p+ ¢)> —(sin(arcsinp + ¢))“} dep
—arcsin p

h(x,y,t) /2

+ Y(sin(arcsin p + ¢))*d¢ + J x(cos ¢)* dop
J h(x,,0) h(x,y,0)

h(x,y,0)

6
+ y(sin(arcsin p + ¢))* d¢} =: ! <Z Ji(H+T7+ Jg) )
=1

—arcsin p B(IS)(t)
Note that 1/|cos¢| = 1 for ¢ € (—m/2, m/2) and v is given. Using Potter’s inequality — see

(1.20) in Geluk and de Haan (1987) and Lemma 5.2 of Draisma ef al. (1999) — for every ¢ >0,
there exists some small 7 >0 such that for all f(7) = f(#), f(tx)= f(t) and

x 23 - & p
Pr(G > £09) /Pe(G > 1) - (hy) ( (%) >“ (=) —1’
A(f(2)) f(t)cos ¢ B

< flx) 7 f(x) —ath F(tx)
”(”QW) (ineos) p{lmm o

and for all ¢ <ty and & < 1,

S ()

(1 —e)x Y exp{—e[lnx|} < @ < (1 +&)x Y*exp{e[lnx|}. (34)

Since f(t) = ty and t < ¢( imply that f(#x) = #, and &x < #; for all 0 < x < 1, respectively,
by (33), (34), (20) and dominated convergence, we have
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[x#/*(cos $)* 7 — (cos ¢)*1dg (35)

lim =
=0 A(f(0) B
for all x, y = 0 and uniformly on S;. Similarly,
L Tu) _y J“x’y"”
lim ==
=0 A(f(1) B
for all x, y = 0 and uniformly on Sj.

Using (31) and Lemma 5.2 of Draisma et al. (1999), for every € > 0, there exists #) > 0
such that for all # < ¢y and tx < 1y,

‘(F;(l —)/Fy(1— 1) —x
A(Fy (1= 5)

Ji)  x J“/Z

h(x,y,0)

[y~/%(sin(¢ + arcsin p))* ™ — (sin(¢ + arcsin p))*]dg (36)

—arcsin p

— Bey(¥)| < &(Cy 4 Cox + Cyx!Ploednsy - (37)

where the constants C; > 0, C; > 0, C3 > 0 are independent of x and z. Hence, it follows
from (20) and (37) that

jZ(t) _ /2 a
%E%WB<6>(’”JW(°°S Py 9
and
¢ hxy0) '
EI—I}?) % B 8(6)(y)Jfarcsin p(SIH((p + aresin p))a d(p (39)

for all x, y = 0 and uniformly on Sj.
Note that

s (52)")
A () \\f () x
() )28 () )
A @) x \\S(D) x \f(#) 1)

1—0 1 y
— Be)(y) — 2 Bi)(x).

Apply Potter’s bound and Lemma 5.2 of Draisma et al. (1999) to both

1 1 f(ty) ¢ 1
A7) * ((f(t)) Y ) ~3PeW)

L L\ (fa\ ™ ¥
A1) x <f(tx)) ((f(1)> x> — 2 Bo®-

For every & > 0, there exists fyp > 0 such that for all # < ¢y, tx < ty, ty < t,,

and
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L ((fm) "y 1 ’
‘ A7) ((f(bc)) B ;) —1Bo +5Be®

1
< ;e(Cl + Coy + Csy!Plagenoly
1
+ . (%)(Cl + Cox + C3x' P/ % exp{e|nx|)}
1
= (2)explelin(:/x|}(C1 + Cox + Cox' P expiefinx)), (40)

where constants C; > 0, C; > 0, C; > 0 are independent of ¢, x, y. Using (40),

limsup|g'(z~"/*)z%%| < o0,

z—0

limsup|g'(z~"/*)| < oo,

Z—00

lim sup[sin(g(z~'/*) + arcsin p)]%z > oo,

Z—00

and, by a Taylor expansion of g(z~'/%), we can show that

Ts(0) 1 a((x/ M)
lim — lim J
=0 A(f(0) =0 AUS(D) J s/ 1)

[N A7) o2

x(cos @)* d¢p 41)

and

Js(1) 1 g(f ()] f(tx))
lim = lim J
=0 A(f(1)) =0 A(f(1)) 2/ )/

— 2 |sin g <x>1/“ + arcsin p ag' (x)l/u (B(é)(y)_B(@(x)> (x)l/a
a ¥y y y X y

for all x, y = 0 and uniformly on S . Since

y(sin(¢ + arcsin p))*de} (42)

x[cos(g((x/»)"/*N]* = ylsin(g((x/»)"/*) + arcsin p)]*, (43)

we obtain lim,o(J3(2) + JTs(1)/A(f (1)) = 0.
By Theorem 1, A(x, y) = (J7 + Js)/Bas), hence
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G A(f(t)) (B(lg)(t) (J7+ Ts) = M, y))
— lim — Ax, y)
REFT0) (_ Bus () P9~ Bag)))

1 /2 /2 -1
~ i )5 (j (cos ) ((cos $) — 1)d¢>> (J (cos §)° d¢> R
—/2

which obviously holds uniformly on S5 since sup s A(x, y) < co. Note that

AFy(L=0) =0 4

A(F5y(1— 1) (45)

Hence, the theorem follows from (35), (36), (38), (39), (41), (42), (44) and (45). O

Proof of Theorem 4. Similar to the proof of Theorem 2 in Chapter 2 of Huang (1992) with
bias taken into account, we have, as n — oo,

sup |V hkux + vy — A8 L 9) = 16, 9} = KBy (x, ») = B(x, »)| = 0,(1),

O=x,y<T

where

B(x, y) = W(x, y) = (1 - gi(x, y)> W(x, 0) — (1 - 62/1(% y)) W, y),
X y

and W(x, y) is a Wiener process with zero mean and covariance structure
E(W (x1, yi)W(x2, y2)) = 1(x1 Axa, y1) + 10x1 Axa, y2) + 1(x1, yi A )
+ 102, yi A y2) = U(x1, y2) = 102, y1) = I(xy A Xz, yi A y2).
Hence (9) follows from A(x, y) = x + y — I(x, ). It is straightforward to check that (10),

(11) and (12) hold. Note that the result can also be obtained from Theorem 5 of Schmidt and
Stadtmiiller (2006) by taking the bias into account. O

Proof of Theorem 5. The result follows directly from

. d
V(@ , — @) — N(=*KaBa), o)

as n — oo (see Theorem 1 of de Haan and Peng 1998), 7, — 7 = op(kg,l/z) and the delta
method for the expression of A(x, y) given in Theorem 1. O
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