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In this paper a new class of generalized backward doubly stochastic differential equations is investigated.
This class involves an integral with respect to an adapted continuous increasing process. A probabilistic
representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann
boundary condition is given.
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1. Introduction

Backward stochastic differential equations (BSDEs) were introduced by Pardoux and Peng [6],
and it was shown in various papers that stochastic differential equations (SDEs) of this type give
a probabilistic representation for the solution (at least in the viscosity sense) of a large class of
system of semi-linear parabolic partial differential equations (PDEs). A new class of BSDEs,
called backward doubly stochastic (BDSDEs), was considered by Pardoux and Peng [7]. This
new kind of BSDEs seems to be suitable giving a probabilistic representation for a system of
parabolic stochastic partial differential equations (SPDEs). We refer to Pardoux and Peng [7] for
the link between SPDEs and BDSDEs in the particular case where solutions of SPDEs are regu-
lar. The more general situation is much more delicate to treat because of difficulties of extending
the notion of stochastic viscosity solutions to SPDEs.

The notion of viscosity solution for PDEs was introduced by Crandall and Lions [3] for certain
first-order Hamilton–Jacobi equations. Today the theory has become an important tool in many
applied fields, especially in optimal control theory and numerous subjects related to it.

The stochastic viscosity solution for semi-linear SPDEs was introduced for the first time in
Lions and Souganidis [4]. They use the so-called ‘stochastic characteristics’ to remove the sto-
chastic integrals from an SPDE. Another way of defining a stochastic viscosity solution of SPDEs
is via an appeal to the Doss–Sussman transformation. Buckdahn and Ma [2] were the first to use
this approach in order to connect the stochastic viscosity solution of SPDEs with BDSDEs. The
aim of this paper is to refer to the technique of Buckdahn and Ma [2] to establish the existence
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result for semi-linear SPDE with Neumann boundary condition of the form:


du(t, x) + [
Lu(t, x) + f

(
t, x, u(t, x), σ ∗(x)∇u(t, x)

)]
dt

+
d∑

i=1

gi(t, x,u(t, x))
←−
dBi

t = 0, (t, x) ∈ [0, T ] × G,

u(T , x) = l(x), x ∈ R
d ,

∂u

∂n
(t, x) + h(t, x,u(t, x)) = 0, x ∈ ∂G.

Here B is a standard Brownian motion, L is an infinitesimal generator of some diffusion, G is a
connected bounded domain, and f , g, l and h are some measurable functions. More precisely,
we give some direct links between the stochastic viscosity solution of the above SPDE and the
solution of the following generalized BDSDE:

Yt = ξ +
∫ T

t

f (s, Ys,Zs)ds +
∫ T

t

h(s, Ys)dks +
∫ T

t

g(s, Ys,Zs)
←−
dBs

−
∫ T

t

Zs dWs, 0 ≤ t ≤ T ,

where ξ is the terminal value and k is a real-valued increasing process. Note that our work can
be considered as a generalization of the results obtained by Pardoux and Zhang [8], where the
authors treat deterministic PDEs with nonlinear Neumann boundary conditions. In light of the
approximation result of Boufoussi and Van Casteren [1] for PDEs, a motivation for establishing
a connection between SPDEs and BDSDEs is to give a similar (approximation) result for a semi-
linear SPDE with a Neumann boundary condition.

The present paper is organized as follows. An existence and uniqueness result for solutions
to generalized BDSDEs is shown in Section 2. In Section 3 we introduce the Doss–Sussman
transformation which allows us to give a definition of a stochastic viscosity solution to our SPDE.
The existence for such a solution via a corresponding BDSDE is given in Section 4.

2. Generalized backward doubly stochastic differential
equations

2.1. Notation and assumptions

Let T be a fixed final time. Throughout this paper {Wt, 0 ≤ t ≤ T } and {Bt , 0 ≤ t ≤ T } will
denote two independent d-dimensional Brownian motions (d ≥ 1), defined on the complete prob-
ability spaces (�1,F1,P1) and (�2,F2,P2), respectively. For any process (Us : 0 ≤ s ≤ T ) de-
fined on (�i,Fi ,Pi ) (i = 1,2), we write FU

s,t := σ {Ur − Us, s ≤ r ≤ t} and FU
t := FU

0,t . Unless
otherwise specified, we consider:

� � �1 × �2, F � F1 ⊗F2, P � P1 ⊗ P2.
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In addition, we put

Ft � FW
t ⊗FB

t,T ∨N ,

where N is the collection of P-null sets. In other words, the σ -fields Ft , 0 ≤ t ≤ T , are P-
complete. We notice that the family of σ -algebras F = {Ft }0≤t≤T is neither increasing nor de-
creasing; in particular, it is not a filtration. Random variables ζ(ω), ω ∈ �1, and η(ω′), ω′ ∈ �2,
are considered as random variables on � via the following identification:

ζ(ω,ω′) = ζ(ω), η(ω,ω′) = η(ω′).

Let {kt , 0 ≤ t ≤ T } be a continuous, increasing and Ft -adapted real-valued process such that
k0 = 0. For any n ≥ 1, we consider the following spaces of processes:

1. The Banach space M2(F, [0, T ];R
n) of all equivalence classes (with respect to the mea-

sure dP × dt) where each equivalence class contains an n-dimensional jointly measurable
random process {ϕt , t ∈ [0, T ]} which satisfies:
(i) E

∫ T

0 |ϕt |2 dt < ∞;
(ii) ϕt is Ft -measurable, for dt-almost all t ∈ [0, T ]. Usually an equivalence class will be

identified with (one of) its members.
2. The Banach space K2(F, [0, T ];R

n) of all (equivalence classes of) n-dimensional jointly
measurable random processes {ϕt , t ∈ [0, T ]} which satisfy:

(i) E
∫ T

0 |ϕt |2 dkt < ∞;
(ii) ϕt is Ft -measurable, for almost all t ∈ [0, T ].

Here equivalence is taken with respect to the measure dP × dkt .
3. The set S2(F, [0, T ];R

n) of continuous n-dimensional random processes which satisfy:
(i) E sup0≤t≤T |ϕt |2 < ∞;
(ii) ϕt is Ft -measurable, for almost all t ∈ [0, T ].

We consider coefficients f , g and h with the following properties:

f :� × [0, T ] × R
n × R

n×d −→ R
n,

g :� × [0, T ] × R
n × R

n×d −→ R
n×d ,

h :� × [0, T ] × R
n −→ R

n,

such that there exist Ft -adapted processes {ft , gt , ht : 0 ≤ t ≤ T } with values in [1,+∞) and
with the property that for any (t, y, z) ∈ [0, T ]×R

n ×R
n×d , and µ > 0, the following hypotheses

are satisfied for some strictly positive finite constant K :

(H1)




f (t, y, z), g(t, y, z) and h(t, y) are Ft -measurable processes,
|f (t, y, z)| ≤ ft + K(|y| + ‖z‖),
|g(t, y, z)| ≤ gt + K(|y| + ‖z‖),
|h(t, y)| ≤ ht + K|y|,
E

(∫ T

0
eµkt f 2

t dt +
∫ T

0
eµkt g2

t dt +
∫ T

0
eµkt h2

t dkt

)
< ∞.
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Moreover, we assume that there exist constants c > 0, β1 > 0 and 0 < α < 1 such that for any
(y1, z1), (y2, z2) ∈ R

n × R
n×d ,

(H2)




(i) |f (t, y1, z1) − f (t, y2, z2)|2 ≤ c(|y1 − y2|2 + ‖z1 − z2‖2),
(ii) |g(t, y1, z1) − g(t, y2, z2)|2 ≤ c|y1 − y2|2 + α‖z1 − z2‖2,

(iii) |h(t, y1) − h(t, y2)| ≤ β1|y1 − y2|.
Throughout this paper, 〈·, ·〉 will denote the scalar product on R

n, i.e. 〈x, y〉 := ∑n
i=1 xiyi , for

all (x, y) ∈ R
n × R

n. Sometimes, we will also use the notation x�y to designate 〈x, y〉.
Finally, C will always denote a finite constant whose value may change from one line to the

next, and which usually is (strictly) positive.

2.2. Existence and uniqueness theorem

Suppose that we are given a terminal condition ξ ∈ L2(�,FT ,P) such that, for all µ > 0,

E(eµkT |ξ |2) < ∞.

Definition 2.1. By definition, a solution to a generalized BDSDE (ξ, f, g,h, k) is a pair (Y,Z) ∈
S2(F, [0, T ];R

n) ×M2(F, [0, T ];R
n×d), such that, for any 0 ≤ t ≤ T ,

Yt = ξ +
∫ T

t

f (s, Ys,Zs)ds +
∫ T

t

h(s, Ys)dks +
∫ T

t

g(s, Ys,Zs)
←−
dBs −

∫ T

t

Zs dWs. (1)

Here
←−
dBs denotes the classical backward Itô integral with respect to the Brownian motion B .

Remark 2.1. If h satisfies (H2)(iii) then, by changing the solutions and the coefficients f , g and
h, we may and do suppose that h satisfies a stronger condition of the form

(iv) 〈y1 − y2, h(t, y1) − h(t, y2)〉 ≤ β2|y1 − y2|2, where β2 < 0.

Indeed, (Yt ,Zt ) solves the generalized BDSDE in (1) if and only if for every (some) η > 0
the pair (Y t ,Zt ) = (eηkt Yt , eηkt Zt ) solves an analogous generalized BDSDE, with f , g and h

replaced respectively by

f (t, y, z) = eηkt f (t, e−ηkt y, e−ηkt z);
g(t, y, z) = eηkt g(t, e−ηkt y, e−ηkt z);

h(t, y) = eηkt h(t, e−ηkt y) − ηy.

Then we can always choose η such that the function h satisfies (iv) with a strictly negative β2.

Our main goal in this section is to prove the following theorem.

Theorem 2.1. Under the above hypotheses (H1) and (H2) there exists a unique solution for the
generalized BDSDE in (1).



Generalized backward doubly stochastic differential equations 427

We will follow the same line of arguments as Pardoux and Peng [7] did. So let us first establish
the result in Theorem 2.1 for BDSDEs where the coefficients f , g and h do not depend on (y, z).
More precisely, let f , h :�×[0, T ] → R

n and g :�×[0, T ] → R
n×d satisfy (H1), and let ξ and

k be as before. Consider the equation:

Yt = ξ +
∫ T

t

f (s)ds +
∫ T

t

h(s)dks +
∫ T

t

g(s)
←−
dBs −

∫ T

t

Zs dWs. (2)

Then we have the following result.

Theorem 2.2. Under hypothesis (H1), there exists a unique solution to equation (2).

Proof. To show the existence, we consider the filtration Gt = FW
t ⊗FB

T and the martingale

Mt = E

[
ξ +

∫ T

0
f (s)ds +

∫ T

0
h(s)dks +

∫ T

0
g(s)

←−
dBs/Gt

]
, (3)

which is clearly a square integrable martingale by (H1). As in Pardoux and Peng [7], an extension
of Itô’s martingale representation theorem yields the existence of a Gt -progressively measurable
process (Zt ) with values in R

n×d such that

E

∫ T

0
‖Zt‖2 dt < ∞ and MT = Mt +

∫ T

t

Zs dWs. (4)

We subtract the quantity
∫ t

0 f (s)ds + ∫ t

0 h(s)dks + ∫ t

0 g(s)
←−
dBs from both sides of the martingale

in (3) and employ the martingale representation in (4) to obtain

Yt = ξ +
∫ T

t

f (s)ds +
∫ T

t

h(s)dks +
∫ T

t

g(s)
←−
dBs −

∫ T

t

Zs dWs,

where

Yt = E

[
ξ +

∫ T

t

f (s)ds +
∫ T

t

h(s)dks +
∫ T

t

g(s)
←−
dBs/Gt

]
.

It remains to prove the uniqueness and to show that Yt and Zt are Ft -measurable; the proof is
analogous to that of Pardoux and Peng [7]: see Proposition 1.3, and is therefore omitted. �

We will also need the following generalized Itô formula. In the proof we use arguments which
are similar to those used by Pardoux and Peng in [7].

Lemma 2.3. Let α ∈ S2(F, [0, T ];R
n), β ∈ M2(F, [0, T ];R

n), γ ∈ M2(F, [0, T ];R
n×d), θ ∈

K2(F, [0, T ];R
n) and δ ∈ M2(F, [0, T ]; R

n×d) be such that

αt = α0 +
∫ t

0
βs ds +

∫ t

0
θs dks +

∫ t

0
γs

←−
dBs +

∫ t

0
δs dWs.
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Then, for any function φ ∈ C2(Rn,R),

φ(αt ) = φ(α0) +
∫ t

0
〈∇φ(αs), βs〉ds +

∫ t

0
〈∇φ(αs), θs〉dks +

∫ t

0

〈∇φ(αs), γs
←−
dBs

〉

+
∫ t

0
〈∇φ(αs), δs dWs〉 − 1

2

∫ t

0
tr[φ′′(αs)γsγ

∗
s ]ds + 1

2

∫ t

0
Tr[φ′′(αs)δsδ

∗
s ]ds.

In particular,

|α|2t = |α0|2 + 2
∫ t

0
〈αs,βs〉ds + 2

∫ t

0
〈αs, θs〉dks + 2

∫ t

0

〈
αs, γs

←−
dBs

〉

+ 2
∫ t

0
〈αs, δs dWs〉 −

∫ t

0
‖γs‖2 ds +

∫ t

0
‖δs‖2 ds.

Next, we establish an a priori estimate for the solution of the BSDE in (1).

Proposition 2.4. Let the conditions (H1) and (H2) be satisfied. If {(Yt ,Zt );0 ≤ t ≤ T } is a
solution of BDSDE (1), then there exists a finite constant C, which depends on K , T and β2,
such that for all µ ∈ R and λ > 0 the following inequality holds:

E

(
sup

0≤t≤T

eµt+λkt |Yt |2 +
∫ T

0
eµt+λkt |Yt |2 dkt +

∫ T

0
eµt+λkt ‖Zt‖2 dt

)

≤ CE

(
eµT +λkT |ξ |2 +

∫ T

0
eµt+λkt |ft |2 dt +

∫ T

0
eµt+λkt |ht |2 dkt +

∫ T

0
eµt+λkt |gt |2 dt

)
.

Proof. Classical arguments, such as Doob’s inequality, justify the fact that the processes∫ t

0 eµs+λks 〈Ys, g(s, Ys,Zs)
←−
dBs〉 and

∫ t

0 eµs+λks 〈Ys,Zs dWs〉 are uniformly integrable martin-
gales. By Lemma 2.3 we then have

E

[
eµt+λkt |Yt |2 +

∫ T

t

eµs+λks ‖Zs‖2 ds + λ

∫ T

t

eµs+λks |Ys |2 dks

]

≤ E

[
eµT +λkT |ξ |2 + 2

∫ T

t

eµs+λks 〈Ys, f (s, Ys,Zs)〉ds

+ 2
∫ T

t

eµs+λks 〈Ys,h(s, Ys)〉dks +
∫ T

t

eµs+λks |g(s,Ys,Zs)|2 ds

− µ

∫ T

t

eµs+λks |Ys |2 ds

]
. (5)

But from (H1), (H2) and the fact that

2ab ≤ 1 − α

2c
a2 + 2c

1 − α
b2, c > 0,
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it follows that there exists a constant c(α) such that

2〈y,f (s, y, z)〉 ≤ c|fs |2 + c(α)|y|2 + 1 − α

2
‖z‖2, (6)

2〈y,h(s, y)〉 ≤ 2β2|y|2 + |y| × |hs | ≤ (2β2 + |β2|)|y|2 + 1

|β2|h
2
s , (7)

‖g(s, y, z)‖2 ≤ c|y|2 + α‖z‖2 + (1 + ε)g2
s + c

ε
|y|2 + α

ε
‖z‖2. (8)

Inserting ε = 3α/(1 − α) into (8) replaces the latter inequality by

‖g(s, y, z)‖2 ≤ c′(α)|y|2 +
(

α + 1 − α

3

)
‖z‖2 + 1 + 2α

1 − α
g2

s .

Consequently, by (5) we obtain for the same constant c(α) the inequality

E

(
eµt+λkt |Yt |2 + (λ + |β2|)

∫ T

t

eµs+λks |Ys |2 dks + 1 − α

6

∫ T

t

eµs+λks ‖Zs‖2 ds

)

≤ E

(
eµT +λkT |ξ2| + (c(α) − µ)

∫ T

t

eµs+λks |Ys |2 ds + c

∫ T

t

eµs+λks |fs |2 ds

+ 1

c

∫ T

t

eµs+λks |hs |2 dks + 1 + 2α

1 − α

∫ T

t

eµs+λks |gs |2 ds

)
.

Then, from Gronwall’s lemma we obtain

sup
0≤t≤T

E

(
eµt+λkt |Yt |2 +

∫ T

0
eµs+λks |Ys |2 dks +

∫ T

0
eµs+λks ‖Zs‖2 ds

)

≤ CE

(
eµT +λkT |ξ2| +

∫ T

0
eµs+λks |fs |2 ds

+
∫ T

0
eµs+λks |hs |2 dks +

∫ T

0
eµs+λks |gs |2 ds

)
. (9)

Finally, Proposition 2.4 follows from the Burkholder–Davis–Gundy inequality and (9). �

Next, let (ξ, f, g,h, k) and (ξ ′, f ′, g′, h′, k′) be two sets of data, each satisfying conditions
(H1) and (H2). Then we have the following result:

Proposition 2.5. Let (Y,Z) (or (Y ′,Z′)) denote a solution of the BDSDE(ξ, f, g,h, k) (or
BDSDE(ξ ′, f ′, g′, h′, k′)). With the notation

(Y ,Z, ξ, f , g,h, k) = (Y − Y ′,Z − Z′, ξ − ξ ′, f − f ′, g − g′, h − h′, k − k′),
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it follows that for every µ > 0, there exists a constant C > 0 such that

E

(
sup

0≤t≤T

eµAt |Y t |2 +
∫ T

0
eµAt ‖Zt‖2 dt

)

≤ CE

(
eµAT |ξ |2 +

∫ T

0
eµAt |f (t, Yt ,Zt ) − f ′(t, Yt ,Zt )|2 dt +

∫ T

0
eµAt |h(t, Yt )|2 d|k|t

+
∫ T

0
eµAt |h(t, Yt ) − h′(t, Yt )|2 dk′

t +
∫ T

0
eµAt ‖g(t, Yt ,Zt ) − g′(t, Yt ,Zt )‖2 dt

)
.

Here At � |k|t + k′
t and |k|t is the total variation of the process k.

Proof. The proof follows the same ideas and arguments as in Pardoux and Zhang [8], Proposition
1.2, so we just repeat the main steps. From Lemma 2.3 we obtain

eµAt |Y t |2 +
∫ T

t

eµAs ‖Zs‖2 ds + µ

∫ T

t

eµAs |Y s |2 dAs

= eµAT |ξ |2 + 2
∫ T

t

eµAs 〈Y s, f (s, Ys,Zs) − f ′(s, Y ′
s ,Z

′
s)〉ds + 2

∫ T

t

eµAs 〈Y s,h(s, Ys)〉dks

+ 2
∫ T

t

eµAs 〈Y s,h(s, Ys) − h′(s, Y ′
s )〉dk′

s +
∫ T

t

eµAs ‖g(s,Ys,Zs) − g′(s, Y ′
s ,Z

′
s)‖2 ds

+ 2
∫ T

t

eµAs 〈Y s, g(s, Ys,Zs) − g′(s, Y ′
s ,Z

′
s)〉←−

dBs − 2
∫ T

t

eµAs 〈Y s,Zs dWs〉. (10)

Using conditions (H1), (H2), and the algebraic inequality 2ab ≤ a2/ε + εb2, then from (10) we
obtain

E

(
eµAt |Y t |2 +

∫ T

t

eµAs ‖Zs‖2 ds + µ

∫ T

t

eµAs |Y s |2 dAs

)

≤ E

(
eµAT |ξ |2 + C(α)

∫ T

t

eµAs |Y s |2 ds +
∫ T

t

eµAs |f (s,Ys,Zs)|2 ds

+ 1

ε

∫ T

t

eµAs |h(s,Ys)|2 dk′
s +

∫ T

t

eµAs ‖g(s,Ys,Zs)‖2 ds

+ 1

µ

∫ T

t

eµAs |h(s,Ys)|2 d|k|s

+ µ

∫ T

t

eµAs |Y s |2 d|k|s + (2β2 + ε)

∫ T

t

eµAs |Y s |2 dk′
s

)
. (11)
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By choosing ε = µ + 2|β2|, and using Gronwall’s lemma, from (11) we infer that

E

(
eµAt |Y t |2 +

∫ T

0
eµAt ‖Zt‖2 dt

)

≤ C(α,µ)E

(
eµAT |ξ |2 +

∫ T

0
eµAs |f (s,Ys,Zs)|2 ds

+
∫ T

0
eµAs ‖g(s,Ys,Zs)‖2 ds

+
∫ T

0
eµAs |h(s,Ys)|2 d|k|s +

∫ T

0
eµAs |h(s,Ys)|2 dk′

s

)
. (12)

The proposition follows from (12) and the Burkholder–Davis–Gundy inequality. �

Remark 2.2. If we denote by E
Ft the conditional expectation with respect to Ft , then we can

show that for every µ,λ > 0, there exists a constant C > 0 such that ∀t ∈ [0, T ]

eµAt+λt |Y t |2 = E
Ft

(
eµAt+λt |Y t |2

)
≤ CE

Ft

(
eµAT +λT |ξ |2 +

∫ T

0
eµAs+λs |f (s,Ys,Zs)|2 ds

+
∫ T

0
eµAs+λs |h(s,Ys)|2 dk′

s

+
∫ T

0
eµAs+λs |h(s,Ys)|2 d|k|s

+
∫ T

0
eµAs+λs‖g(s,Ys,Zs)‖2 ds

)
, P-almost surely.

Proof of Theorem 2.1. The uniqueness is a consequence of Proposition 2.5. We now turn to
the existence. In the space S2(F, [0, T ];R

n) × M2(F, [0, T ];R
n) we define by recursion the

sequence {(Y i
t ,Z

i
t )}i=0,1,2,... as follows. Put Y 0

t = 0, Z0
t = 0. Given the pair (Y i

t ,Z
i
t ), we define

f i+1(s) = f (s,Y i
s ,Z

i
s), hi+1(s) = h(s,Y i

s ) and gi+1(s) = g(s,Y i
s ,Z

i
s). Now, applying (H1), we

obtain

|hi+1(s)| ≤ hs + K|Y i
s | � hi+1

s ,

and by using Proposition 2.4, we obtain

E

∫ T

0
eµks (hi+1

s )2 dks ≤ CE

(∫ T

0
eµks h2

s dks +
∫ T

0
eµks |Y i

s |2 dks

)
< ∞.
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By the same arguments one can show that f i+1 and gi+1 also satisfy (H1). Using Theorem 2.2,
we consider the process {(Y i+1

t ,Zi+1
t )} as being the unique solution to the equation

Y i+1
t = ξ +

∫ T

t

f (s, Y i
s ,Z

i
s)ds +

∫ T

t

h(s, Y i
s )dks

+
∫ T

t

g(s, Y i
s ,Z

i
s)

←−
dBs −

∫ T

t

Zi+1
s dWs. (13)

We will show that the sequence {(Y i
t ,Z

i
t )} converges in the space S2(F, [0,

T ];R
n) ×M2(F, [0, T ];R

n) to a pair of processes (Yt ,Zt ) which will be our solution. Indeed,
let

Y
i+1
t � Y i+1

t − Y i
t , Z

i+1
t � Zi+1

t − Zi
t .

Let µ > 0, λ > 0. Using Itô’s formula, we obtain

eµt+λkt |Y i+1
t |2 +

∫ T

t

eµs+λks ‖Zi+1
s ‖2 ds

= 2
∫ T

t

eµs+λks
〈
Y

i+1
s , f (s, Y i

s ,Z
i
s) − f (s,Y i−1

s ,Zi−1
s )

〉
ds − µ

∫ T

t

eµs+λks |Y i+1
s |2 ds

+ 2
∫ T

t

eµs+λks
〈
Y

i+1
s , h(s, Y i

s ) − h(s,Y i−1
s )

〉
dks − µ

∫ T

t

eµs+λks |Y i+1
s |2 dks

+
∫ T

t

eµs+λks ‖g(s,Y i
s ,Z

i
s) − g(s,Y i−1

s ,Zi−1
s )‖2 ds − 2

∫ T

t

eµs+λks
〈
Y

i+1
s ,Z

i+1
s

〉←−
dBs

+ 2
∫ T

t

eµs+λks
〈
Y

i+1
s , (g(s, Y i

s ,Z
i
s) − g(s,Y i−1

s ,Zi−1
s ))dWs

〉
.

Taking the expectation, we get

Eeµt+λkt |Y i+1
t |2 + E

∫ T

t

eµs+λks ‖Zi+1
s ‖2 ds

= 2E

∫ T

t

eµs+λks
〈
Y

i+1
s , f (s, Y i

s ,Z
i
s) − f (s,Y i−1

s ,Zi−1
s )

〉
ds

+ 2E

∫ T

t

eµs+λks
〈
Y

i+1
s , h(s, Y i

s ) − h(s,Y i−1
s )

〉
dks − µE

∫ T

t

eµs+λks |Y i+1
s |2 dks

+ E

∫ T

t

eµs+λks ‖g(s,Y i
s ,Z

i
s) − g(s,Y i−1

s ,Zi−1
s )‖2 ds − µE

∫ T

t

eµs+λks |Y i+1
s |2 ds.
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With the same arguments as in the proof of Proposition 2.5, one can show that there exist con-
stants c1(α), c2(α), and c > 0 such that

Eeµt+λkt |Y i+1
t |2 + E

∫ T

t

eµs+λks ‖Zi+1
s ‖2 ds

+ E

∫ T

t

eµs+λks
(
(µ − c1(α))|Y i+1

s |2 ds + (λ − c2(α))|Y i+1
s |2 dks

)

≤ 1 + α

2

(
cE

∫ T

t

eµs+λks |Y i

s |2 ds + cE

∫ T

t

eµs+λks |Y i

s |2 dks + E

∫ T

t

eµs+λks ‖Zi

s‖2 ds

)
.

Next, we choose µ and λ in such a way that µ − c1(α) = c and λ − c2(α) = c to obtain

Eeµt+λkt |Y i+1
t |2 + E

∫ T

t

eµs+λks ‖Zi+1
s ‖2 ds

+ cE

∫ T

t

eµs+λks |Y i+1
s |2 dks + cE

∫ T

t

eµs+λks |Y i+1
s |2 ds

≤
(

1 + α

2

)i[
cE

∫ T

t

eµs+λks |Y 1
s |2 ds + cE

∫ T

t

eµs+λks |Y 1
s |2 dks + E

∫ T

t

eµs+λks ‖Z1
s‖2 ds

]
.

Since (1 + α)/2 < 1, then {(Y i
t ,Z

i
t )}i=1,... is a Cauchy sequence in the space

L2(F, [0, T ];R
n) ×M2(F, [0, T ];R

n×d).

From the Burkholder–Davis–Gundy inequality it follows that the sequence (Y i
t ) is also a Cauchy

sequence in the space S2(F, [0, T ];R
n). By completeness its limit (Yt ,Zt ) = limi→∞(Y i

t ,Z
i
t )

exists in the space S2(F, [0, T ];R
n)×M2(F, [0, T ];R

n×d). Passing to the limit in equation (13),
we obtain the result in Theorem 2.2. �

3. Viscosity solutions

In this section we introduce the notion of stochastic viscosity solutions to semi-linear SPDEs with
Neumann boundary conditions, and by using the generalized BDSDE we prove the existence of
such solutions.

3.1. Preliminaries and definitions

With the same notation as in Section 2, let FB � {FB
t,T }0≤t≤T . By MB

0,T we will denote all the

FB -stopping times τ such that 0 ≤ τ ≤ T , P-almost surely. For generic Euclidean spaces E and
E1 we introduce the following vector spaces of functions:
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1. Ck,�([0, T ] × E;E1) stands for the space of all E1-valued functions defined on [0, T ] × E

which are k times continuously differentiable in t and � times continuously differentiable
in x, and Ck,�

b ([0, T ] × E;E1) denotes the subspace of Ck,�([0, T ] × E;E1) in which all
functions have uniformly bounded partial derivatives.

2. For any sub-σ -field G ⊆ FB
T , Ck,�(G, [0, T ] × E;E1) (or Ck,�

b (G, [0, T ] × E;E1)) denotes

the space of all Ck,�([0, T ]×E;E1) (or Ck,�
b ([0, T ]×E;E1)-valued) random variables that

are G ⊗B([0, T ] × E)-measurable.
3. Ck,�(FB, [0, T ] × E;E1) (or Ck,�

b (FB, [0, T ] × E;E1)) is the space of all random fields

α ∈ Ck,�(FB
T , [0, T ] × E;E1) (or Ck,�

b (FB
T , [0, T ] × E;E1)), such that for fixed x ∈ E, the

mapping (t,w) → α(t,ω, x) is FB -progressively measurable.
4. For any sub-σ -field G ⊆ FB

T and real number p ≥ 0, Lp(G;E) stands for all E-valued
G-measurable random variables ξ such that E|ξ |p < ∞.

Furthermore, for (t, x, y) ∈ [0, T ] × R
n × R, we write

Dx =
(

∂

∂x1
, . . . ,

∂

∂xn

)
, Dxx = (∂2

xixj
)ni,j=1, Dy = ∂

∂y
, Dt = ∂

∂t
.

The meaning of Dxy and Dyy is then self-explanatory.
Let G be an open connected bounded domain of R

n (n ≥ 1). We suppose that G is a smooth
domain, which is such that for a function φ ∈ C2

b(Rn), G and its boundary ∂G are characterized
by G = {φ > 0}, ∂G = {φ = 0} and, for any x ∈ ∂G, ∇φ(x) is the unit normal vector pointing
towards the interior of G.

In this section, we consider continuous coefficients f and h,

f :�2 × [0, T ] × G × R × R
d −→ R,

h :�2 × [0, T ] × G × R −→ R

with the property that for all x ∈ G, f (·, x, ·, ·) and h(·, x, ·) are Lipschitz continuous in x and
satisfy the conditions (H′

1) and (H2), uniformly in x, where, for some constant K > 0, the con-
dition (H′

1) is:

(H′
1)

{ |f (t, x, y, z)| ≤ K(1 + |y| + |x| + ‖z‖),
|h(t, x, y)| ≤ K(1 + |y| + |x|).

Furthermore, we shall make use of the following assumptions:

(H3) The functions σ : Rn → R
n×d and b : Rn → R

n are uniformly Lipschitz continuous, with
common Lipschitz constant K > 0.

(H4) The function l : G → R is continuous such that, for some constant K > 0,

|l(x)| ≤ K(1 + |x|), x ∈ G.

(H5) The function g ∈ C0,2,3
b ([0, T ] × G × R;R

d).
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We consider the second-order differential operator

L = 1

2

n∑
i,j=1

(σ (x)σ ∗(x))i,j
∂2

∂xi ∂xj

+
n∑

i=1

bi(x)
∂

∂xi

.

Consider the following SPDE with nonlinear Neumann boundary condition:

(f, g,h)




du(t, x) + [
Lu(t, x) + f

(
t, x, u(t, x), σ ∗(x)Dxu(t, x)

)]
dt

+
d∑

i=1

gi(t, x,u(t, x))
←−
dBi

t = 0, (t, x) ∈ [0, T ] × G,

u(T , x) = l(x), x ∈ G,
∂u

∂n
(t, x) + h(t, x,u(t, x)) = 0, x ∈ ∂G.

(14)

We now define the notion of stochastic viscosity solution for the SPDE (f, g,h). We are inspired
by the work of Buckdahn and Ma [2] and we refer to their paper for a lucid discussion on this
topic. We use some of their notation and follow the lines of their proofs to obtain our main result.
Indeed, we will use the stochastic flow η̂(t, x, y) ∈ C(FB, [0, T ]×R

n ×R), defined as the unique
solution of the SDE which, in Stratonowich form, reads as follows:

η̂(t, x, y) = y +
d∑

i=1

∫ t

0
gi(s, x, η̂(s, x, y)) ◦ dBi

s,

= y +
∫ t

0

〈
g(s, x, η̂(s, x, y)),◦dBs

〉
, t ≥ 0. (15)

Under the assumption (H5) the mapping y �−→ η̂(t, x, y) defines a diffeomorphism for all (t, x),
P-almost surely see Protter [9]. Denote the y-inverse of η̂(t, x, y) by ε̂(t, x, y). Then, since
ε̂(t, x, η̂(t, x, y)) = y, one can show that (cf. Buckdahn and Ma [2])

ε̂(t, x, y) = y −
∫ t

0

〈
Dyε̂(s, x, y), g(s, x, y) ◦ dBs

〉
, (16)

where the stochastic integrals have to be interpreted in Stratonowich sense. Now let us introduce
the process η ∈ C(FB, [0, T ] × R

n × R) as the solution to the equation

η(t, x, y) = y +
∫ T

t

〈
g(s, x, η(s, x, y)),◦←−

dBs

〉
, 0 ≤ t ≤ T . (17)

We note that due to the direction of the Itô integral, equation (17) should be viewed as going
from T to t (i.e. y should be understood as the initial value). Then y �−→ η(s, x, y) will have
the same regularity properties as those of y �−→ η̂(s, x, y) for all (s, x) ∈ [t, T ] × R

n, P-almost
surely. Hence if we denote by ε its y-inverse, we obtain

ε(t, x, y) = y −
∫ T

t

〈
Dyε(s, x, y), g(s, x, y) ◦ ←−

dBs

〉
. (18)



436 B. Boufoussi, J. Van Casteren and N. Mrhardy

To simplify the notation we write:

Af,g(ϕ(t, x)) = −Lϕ(t, x) − f (t, x,ϕ(t, x), σ ∗(x)Dxϕ(t, x)) + 1
2 〈g,Dyg〉(t, x,ϕ(t, x)).

We now introduce the notion of a stochastic viscosity solution of the SPDE (f, g,h) as follows.

Definition 3.1. A random field u ∈ C(FB, [0, T ]× G) is called a stochastic viscosity subsolution
of the SPDE(f, g,h) if u(T , x) ≤ l(x), for all x ∈ G, and if for any stopping time τ ∈MB

0,T , any

state variable ξ ∈ L0(FB
τ , [0, T ] × G), and any random field ϕ ∈ C1,2(FB

τ , [0, T ] × R
n), with

the property that for P-almost all ω ∈ {0 < τ < T } the inequality

u(t,ω, x) − η(t,ω, x,ϕ(t, x)) ≤ 0 = u(τ(ω), ξ(ω)) − η
(
τ(ω), ξ(ω),ϕ(τ(ω), ξ(ω))

)
is fulfilled for all (t, x) in some neighbourhood V(ω, τ(ω), ξ(ω)) of (τ (ω), ξ(ω)), the following
conditions are satisfied:

(a) On the event {0 < τ < T } the inequality

Af,g(ψ(τ, ξ)) − Dyη(τ, ξ,ϕ(τ, ξ))Dtϕ(τ, ξ) ≤ 0 (19)

holds P-almost surely.
(b) On the event {0 < τ < T } ∩ {ξ ∈ ∂G} the inequality

min

[
Af,g(ψ(τ, ξ)) − Dyη(τ, ξ,ϕ(τ, ξ))Dtϕ(τ, ξ),

(20)

− ∂ψ

∂n
(τ, ξ) − h(τ, ξ,ψ(τ, ξ))

]
≤ 0

holds P-almost surely with ψ(t, x) � η(t, x,ϕ(t, x)).

A random field u ∈ C(FB, [0, T ] × G) is called a stochastic viscosity supersolution of the
SPDE (f, g,h) if u(T , x) ≥ l(x), for all x ∈ G, and if for any stopping time τ ∈MB

0,T , any state

variable ξ ∈ L0(FB
τ , [0, T ] × G), and any random field ϕ ∈ C1,2(FB

τ , [0, T ] × R
n), with the

property that for P-almost all ω ∈ {0 < τ < T } the inequality

u(t,ω, x) − η(t,ω, x,ϕ(t, x)) ≥ 0 = u(τ(ω), ξ(ω)) − η(τ(ω), ξ(ω),ϕ(τ(ω), ξ(ω)))

is fulfilled for all (t, x) in some neighbourhood V(ω, τ(ω), ξ(ω)) of (τ (ω), ξ(ω)), the following
conditions are satisfied:

(a) on the event {0 < τ < T } the inequality

Af,g(ψ(τ, ξ)) − Dyη(τ, ξ,ϕ(τ, ξ))Dtϕ(τ, ξ) ≥ 0 (21)

holds P-almost surely;
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(b) on the event {0 < τ < T } ∩ {ξ ∈ ∂G} the inequality

max

[
Af,g(ψ(τ, ξ)) − Dyη(τ, ξ,ϕ(τ, ξ))Dtϕ(τ, ξ),

(22)

− ∂ψ

∂n
(τ, ξ) − h(τ, ξ,ψ(τ, ξ))

]
≥ 0

holds P-almost surely with ψ(t, x) � η(t, x,ϕ(t, x)).

Finally, a random field u ∈ C(FB, [0, T ] × G) is called a stochastic viscosity solution of the
SPDE (f, g,h) if it is both a stochastic viscosity subsolution and a supersolution.

Remark 3.1. Observe that if f , h are deterministic and g ≡ 0 then Definition 3.1 coincides with
the deterministic case (cf. [8]).

Now let us recall a notion of random viscosity solution which will be a bridge linking the
stochastic viscosity solution and its deterministic counterpart.

Definition 3.2. A random field u ∈ C(FB, [0, T ] × R
n) is called an ω-wise viscosity solution if

for P-almost all ω ∈ �, u(ω, ·, ·) is a (deterministic) viscosity solution of the SPDE (f,0, h).

Next we introduce the Doss–Sussman transformation. It enables us to convert an SPDE of
the form (f, g,h) to an ordinary differential equation of the form (f̃ ,0, h̃), where f̃ and h̃ are
certain well-defined random fields, which are defined in terms of f,g,h.

Proposition 3.1. Assume (H1)–(H5). A random field u is a stochastic viscosity solution to the
SPDE (f, g,h) if and only if v(·, ·) = ε(·, ·, u(·, ·)) is a stochastic viscosity solution to the SPDE
(f̃ ,0, h̃), where (f̃ , h̃) are two coefficients that will be made precise later (see (24) and (26)
below).

Remark 3.2. Let us recall that under assumption (H5) the random field η belongs to C0,2,2(FB,

[0, T ] × R
n × R), and hence that the same is true for ε. Then, considering the transformation

ψ(t, x) = η(t, x,ϕ(t, x)), we obtain

Dxψ = Dxη + DyηDxϕ,

Dxxψ = Dxxη + 2(Dxyη)(Dxϕ)∗ + (Dyyη)(Dxϕ)(Dxϕ)∗ + (Dyη)(Dxxϕ).

Moreover, since for all (t, x, y) ∈ [0, T ] × R
n × R the equality ε(t, x, η(t, x, y)) = y holds P-

almost surely, we also have

Dxε + DyεDxη = 0,

DyεDyη = 1,

Dxxε + 2(Dxyε)(Dxη)∗ + (Dyyε)(Dxη)(Dxη)∗ + (Dyε)(Dxxη) = 0,



438 B. Boufoussi, J. Van Casteren and N. Mrhardy

(Dxyε)(Dyη) + (Dyyε)(Dxη)(Dyη) + (Dyε)(Dxyη) = 0,

(Dyyε)(Dyη)2 + (Dyε)(Dyyη) = 0,

where all the derivatives of the random field ε(·, ·, ·) are evaluated at (t, x, η(t, x, y)), and all
those of η(·, ·, ·) are evaluated at (t, x, y).

Proof of Proposition 3.1. We shall only argue for the stochastic subsolution case, as the super-
solution part is similar. Therefore, in the present proof we assume that u ∈ C(FB, [0, T ]× G) is a
stochastic viscosity subsolution of the SPDE (f, g,h). It then follows that v(·, ·) = ε(·, ·, u(·, ·))
belongs to C(FB, [0, T ] × G). In order to show that v is a stochastic viscosity subsolution of the
SPDE (f̃ ,0, h̃), we let τ ∈ MB

0,T , ξ ∈ L0(FB
τ , [0, T ] × G) and ϕ ∈ C1,2(FB

τ , [0, T ] × R
n) be

such that for P-almost all ω ∈ {0 < τ < T } the inequality

v(t, x) − ϕ(t, x) ≤ 0 = v(τ(ω), ξ(ω)) − ϕ(τ(ω), ξ(ω))

holds for all (t, x) in some neighbourhood V(ω, τ (ω), ξ(ω)) of (τ (ω), ξ(ω)). Next we put
ψ(t, x) = η(t, x,ϕ(t, x)). Since the mapping y �→ η(t, x, y) is strictly increasing, for all (t, x) ∈
V(τ, ξ) we have that

u(t, x) − ψ(t, x) = η(t, x, v(t, x)) − η(t, x,ϕ(t, x))

≤ 0 = η(τ, ξ, v(τ, ξ)) − η(τ, ξ,ϕ(τ, ξ))

= u(τ, ξ) − ψ(τ, ξ)

holds P-almost surely on {0 < τ < T }. Moreover, since u is a stochastic viscosity subsolution of
the SPDE (f, g,h), the inequality

Af,g(ψ(τ, ξ)) − Dyη(τ, ξ,ϕ(τ, ξ))Dtϕ(τ, ξ) ≤ 0 (23)

holds P-almost everything on the event {0 < τ < T }. On the other hand, from Remark 3.2 it
follows that

Lψ(t, x) = 1

2
tr
(
σ(x)σ (x)∗Dxxψ(t, x)

) + 〈b(x),Dxψ(t, x)〉
= Lxη(t, x,ϕ(t, x)) + Dyη(t, x,ϕ(t, x))Lϕ(t, x)

+ 〈σ(x)σ �(x)Dxyη(t, x,ϕ(t, x)),Dxϕ(t, x)〉

+ 1

2
Dyyη(t, x,ϕ(t, x))(Dxϕ)�(Dxϕ),

where Lx is the same as the operator L with all the derivatives taken with respect to the second
variable x. Then if we define the random field f̃ by

f̃ (t, x, y, z) = 1

Dyη(t, x, y)

[
f

(
t, x, η(t, x, y), σ (x)�Dxη(t, x, y) + Dyη(t, x, y)z

)
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− 1

2
gDyg(t, x, η(t, x, y)) + Lxη(t, x, y)

+ 〈σ(x)�Dx,yη(t, x, y), z〉 + 1

2
Dyyη(t, x, y)|z|2

]
, (24)

we obtain

Dyε(t, x,ψ(t, x))Af,g(ψ(t, x)) = Af̃ ,0(ϕ(t, x)).

Here we have used the fact that the equality

Dyη(t, x,ϕ(t, x)) = 1

Dyε(t, x,ψ(t, x))
∀(t, x)

holds P-almost everywhere for all (t, x) ∈ [0, T ] × G. Consequently, (23) becomes

Af̃ ,0(ϕ(τ, ξ)) − Dtϕ(τ, ξ) ≤ 0, (25)

and hence the Doss–Sussman transformation converts an SPDE of the form (f, g,h) to one of
the form (f,0, h), provided a similar transformation for the random field h also works for the
inequality in (22). This establishes part (a) of Definition 3.1.

In order to establish part (b) in Definition 3.1 we notice that for all (t, x) ∈ [0, T ] × ∂G the
following string of equalities holds:

∂ψ

∂n
(t, x) = 〈Dxψ(t, x),∇φ(x)〉

= 〈Dxη(t, x,ϕ(t, x)),∇φ(x)〉 + Dyη(t, x,ϕ(t, x))〈Dxϕ(t, x),∇φ(x)〉

= 〈Dxη(t, x,ϕ(t, x)),∇φ(x)〉 + Dyη(t, x,ϕ(t, x))
∂ϕ

∂n
(t, x).

Hence,

∂ψ

∂n
(τ, ξ) + h(τ, ξ,ψ(τ, ξ)) = Dyη(τ, ξ,ϕ(τ, ξ))

∂ϕ

∂n
(τ, ξ) + 〈Dxη(τ, ξ,ϕ(τ, ξ)),∇φ(x)〉

+ h(τ, ξ, η(τ, ξ,ϕ(τ, ξ)))

= Dyη(τ, ξ,ϕ(τ, ξ))

(
∂ϕ

∂n
(τ, ξ) + h̃(τ, ξ, ϕ(τ, ξ))

)
,

where

h̃(t, x, y) = 1

Dyη(t, x, y)

(
h(t, x, η(t, x, y)) + 〈Dxη(t, x, y),∇φ(x)〉). (26)

Since Dyη(t, x, y) > 0, we obtain, P-almost surely on the event {0 < τ < T } ∩ {ξ ∈ ∂G}, the
inequality

min

[
Af̃ , 0(ϕ(τ, ξ)) − Dtϕ(τ, ξ),−∂ϕ

∂n
(τ, ξ) − h̃(τ, ξ,ψ(τ, ξ))

]
≤ 0. (27)
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Combining (25) and the inequality in (27), we obtain that the random field v is a stochastic
viscosity subsolution of the SPDE (f̃ ,0, h̃), which concludes the proof of Proposition 3.1. �

4. Generalized backward doubly SDEs and viscosity solution of
SPDEs with nonlinear Neumann boundary conditions

The main objective of this section is to show how a semi-linear SPDE with coefficients (f, g,h)

is related to equation (1) introduced in Section 1.

4.1. Reflected diffusions

In this section we recall some known results on reflected diffusions. First, since σ and b satisfy
condition (H3), it follows from Lions and Sznitman [5] that for each x ∈ G there exists a unique
pair of progressively measurable continuous processes (Xx, kx) with values in G × R+ such that

t �→ kx
t is increasing,

Xx
t = x +

∫ t

0
b(Xx

r )dr +
∫ t

0
σ(Xx

r )dWr +
∫ t

0
∇φ(Xx

r )dkx
r , for t ∈ [0, T ],

kx
t =

∫ t

0
I{Xx

s ∈∂G} dkx
s ,

where the stochastic integral is the standard Itô integral, and the probability space (and its filtra-
tion) is the one on which the Brownian motion W is defined. We refer to Pardoux and Zhang [8]:
Propositions 3.1 and 3.2, for the following regularity results.

Proposition 4.1. There exist a constant C > 0 such that for all x, x′ ∈ G the following inequality
holds:

E

[
sup

0≤t≤T

∣∣Xx
t − Xx′

t

∣∣4
]

≤ C|x − x′|4.

Proposition 4.2. For each T > 0, there exists a constant CT such that for all x, x′ ∈ G,

E

(
sup

0≤t≤T

∣∣kx
t − kx′

t

∣∣4
)

≤ CT |x − x′|4.

Moreover, for all p ≥ 1, there exists a constant Cp such that for all (t, x) ∈ R+ × G,

E(|kx
t |p) ≤ Cp(1 + tp)

and for each µ, t > 0, there exists a constant C(µ, t) such that for all x ∈ G,

E
(
eµkx

t
) ≤ C(µ, t).
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4.2. Viscosity solutions

Consider, for every (t, x) ∈ [0, T ] × G, the process s �→ (X
t,x
s , k

t,x
s ), s ∈ [0, T ], as the unique

solution of the equation

Xt,x
s = x +

∫ s∨t

t

b(Xt,x
r )dr +

∫ s∨t

t

σ (Xt,x
r )dWr +

∫ s∨t

t

∇φ(Xt,x
r )dkt,x

r .

The main topic of this section will be a study of properties of the solution (Y
t,x
s ,Z

t,x
s ), (t, x) ∈

[0, T ] × G, to the BDSDE

Y t,x
s = l(X

t,x
T ) +

∫ T

s∨t

f (r,Xt,x
r , Y t,x

r ,Zt,x
r )dr +

d∑
i=1

∫ T

s∨t

gi(r,X
t,x
r , Y t,x

r )
←−
dBi

r

+
∫ T

s∨t

h(r,Xt,x
r , Y t.x

r )dkt,x
r −

∫ T

s

〈Zt,x
r ,dWr〉, 0 ≤ s ≤ T , (28)

where the coefficients l, f , g and h satisfy the hypotheses (H′
1), (H2), (H4) and (H5).

Proposition 4.3. Let the ordered pair (Y
t,x
s ,Z

t,x
s ) be a solution to the BSDE in (28). Then the

random field (s, t, x) → Y
t,x
s , (s, t, x) ∈ [0, T ] × [0, T ] × G is almost surely continuous.

Proof. Let (t, x) and (t ′, x′) be elements of [0, T ] × G. It follows from Remark 2.2 that, for
0 ≤ s ≤ T , ∣∣Y t,x

s − Y t ′,x′
s

∣∣2

≤ CE
Fs

(∣∣eµAT
[
l(X

t,x
T ) − l

(
X

t ′,x′
T

)]∣∣2 +
∫ T

0
eµAs

∣∣Xt,x
s − Xt ′,x′

s

∣∣2 ds

+
∫ T

0
eµAs

∣∣Xt,x
s − Xt ′,x′

s

∣∣2 dkt ′,x′
s

+ sup
0≤s≤T

(1 + |Xt,x
s |2 + |Y t,x

s |2)eµAT
∣∣kt,x − kt ′,x′ ∣∣

T

)
.

The result follows from standard arguments using Propositions 4.1, 4.2, 2.4 and the continuity of
the function l. �

Next we recall a generalized version of the Itô–Ventzell formula; the proof is analogous to the
corresponding one in Buckdahn and Ma [2].

Theorem 4.4. Suppose that M ∈ C0,2(F, [0, T ] × R
n) is a semimartingale in the sense that, for

every spatial parameter x ∈ R
n, the process t �→ M(t, x), t ∈ [0, T ], is of the form

M(t, x) = M(0, x) +
∫ t

0
G(s, x)ds +

∫ t

0

〈
H(s, x),

←−
dBs

〉 + ∫ t

0
〈K(s, x),dWs〉,
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where G ∈ C0,2(FB, [0, T ]×R
n) and H ∈ C0,2(FB, [0, T ]×R

n;R
d), and the process K belongs

to C0,2(FW, [0, T ] × R
n;R

d). Let α ∈ C(F, [0, T ];R
n) be a process of the form

αt = α0 +
∫ t

0
βs dks +

∫ t

0
γs

←−
dBs +

∫ t

0
δs dWs,

where β ∈K2(F, [0, T ];R
n), γ ∈ M2(F, [0, T ];R

n×d) and δ ∈M2(F, [0, T ];R
n×d). Then the

following equality holds P-almost surely for all 0 ≤ t ≤ T :

M(t,αt ) = M(0, α0) +
∫ t

0
G(s,αs)ds +

∫ t

0

〈
H(s,αs),

←−
dBs

〉 + ∫ t

0
〈K(s,αs), dWs〉

+
∫ t

0

〈
DxM(s,αs), βs dks

〉 + ∫ t

0
〈DxM(s,αs), γs

←−−
dBs〉 +

∫ t

0
〈DxM(s,αs), δs dWs〉

+ 1

2

∫ t

0
tr(DxxM(s,αs)δsδ

∗
s )ds − 1

2

∫ t

0
tr(DxxM(s,αs)γsγ

∗
s )ds

+
∫ t

0
tr(DxK(s,αs)δ

∗
s )ds −

∫ t

0
tr(DxH(s,αs)γ

∗
s )ds.

4.3. Existence of stochastic viscosity solutions

In this section we apply the results of the previous sections to prove the existence of stochastic
viscosity solutions to a quasi-linear SPDE with Neumann boundary conditions. To this end, we
need the following result which is proved in Buckdahn and Ma [2]:

Proposition 4.5. Assume (H5). Let η be the unique solution to SDE (15) and ε be the y-inverse
of η. Then there exists a constant C > 0, depending only on the bound of g and its partial
derivatives, such that for ζ = η, and ζ = ε, the following inequalities hold P-almost surely for
all (t, x, y) ∈ [0, T ] × R

n × R:

|ζ(t, x, y)| ≤ |y| + C|Bt |,
|Dxζ |, |Dyζ |, |Dxxζ |, |Dxyζ |, |Dyyζ | ≤ C exp{C|Bt |}.

Here all the derivatives are evaluated at (t, x, y).

Next, for t ∈ [0, T ] and x ∈ �G, let us define the following processes:

Ut,x
s = ε(s,Xt,x

s , Y t,x
s ), 0 ≤ t ≤ s ≤ T ,

V t,x
s = Dyε(s,X

t,x
s , Y t,x

s )Zt,x
s + σ ∗(Xt,x

s )Dxε(s,X
t,x
s , Y t,x

s ), 0 ≤ t ≤ s ≤ T .

Then from Proposition 4.5 we obtain(
(Ut,x

s ,V t,x
s ), (s, x) ∈ [0, T ] × G

) ∈ S2(F ; [0, T ];R) ×M2(F ; [0, T ];R
d).
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Theorem 4.6. For each (t, x) ∈ [0, T ] × G, the process (U
t,x
s ,V

t,x
s , t ≤ s ≤ T ) is the unique

solution to the following generalized BSDE:

Ut,x
s = l(X

t,x
T ) +

∫ T

s

f̃ (t,Xt,x
r ,U t,x

r ,V t,x
r )dr

+
∫ T

s

h̃(r,Xt,x
r ,U t,x

r , )dkt,x
r −

∫ T

s

V t,x
r dWr, (29)

where f̃ and h̃ are given by (24) and (26).

Proof. For brevity we write X, Y , U , V , Z and k instead of Xt,x , Y t,x , Ut,x , V t,x , Zt,x and kt,x ,
respectively. Then the mapping (X,Y,Z) �→ (X,U,V ) is one-to-one with inverse transformation

Ys = η(s,Xs,Us), Zs = Dyη(s,Xs,Us)Vs + σ ∗(Xs)Dxη(s,Xs,Us).

Then the uniqueness of solutions to the equation in Theorem 4.6 follows from that of the gener-
alized BDSDE in (28). As a consequence we only need to show that (U,V ) is a solution of the
generalized BSDE in Theorem 4.6. Indeed, using the Itô–Ventzell formula, we obtain

Us = l(XT ) −
∫ T

s

〈Dxε(r,Xr,Yr), b(Xr)〉dr −
∫ T

s

〈Dxε(r,Xr,Yr), σ (Xr)dWr〉

−
∫ T

s

〈Dxε(r,Xr,Yr),∇φ(Xr)〉dkr − 1
2

∫ T

s

tr{σ(Xr)σ
∗(Xr)Dxxε(r,Xr,Yr)}dr

+
∫ T

s

Dyε(r,Xr,Yr)f (r,Xr,Yr ,Zr)dr +
∫ T

s

Dyε(r,Xr,Yr)h(r,Xr ,Yr)dkr

−
∫ T

s

〈Dyε(r,Xr,Yr)Zr , dWr〉 − 1
2

∫ T

s

Dyyε(r,Xr,Yr)‖Zr‖2 dr

−
∫ T

s

〈σ ∗(Xr)Dxyε(r,Xr,Yr),Zr 〉dr − 1
2

∫ T

s

Dyε(r,Xr,Yr)〈g,Dyg〉(r,Xr,Yr)dr

= l(XT ) +
∫ T

s

F(r,Xr,Yr ,Zr)dr +
∫ T

s

H(r,Xr,Yr)dkr −
∫ T

s

〈Vr, dWr〉, (30)

where

F(s, x, y, z) � −〈Dxε,b(x)〉 + (Dyε)f (s, x, y, z) − 1
2 (Dyyε)|z|2

− 1
2 tr{σ(x)σ (x)∗Dxxε} − 〈σ ∗(x)Dxyε, z〉 − 1

2Dyε〈g,Dyg〉(s, x, y) (31)

and

H(s, x, y) � −〈Dxε,∇φ(x)〉 + (Dyε)h(s, x, y). (32)
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From (30), (31) and (32) it follows that it suffices to show that

F(s,Xs,Ys,Zs) = f̃ (s,Xs,Us,Vs) ∀s ∈ [0, T ],P-a.s. (33)

and

H(s,Xs,Ys) = h̃(s,Xs,Us) ∀s ∈ [0, T ],P-a.s. (34)

To this end, if we write σ(Xs) = σs and b(Xs) = bs , Remark 3.2 entails the following equalities:

〈Dxε(s,Xs,Ys), bs〉 = −Dyε(s,Xs,Ys)〈Dxη(s,Xs,Us), bs〉,
(Dyε)f (s,Xs,Ys,Zs) = (Dyε)f (s,Xs, η,DyηVs + σ ∗

s (Dxη)),

〈σ ∗
s (Dx,yε),Zs〉 = (Dyη)〈σ ∗

s (Dx,yε),Vs〉 + 〈σ ∗
s (Dx,yε), σ

∗
s (Dxη)〉,

− 1
2 (Dyyε)|Zs |2 = 1

2 (Dyε)(Dyyη)|Vs |2 + (Dyε)
2(Dyyη)〈Vs,σ

∗
s (Dxη)〉

+ 1
2 (Dyyη)(Dyε)|σ ∗

s (Dxη)(Dyε)|2. (35)

Hence, from the equalities in (35) we obtain

F(s,Xs,Ys,Zs) = Dyε
[〈Dxη,bs〉 + 1

2 (Dyyη)|Vs |2

+ f (s,Xs, η,DyηVs + σ ∗
s (Dxη)) − 1

2 〈g,Dyg〉(s,Xs, η)
]

+ 〈
Vs,σ

∗
s [Dxη(Dyε)

2(Dyyη) − DyηDxyε]
〉
,

+ [ 1
2 (Dyyη)(Dyε)|σ ∗

s (Dxη)(Dyε)|2

− 1
2 tr{σsσ

∗
s Dxxε} − 〈σ ∗

s (Dx,yε), σ
∗
s (Dxη)〉], (36)

where all the derivatives of the random field ε(·, ·, ·) are to be evaluated at the point
(s, x, η(s, x, y)), and all those of η(·, ·, ·) at (s, x, y).

Now from Remark 3.2, we have

tr{σsσ
∗
s Dxxε} = −2〈σ ∗

s Dxyε, σ
∗
s Dxη〉 + (Dyε)Dyyη|σ ∗

s DxηDyε|2
− (Dyε) tr{(σsσ

∗
s Dxxη)} (37)

and

DxyεDyη − Dxη(Dyε)
2(Dyyη) = −DyεDxyη. (38)

The equalities in (37) and (38), together with Dyε(s,Xs,Ys) = (Dyη)−1(s,Xs,Us), imply

F(s,Xs,Ys,Zs) = Dyε
[〈Dxη,bs〉 + 1

2 (Dyyη)|Vs |2

+ f
(
s,Xs, η,DyηVs + σ ∗

s (Dxη)
) − 1

2 〈g,Dyg〉(s,Xs, η)
]

+ 1
2 (Dyε) tr{σsσ

∗
s Dxxη} + (Dyε)〈Vs,σ

∗
s Dxyη〉. (39)
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Since the expressions in (36) and (39) are equal, this shows the equality in (33).
The next argument shows the equality in (34):

H(s,Xs,Ys) = −〈Dxε(r,Xr,Yr),∇φ(Xr)〉 + Dyε(r,Xr,Yr)h(r,Xr,Yr)

= Dyε(s,Xs,Ys)
(〈Dxη(s,Xs,Us),∇φ(Xr)〉 + h(s,Xs, η(s,Xs,Us))

)
= 1

Dyη(s,Xs,Us)

[
h(s,Xs, η(s,Xs,Us)) + 〈Dxη(s,Xs,Us),∇φ(Xs)〉

]
= h̃(s,Xs,Us).

This completes the proof of Theorem 4.6. �

To conclude this section, we give our main result. Define for each (t, x) ∈ [0, T ] × G the
(random) fields u and v by u(t, x) = Yt and v(t, x) = Ut , where (Y,Z) and (U,V ) are the
solutions to the BSDEs (28) and (29), respectively. Then we have

u(t,ω, x) = η(ω, t, x, v(t,ω, x)), v(t,ω, x) = ε(ω, t, x,u(t,ω, x)). (40)

Theorem 4.7. Under the above assumptions, the random field u is a stochastic viscosity solution
to the SPDE (f, g,h).

Remark 4.1. From the results in Proposition 4.5 we see that, in order to prove Theorem 4.7, we
only need to show that the random field v is a stochastic viscosity solution to the SPDE (f̃ ,0, h̃).

Proof of Theorem 4.7. From Proposition 4.3 it follows that the mapping (s, t, x) �→ Y
t,x
s is

continuous, for all (s, t, x) ∈ [0, T ]2 × G. It follows that u(t, x) = Y
t,x
t is continuous as well,

and, in particular, it is jointly measurable.
Since Y

t,x
s is FW

t,s ⊗ FB
t,T -measurable, it follows that Y

t,x
t is FB

t,T -measurable. Consequently,

u(t, x) is FB
t,T -measurable and so it is independent of ω1 ∈ �1 (see the notation in Section 2.1).

Therefore, we obtain u ∈ C(FB, [0, T ] × G), which by (40) implies that v ∈ C(FB, [0, T ] × G).
However, from Definition 3.2, we see that an FB -progressively measurable ω-wise viscosity
solution is automatically a stochastic viscosity solution. Therefore it suffices to show that v is an
ω-wise viscosity solution to the SPDE (f̃ ,0, h̃). To this end, we denote, for a fixed ω2 ∈ �2,

U
ω2
s (ω1) = Us(ω2,ω1), V

ω2
s (ω2,ω1) = Vs(ω2,ω1).

Since the pair (U
ω2

,V
ω2

) is the unique solution of the generalized BSDE with coefficients
(f̃ (ω2, ·, ·, ·), h̃(ω2, ·, ·)), it follows from Pardoux and Zhang [8] that v(ω2, t, x) � U

ω2
t is a

viscosity solution to PDE(f̃ (ω2, ·, ·, ·), h̃(ω2, ·, ·)) with Neumann boundary condition. By Blu-
menthal’s 0–1 law we have P(U

ω2
t = Ut(ω2,ω1)) = 1 and, hence, the equality v(t, x) = v(t, x)

holds P1-almost surely for all (t, x) ∈ [0, T ] × G. Consequently, for every fixed ω2 the function
v ∈ C(FB, [0, T ] × G) is a viscosity solution to the SPDE (f̃ (ω2, ·, ·, ·),0, h̃(ω, ·, ·)). Hence, by
definition it is an ω-wise viscosity solution, and thus the result follows from Remark 4.1. This
completes the proof. �
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