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Limit distributions for the problem of
collecting pairs
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Let Nn = {1,2, . . . , n}. Elements are drawn from the set Nn with replacement, assuming that each element
has probability 1/n of being drawn. We determine the limiting distributions for the waiting time until the
given portion of pairs jj , j ∈ Nn, is sampled. Exact distributions of some related random variables and
their characteristics are also obtained.
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1. Introduction

Combinatorial problems in the theory of probability and mathematical statistics have been stud-
ied extensively. Many of them are formulated in the form of urn models. In such problems,
one usually considers a sequence of experiments with some stopping rule defined a priori and
the problem is to determine the exact and/or limit distribution of the waiting time until the last
experiment. Sums and extreme values of random variables and rare events in a sequence of exper-
iments appear naturally in connection with problems of this kind. Consequently, many different
approaches, methods and techniques have been used to investigate combinatorial problems from
the probabilistic point of view and a number of limit theorems have been proven. The method
of characteristic and moment generating functions in summing random variables was used by
Erdös and Rényi (1961), Békéssy (1964), Baum and Bilingsley (1965), Holst (1971), Samuel-
Cahn (1974) and Flato (1982). The method of embedding in Poisson processes was used by Holst
(1977, 1986). For a general list of references concerned this subject, see, for example, Johnson
and Kotz (1977), Kolchin, Sevastyanov and Chistyakov (1976), Kolchin (1984) and Barbour,
Holst and Janson (1992).

In this paper, the following problem will be studied. We sample with replacement from the set
Nn = {1,2, . . . , n}, under the assumption that each element of Nn has probability 1/n of being
drawn, and we are interested in the waiting time until a given portion of pairs jj , j ∈ Nn, is
sampled. In order to get limit distributions, we shall use the method of characteristic functions
and also an approach based on the extreme value theory for stationary sequences; see Leadbetter,
Lindgren and Rootzén (1983). The problem we are going to consider is a generalization of the
coupon collector’s problem. Originally, the waiting time for all j ’s from Nn, supposing that
all elements from Nn have equal probability to be drawn at each step, was named the coupon
collector’s problem. The limiting distribution for this problem was first determined by Erdös and
Rényi (1961).
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A natural generalization of the coupon collector’s problem is the problem of possible limiting
distributions for the waiting time for a given portion of j ’s from Nn. This problem was solved
by Baum and Bilingsley (1965). Another generalization is the waiting time problem for a given
number of appearances of all j ’s from Nn. The limiting distribution for this problem and some
related results were obtained by different authors employing different methods; see, for example,
Holst (1986) and Mladenović (1999, 2006).

The problem of waiting time until a given portion of pairs jj , j ∈ Nn, is sampled can also
be considered by using an approach based on point process theory. For a presentation of this
theory, see, for example, Chapter 3 of Resnick (1987). Let An(k) be the number of different
pairs jj , j ∈ Nn, sampled until to the kth drawing and let {Ln(k), k ≥ 1} be the point process
determined by the indices where the process An jumps. Point process theory enables analysis
of the asymptotic behavior of {Ln(k), k ≥ 1} and {An(Ln(k)), k ≥ 1}. This approach was used
in Chapter 4 of Resnick (1987) to study the structure and asymptotic behavior of records in
a sequence of i.i.d. random variables with a continuous distribution function F . However, the
underlying distributions in the problem that will be considered in this paper are discrete and
depend on n.

The paper is organized as follows. Section 2 contains preliminaries, necessary notation and
auxiliary results concerning exact distributions of random variables that appear in connection
with the problem considered. Main results on asymptotic distributions are formulated in Sec-
tion 3. Proofs of theorems from Sections 2 and 3 are given in Sections 4 and 5.

2. Preliminaries, notation and auxiliary results

Let Z1, Z2, Z3, . . . be a sequence of independent random variables with the uniform distribution
over the set Nn = {1,2, . . . , n}. Throughout this paper, we shall use the following notation:

Xnj = min{k :Zk−1 = Zk = j}, j ∈ Nn is a fixed number, (2.1)

Ỹnj = min{k :Zk−1 = Zk = a for some a ∈ A ⊂ Nn, |A| = j}, (2.2)

Mn = max{Xn1,Xn2, . . . ,Xnn}, (2.3)

M(k)
n = the kth maximum of random variables Xn1, . . . ,Xnn, (2.4)

where |A| is the number of elements of a set A. Xnj is then the waiting time until the pair jj for
some fixed j ∈ Nn occurs as a run in the process Z1, Z2, . . . , Ỹnj is the waiting time until some
pair aa, where a ∈ A and |A| = j , occurs as a run in the same process and Mn is the waiting
time until all n pairs jj , j ∈ Nn, occur.

Let Ynn be the waiting time until the first pair j1j1, where j1 ∈ Nn, occurs as a run in the
process Z1, Z2, . . . . Let Yn,n−1 be the waiting time for the second pair j2j2, where j2 ∈ N1 \{j1},
after the occurrence of the first pair, etc. Then Ynj

d= Ỹnj for any j ∈ Nn, where X
d= Y means

that random variables X and Y have the same distribution. Let us denote by Sn,an the waiting
time until an of the pairs jj , j ∈ Nn, occur, that is,

Sn,an = Ynn + Yn,n−1 + · · · + Yn,n−an+1, an ∈ Nn. (2.5)
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It is obvious that the following relations hold:

Yn1
d= Xn1

d= Xn2
d= · · · d= Xnn; (2.6)

Snn = Ynn + Yn,n−1 + · · · + Yn1
(2.7)

= max{Xn1, . . . ,Xnn} = Mn;
Sn,n−k+1 = M(k)

n , k is a fixed positive integer; (2.8)

P {Xn1 > m,Xn2 > m, . . . ,Xnj > m} = P {Ynj > m}. (2.9)

It is also clear that random variables Ynn,Yn,n−1, . . . , Yn1 are independent, but random variables
Xn1,Xn2, . . . ,Xnn are dependent. Let Fn(x) be the common distribution function of random
variables Xn1, . . . ,Xnn. As usual, �(x) is the standard normal distribution function. First, we
shall give exact distributions and related characteristics of random variables Xnj and Ynj and
results concerning the asymptotic behavior of mean and variance of the random variable Sn,an .

Theorem 2.1. (a) The distribution of the random variable Xnj is given by

P {Xnj = k} =
[k/2]−1∑

s=0

(
k − s − 2

s

)(
1 − 1

n

)k−s−2 1

ns+2
, k ≥ 2. (2.10)

(b) If un = n2(x + lnn), then the following equality holds:

lim
n→∞n

(
1 − Fn(un)

) = lim
n→∞nP {Xnj > un} = e−x. (2.11)

Theorem 2.2. (a) The distribution of random variable Ynj is given by

P {Ynj = k} = j

n{(n + 1)2 − 4j}1/2
·
{(

t1

n

)k−1

−
(

t2

n

)k−1}
, k ≥ 2, (2.12)

where

t1 = t1(j) = n − 1 + {(n + 1)2 − 4j}1/2

2
, (2.13)

t2 = t2(j) = n − 1 − {(n + 1)2 − 4j}1/2

2
. (2.14)

(b) Exact values of the mean and variance of the random variable Ynj are given by

EYnj = n2 + n

j
, varYnj = n4

j2

(
1 + 2

n
− 3j − 1

n2
− j

n3

)
. (2.15)

Theorem 2.3. The asymptotic behavior of the mean µn and the variance σ 2
n of the random

variable Sn,an is determined as follows:
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(a) if an → ∞ and an/n → 0 as n → ∞, then

µn = −n2 ln

(
1 − an

n

)
+ o(na

1/2
n ), σ 2

n ∼ n2an as n → ∞; (2.16)

(b) if an/n → λ ∈ (0,1) as n → ∞, and λ0 = λ/(1 − λ), then

µn = −n2 ln

(
1 − an

n

)
+ o(n3/2), σ 2

n ∼ λ0n
3 as n → ∞; (2.17)

(c) if an/n → 1 and bn = n − an → ∞ as n → ∞, then

µn = −n2 ln

(
1 − an

n

)
+ o(n2b

−1/2
n ), σ 2

n ∼ n4/bn as n → ∞; (2.18)

(d) as n → ∞, the mean and variance of the maximum Mn = Snn are given by

EMn = (n2 + n)(lnn + γ) + n

2
+ 5

12
− 1

12n
+ 1

120n2
+ o

(
1

n2

)
, (2.19)

varMn = π2n4

6
+

(
π2

3
− 1

)
n3 − 3n2 lnn + O(n2), (2.20)

where γ = 0.5772156649 . . . is the Euler constant.

3. Main results

The next three theorems give the limiting distribution of the random variable Sn,an for different
types of asymptotic behavior of the sequence (an).

Theorem 3.1. If an = k for every n ∈ N , where k is a fixed positive integer, then the random
variable n−1Sn,an converges in distribution to a random variable whose characteristic function
is

f (t) = (1 + t2)−k/2eik·arctan t . (3.1)

If an/n → λ ∈ [0,1], an → ∞ and bn = n − an → ∞ as n → ∞, then (Sn,an − µn)/σn has
asymptotically normal (0,1) distribution, where σ 2

n = varSn,an and µn = ESn,an . Denote by νn

and τ 2
n the main terms of µn and σ 2

n , respectively, that are determined by (2.16)–(2.18). Using
the Khinchine lemma, we can conclude that the constants µn and σ 2

n can be replaced in limit
theorems by νn and τ 2

n because σn/τn → 1 and (µn − νn)/σn → 0 as n → ∞. More detailed
results are provided by the following theorem.

Theorem 3.2. (a) If an → ∞ and an/n → 0 as n → ∞, then

lim
n→∞P

{
Sn,an + n2 ln(1 − an/n)

na
1/2
n

≤ x

}
= �(x). (3.2)
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(b) If an/n → λ ∈ (0,1) as n → ∞ and λ0 = λ/(1 − λ), then

lim
n→∞P

{
Sn,an + n2 ln(1 − an/n)

λ
1/2
0 n3/2

≤ x

}
= �(x). (3.3)

(c) If an/n → 1 and bn = n − an → ∞ as n → ∞, then

lim
n→∞P

{
Sn,an + n2 ln(1 − an/n)

n2b
−1/2
n

≤ x

}
= �(x). (3.4)

Theorem 3.3. If n− an + 1 = k for a fixed positive integer k and all positive integers n, then the
limiting distribution of the random variable Sn,an = M

(k)
n is given by the following equality:

lim
n→∞P

{
M(k)

n ≤ n2(x + lnn)
} = e−e−x

k−1∑
s=0

e−sx

s! . (3.5)

In particular, the maximum Mn = Snn has, asymptotically, the Gumbel extreme value distribu-
tion.

4. Proofs of Theorems 2.1, 2.2 and 2.3

Proof of Theorem 2.1. (a) It is easy to check that equality (2.10) holds for k = 2 and k = 3.
The event {Xnj = k}, where k > 3, means that no two adjacent of the random variables Z1,
Z2, . . . ,Zk−3 take the value j and that Zk−2 �= j , Zk−1 = Zk = j . Denote by As the event that
exactly s of the random variables Z1, Z2, . . . ,Zk−3 take the value j and no two adjacent of them
take the value j . Then

P(As) =
(

k − s − 2
s

)(
1 − 1

n

)k−3−s 1

ns
, s ∈ {0,1, . . . , [k/2] − 1}. (4.1)

The following two equalities hold:

{Xnj = k} =
[k/2]−1⋃

s=0

{As,Zk−2 �= j,Zk−1 = Zk = j}, (4.2)

P {Zk−2 �= j,Zk−1 = Zk = j} =
(

1 − 1

n

)
1

n2
. (4.3)

If k > 3, then the equality (2.10) follows from (4.1), (4.2) and (4.3).
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(b) Using (2.10), we obtain that

1 − Fn(m) =
∞∑

k=m+1

1

n2

(
1 − 1

n

)k−2 [(k−2)/2)]∑
s=0

(
k − 2 − s

s

)(
1

n − 1

)s

. (4.4)

From problem 7(d), page 76 of Riordan (1968), the following identity holds:

[r/2]∑
s=0

(
r − s

s

)
xs = 1

α

{(
1 + α

2

)r+1

−
(

1 − α

2

)r+1}
, (4.5)

where α = (1+4x)1/2. The sum on the left-hand side of identity (4.5) is related to the Chebyshev
polynomials. For x = 1/(n − 1), we get

α =
(

1 + 4

n − 1

)1/2

=
(

1 + 3

n

)1/2(
1 − 1

n

)−1/2

(4.6)

and the tail 1 − Fn(m) can be represented in the form

1 − Fn(m) = 1

n2

(
1 − 1

n

)−1/2(
1 + 3

n

)−1/2{ qm
1

1 − q1
− qm

2

1 − q2

}
, (4.7)

where

q1 =
(

1 − 1

n

)
1 + α

2
= 1 − 1

n2
+ 5

32n3
+ o

(
1

n3

)
, (4.8)

q2 =
(

1 − 1

n

)
1 − α

2
= −1

n
+ 1

n2
− 5

32n3
+ o

(
1

n3

)
. (4.9)

Let us determine m from the condition n(1 − Fn(m)) → e−x as n → ∞. Using (4.7), (4.8) and
(4.9), this condition can be transformed in the following way:

− lnn − m

n2
+ 5m

32n3
+ 2 lnn = −x + o(1) as n → ∞, (4.10)

m = n2(x + lnn + o(1)
)

as n → ∞. (4.11)

Consequently, (2.11) holds for un = n2(x + lnn). �

Proof of Theorem 2.2. (a) Let A be a subset of Nn, |A| = j and let

a0 = 1, b0 = 0. (4.12)

For any positive integer l, let us consider the set S of all sequences of the form

c1c2 . . . cl, where c1, c2, . . . , cl ∈ Nn, (4.13)
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such that no sequence from S contains a subsequence of the form aa, a ∈ A. Let al be the number
of sequences from S for which cl ∈ Nn \ A, and bl the number of sequences from S such that
cl ∈ A. The following equalities then hold:

a1 = n − j = (n − j)(a0 + b0); (4.14)

b1 = j = ja0 + (j − 1)b0; (4.15)

ak−1 = (n − j)(ak−2 + bk−2), for any k ≥ 2; (4.16)

bk−1 = jak−2 + (j − 1)bk−2, for any k ≥ 2. (4.17)

Let sl = al + bl for l ≥ 0. It follows from (4.12) and (4.14)–(4.17) that

s0 = a0 + b0 = 1, s1 = a1 + b1 = n, (4.18)

sk−1 = ak−1 + bk−1 = (n − 1)sk−2 + (n − j)sk−3 for k ≥ 3. (4.19)

Hence, the sequence (sl) satisfies the linear difference equation (4.19) with initial condi-
tions (4.18). It follows that

sk−1 = C1t
k−1
1 + C2t

k−1
2 for any k ≥ 1, (4.20)

where t1 = t1(j) and t2 = t2(j) are given by (2.13) and (2.14). Using initial conditions (4.18),
we obtain the constants C1 and C2:

C1 = 1

2

{
1 +

(
1 − 4j

(n + 1)2

)−1/2}
, (4.21)

C2 = 1

2

{
1 −

(
1 − 4j

(n + 1)2

)−1/2}
. (4.22)

Note that

P {Ynj = k} = bk−1n
−k, k ∈ {2,3, . . .}, (4.23)

bk−1 = sk−1 − ak−1 = sk−1 − (n − j)sk−2. (4.24)

Equalities (2.12) follow from (4.20)–(4.24).
(b) Let D = {(n + 1)2 − 4j}1/2. We then have

EYnj = j

nD
·
{ ∞∑

k=2

k

(
t1

n

)k−1

−
∞∑

k=2

k

(
t2

n

)k−1
}

. (4.25)

Note that
∑∞

k=2 kqk−1 = 2q−q2

(1−q)2 for |q| < 1. We now get

EYnj = j

nD
·
{

t1(2n − t1)

(n − t1)2
− t2(2n − t2)

(n − t2)2

}
. (4.26)
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Since t1 = (n − 1 + D)/2, t2 = (n − 1 − D)/2, 2n − t1 = (3n + 1 − D)/2, 2n − t2 = (3n + 1 +
D)/2, n − t1 = (n + 1 − D)/2 and n − t2 = (n + 1 + D)/2, the mean EYnj can be represented
in the form

EYnj = j

nD
· U1

V1
, (4.27)

where U1 and U2 can be transformed in the following way:

U1 = (n − 1 + D)(n + 1 + D)2(3n + 1 − D)

− (n − 1 − D)(n + 1 − D)2(3n + 1 + D)

= (n2 + 2nD + D2 − 1)(3n2 + 4n + 2nD + 1 − D2)

− (n2 − 2nD + D2 − 1)(3n2 + 4n − 2nD + 1 − D2)

= 16nD(n2 + n).

It also follows that V1 = (n + 1 − D)2(n + 1 + D)2 = 16j2. The first of the equalities (2.15)
follows easily from (4.27). Let us now determine varYnj . We have

E(Y 2
nj ) = j

nD
·
{ ∞∑

k=2

k2
(

t1

n

)k−1

−
∞∑

k=2

k2
(

t2

n

)k−1
}

. (4.28)

Since
∑∞

k=2 k2qk−1 = q3−3q2+4q

(1−q)3 for |q| < 1, we obtain

EY 2
nj = j

nD
·
{

t3
1 − 3nt2

1 + 4n2t1

(n − t1)2
− t3

1 − 3nt2
1 + 4n2t1

(n − t1)2

}
= j

nD
·
{

(n − 1 + D)3 − 6(n − 1 + D)2 + 16n2(n − 1 + D)

(n + 1 − D)3

− (n − 1 − D)3 − 6n(n − 1 − D)2 + 16n2(n − 1 − D)

(n + 1 + D)3

}
= j

nD
· U2

V2
,

where V2 = (n + 1 − D)3(n + 1 + D)3 = 64j3 and

U2 = {(n − 1 + D)3 − 6n(n − 1 + D)2 + 16n2(n − 1 + D)} · (n + 1 + D)3

− {(n − 1 − D)3 − 6n(n − 1 − D)2 + 16n2(n − 1 − D)} · (n + 1 − D)3

= (n2 + 2nD + D2 − 1)3 − (n2 − 2nD + D2 − 1)3

− 6n{(n + 1 + D)(n2 + 2nD + D2 − 1)2

− (n + 1 − D)(n2 − 2nD + D2 − 1)2}
+ 16n2{(n + 1 + D)2(n2 + 2nD + D2 − 1)

− (n + 1 − D)2(n2 − 2nD + D2 − 1)}.
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Let M = n2 + D2 − 1 = 2n2 + 2n − 4j . Since D2 = (n + 1)2 − 4j , we get

U2 = 4nD{(M + 2nD)2 + (M + 2nD)(M − 2nD) + (M − 2nD)2}
− 6n{(n + 1 + D)(M + 2nD)2 − (n + 1 − D)(M − 2nD)2}
+ 16n2{(n + 1 + D)2(M + 2nD) − (n + 1 − D)2(M − 2nD)}

= 4nD(3M2 + 4n2D2) − 12nD{4n(n + 1)M + M2 + 4n2D2}
+ 64n2D{(n + 1)M + n(n + 1)2 + nD2}

= 64nD(2n4 + 4n3 + 2n2 − 3n2j − nj)

and, consequently,

EY 2
nj = j

nD
· U2

V2
= 1

j2
(2n4 + 4n3 + 2n2 − 3n2j − nj). (4.29)

The second of the equalities (2.15) follows from (4.29) and EYnj = (n2 + n)/j . �

Proof of Theorem 2.3. For any positive integer n, let

Hn = 1 + 1

2
+ · · · + 1

n
, H(2)

n = 1 + 1

22
+ · · · + 1

n2
. (4.30)

The equalities

Hn = lnn + γ + 1

2n
− 1

12n2
+ 1

120n4
− εn

252n6
, (4.31)

H(2)
n = π2

6
− 1

n
+ ϑn

n(n + 1)
, (4.32)

hold, where 0 < εn < 1 and 0 < ϑn < 1. The equality (4.31) can be found in Graham, Knuth and
Patashnik (1994), page 480, and (4.32) can easily be proven. Since

ESn,an = (n2 + n)(Hn − Hn−an), (4.33)

relations concerning the asymptotic behavior of ESn,an follow from (4.31) and (4.33). Similarly,
using (4.31), (4.32) and the second of the equalities (2.15), we get relations concerning the as-
ymptotic behavior of varSn,an . �

5. Proofs of Theorems 3.1, 3.2 and 3.3

Let D = D(j) = {(n + 1)2 − 4j}1/2 and let t1 = t1(j) and t2 = t2(j) be given by (2.13)
and (2.14). In the sequel, we shall use the following series expansions and approximations that
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follow from them:

D = n

(
1 + 1

n
− 2j

n2
+ 2j

n3
− 2j + 2j2

n4
+ 2j + 6j2

n5
− · · ·

)
, (5.1)

D−1 = 1

n

(
1 − 1

n
+ 1 + 2j

n2
− 1 + 6j

n3
+ · · ·

)
, (5.2)

t1 = n

(
1 − j

n2
+ j

n3
− j + j2

n4
+ j + 3j2

n5
− · · ·

)
, (5.3)

t2 = −1 + j

n
− j

n2
+ j + j2

n3
− j + 3j2

n4
− · · · , (5.4)

n − t1 = j

n

(
1 − 1

n
+ 1 + j

n2
− 1 + 3j

n3
− · · ·

)
. (5.5)

Proof of Theorem 3.1. Let us determine the characteristic function of the random variable Ynj .
Using (2.12), we obtain

fnj (t) = j

nD

{ ∞∑
k=2

eitk
(

t1

n

)k−1

−
∞∑

k=2

eitk
(

t2

n

)k−1
}

= j

t1D
·

∞∑
k=2

(
eit t1

n

)k

− j

t2D
·

∞∑
k=2

(
eit t2

n

)k

= j

t1D
· e2it t2

1 /n2

1 − eit t1/n
− j

t2D
· e2it t2

2 /n2

1 − eit t2/n

= j

t1D
· e2it t2

1 /n2

1 − eit t1/n

{
1 − t2

t1
· 1 − eit t1/n

1 − eit t2/n

}
.

Consequently, we get that the characteristic function of the random variable Ynj can be repre-
sented in the form

fnj (t) = j

t1

(
t1

n

)2(
1 + 2

n
+ 1 − 4j

n2

)−1/2{
1 − t2

t1
· 1 − eit t1/n

1 − eit t2/n

}
e2it

n − t1eit
. (5.6)

If j/n → 1 as n → ∞, then

lim
n→∞

j

t1

(
t1

n

)2(
1 + 2

n
+ 1 − 4j

n2

)−1/2{
1 − t2

t1
· 1 − eit/nt1/n

1 − eit/nt2/n

}
= 1 (5.7)

and hence the asymptotic behavior of fYnj /n(t) is given by

fYnj /n(t) ∼ e2it/n

n − t1eit/n
, n → ∞. (5.8)
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The relations

|n − t1eit/n|2 =
∣∣∣∣n − t1 cos

t

n
− it1 sin

t

n

∣∣∣∣2

= n2 + t2
1 − 2nt1 cos

t

n

= (n − t1)
2 + 2nt1

(
1 − cos

t

n

)
→ 1 + t2 as n → ∞, j/n → 1,

argfYnj /n(t) ∼ arg
e2it

n − t1eit/n
= 2t

n
− arctan

−t1 sin(t/n)

n − t1 cos(t/n)

= 2t

n
− arctan

−t + o(1)

1 + o(1)
→ arctan t as n → ∞

hold, where we again used the assumption that j/n → 1 as n → ∞. Hence, fYnj /n(t) → (1 +
t2)−1/2ei·arctan t as n → ∞. Consequently, if an = k, where k is a fixed positive integer, we get
that (Ynn +· · ·+Yn,n−k+1)/n converges in distribution to a random variable whose characteristic
function is given by (3.1). �

Proof of Theorem 3.2. Using (5.6), we obtain that the characteristic function of the sum Sn,an

can be represented in the following way:

fSn,an
(t) =

n∏
j=n−an+1

fnj (t) = Pn1 · Pn2 · Pn3(t) · Pn4(t), (5.9)

where Pn1, Pn2, Pn3(t) and Pn4(t) are given by

Pn1 =
n∏

j=n−an+1

t1(j)

n
, (5.10)

Pn2 =
n∏

j=n−an+1

(
1 + 2

n
+ 1 − 4j

n2

)−1/2

, (5.11)

Pn3(t) =
n∏

j=n−an+1

{
1 − t2(j)

t1(j)
· 1 − eit · t1(j)/n

1 − eit · t2(j)/n

}
, (5.12)

Pn4(t) =
n∏

j=n−an+1

e2it

n2

j
(1 − (t1/n)eit )

. (5.13)

Lemma 5.1. If an/n → λ ∈ [0,1] as n → ∞, then the following relation holds:

lim
n→∞Pn1 = e−λ+λ2/2. (5.14)
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Proof. The relations

1 − j

n2
+ c1

n2
≤ t1(j)

n
≤ 1 − j

n2
+ c2

n2
, (5.15)

ln(1 + x) = x + r1(x), |r1(x)| ≤ |x|2, for |x| < 1, (5.16)

hold, where constants c1 and c2 do not depend on j . Consequently, we get

lnPn1 ∼ − 1

n2

n∑
j=n−an+1

j = − 1

n2
· (2n − an + 1)an

2
= −an

n
+ a2

n

2n2
− an

2n2
(5.17)

and the statement of the lemma follows easily. �

Lemma 5.2. If an/n → λ ∈ [0,1] as n → ∞, then the following relation holds:

lim
n→∞Pn2 = eλ−λ2

. (5.18)

Proof. The statement of the lemma follows from the following relations:

lnPn2 = −1

2

n∑
j=n−an+1

ln

(
1 + 2

n
+ 1 − 4j

n2

)
∼ −1

2

n∑
j=n−an+1

2n − 4j

n2

= − 1

n2

n∑
j=n−an+1

(n − 2j) = an

n
− a2

n

n2
+ an

n2
.

�

Lemma 5.3. If τ 2
n is the main term of σ 2

n determined by (2.16)–(2.18), τn > 0 and an → ∞ as
n → ∞, then for any real t the following equality holds:

lim
n→∞Pn3

(
t

τn

)
= 1. (5.19)

Proof. Using (2.13) and (2.14), it is easy to prove that the following inequalities hold for any
j ∈ {1,2, . . . , n}:

−1

n
≤ t2(j)

t1(j)
≤ 0 ≤ 1 − t1(j)

n
≤ 1

n
. (5.20)

For sufficiently large n, the inequality 1 − 1
n

≤ cos t
τn

≤ 1 also holds and for such values of n, we
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obtain

|1 − eit/τn · (t1/n)|2
|1 − eit/τn · (t2/n)|2 = 1 − (2t1/n) cos(t/τn) + t2

1 /n2

1 − (2t2/n) cos(t/τn) + t2
2 /n2

≤ 1 + (2t1/n)(1/n − 1) + t2
1 /n2

1 − 2t2/n + t2
2 /n2

= (1 − t1/n)2 + 2t1/n
2

(1 − t2/n)2
(5.21)

≤ 1

n2
+ 2

n
≤ 3

n
.

Using the first of the inequalities (5.19) and the inequality (5.20), we obtain from (5.12) that
argPn3(t/τn) → 0 and Pn3(t/τn) → 1 as n → ∞ for every real t . �

Lemma 5.4. Let τ 2
n be the main term of σ 2

n , τn > 0 and suppose that an → ∞ and bn = n−an →
∞ as n → ∞. For any real t , the following asymptotic relations then hold as n → ∞:

ln

∣∣∣∣Pn4

(
t

τn

)∣∣∣∣ ∼ a2
n

2n2
− n4t2

2τ 2
n

(
H(2)

n − H
(2)
n−an

); (5.22)∣∣∣∣Pn4

(
t

τn

)∣∣∣∣ → exp

(
λ2

2
− t2

2

)
if

an

n
→ λ ∈ [0,1]. (5.23)

Proof. (a) We shall use the following inequalities:

1 − 1

n
≤ t1

n
≤ 1, (5.24)

t2

2τ 2
n

− t4

24τ 4
n

≤ 1 − cos
t

τn

≤ t2

2τ 2
n

, (5.25)

1 − 2

n
+ c1

n2
≤ n4

j2

(
1 − t1

n

)2

≤ 1 − 2

n
+ 2j

n2
+ c2

n2
, (5.26)

where the constants c1 and c2 do not depend on j . Inequalities (5.24) and (5.25) are straightfor-
ward exercises and (5.26) follows from the equality

n4

j2

(
1 − t1

n

)2

= n4

2j2n2

{
2(n + 1)2 − 4j − 2n(n + 1)

(
1 + 2

n
+ 1 − 4j

n2

)1/2}
. (5.27)

Using the equality ∣∣∣∣1 − t1

n
eit/τn

∣∣∣∣2

=
(

1 − t1

n

)2

+ 2t1

n

(
1 − cos

t

τn

)
(5.28)
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and inequalities (5.24)–(5.26), we get

1 − 2

n
+ 2j

n2
+ c1

n2
+ 2n4

j2

(
1 − 1

n

)(
t2

2τ 2
n

− t4

24τ 4
n

)
≤ n4

j2

∣∣∣∣1 − t1

n
eit/τn

∣∣∣∣2

(5.29)

n4

j2

∣∣∣∣1 − t1

n
eit/τn

∣∣∣∣2

≤ 1 − 2

n
+ 2j

n2
+ c2

n2
+ n4t2

τ 2
n j2

. (5.30)

It follows from (5.13) that∣∣∣∣Pn4

(
t

τn

)∣∣∣∣ =
{

n∏
j=n−an+1

n4

j2

∣∣∣∣1 − t1(j)

n
eit/τn

∣∣∣∣2
}−1/2

. (5.31)

Finally, using (5.16) and (5.29)–(5.31), we get, as n → ∞,

ln

∣∣∣∣Pn4

(
t

τn

)∣∣∣∣ ∼
n∑

j=n−an+1

ln

(
1 − 2

n
+ 2j

n2
+ n4t2

τ 2
n j2

)−1/2

∼ 1

2

n∑
j=n−an+1

(
2

n
− 2j

n2
− n4t2

τ 2
n j2

)

∼ a2
n

2n2
− n4t2

2τ 2
n

(
H(2)

n − H
(2)
n−an

)
.

(b) Using (4.32) and the main term τ 2
n of variance σ 2

n from relations (2.16)–(2.18), we get
relation (5.23) �

Lemma 5.5. If νn and τ 2
n are the main terms of the mean µn = ESn,an and the variance σ 2

n =
varSn,an , τn > 0 and S∗

n,an
= τ−1

n (Sn,an − νn), then

argfS∗
n,an

(t) = o(1) as n → ∞. (5.32)

Proof. The following equalities hold:

argPn4

(
t

τn

)
= 2tan

τn

−
n∑

j=n−an+1

arg

(
1 − t1(j)

n
eit/τn

)

= 2tan

τn

+
n∑

j=n−an+1

arctan
Nn(t, j)

Dn(t, j)
, (5.33)

where

Nn(t, j) = t1(j)

n
sin

t

τn

, Dn(t, j) = 1 − t1(j)

n
cos

t

τn

. (5.34)
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Case 1. Let an → ∞, an

n
→ 0 as n → ∞. We then have τ 2

n = n2an, τn = na
1/2
n and νn =

−n2 ln(1 − an

n
). For Nn(t, j) and D−1

n (t, j), we obtain

Nn(t, j) = t

na
1/2
n

{
1 − j

n2
+ ϑC

n2

}
, (5.35)

D−1
n (t, j) = n2

j

{
1 + 1

n
− j

n2
− t2

2jan

+ ϑC

n2

}
, (5.36)

Nn(t, j)

Dn(t, j)
= tn

ja
1/2
n

{
1 + 1

n
− 2j

n2
− t2

2jan

+ ϑC

n2

}
. (5.37)

In (5.35)–(5.37) and in relations that will follow C = C(t) > 0 is a constant which does not

depend on j , and ϑ ∈ [−1,1]. Also, note that ϑ may be different at different occurrences. Con-

sequently, we obtain the following results:

argPn4

(
t

τn

)
= 2tan

na
1/2
n

+
n∑

j=n−an+1

tn

ja
1/2
n

{
1 + 1

n
− 2j

n2
− t2

2jan

+ ϑC

n2

}

= 2ta
1/2
n

n
+ tn

a
1/2
n

(
1 + 1

n

)
(Hn − Hn−an)

− 2ta
1/2
n

n
− t3n

2a
3/2
n

(
H(2)

n − H
(2)
n−an

) + o(1)

= − tn

a
1/2
n

(
1 + 1

n

)
ln

(
1 − an

n

)
− t3n

2a
3/2
n

· an

n2

(
1 − an

n

)−1

+ o(1)

= ta
1/2
n − t3

2na
1/2
n

(
1 − an

n

)−1

+ o(1)

= ta
1/2
n + o(1) as n → ∞;

arg
n∏

j=n−an+1

fnj

(
t

na
1/2
n

)
= ta

1/2
n + o(1), n → ∞;

fS∗
n,an

(t) = exp

(
− itνn

na
1/2
n

) n∏
j=n−an+1

fnj

(
t

na
1/2
n

)
;

argfS∗
n,an

(t) = − tνn

na
1/2
n

+ ta
1/2
n + o(1) = o(1), n → ∞. (5.38)
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Case 2. Let an

n
→ λ ∈ (0,1) as n → ∞, and λ0 = λ

1−λ
. We then have τ 2

n = λ0n
3, τn = λ

1/2
0 n3/2

and νn = −n2 ln(1 − an

n
). We now get

Nn(t, j) = t

λ
1/2
0 n3/2

{
1 − j

n2
+ ϑC

n2

}
, (5.39)

D−1
n (t, j) = n2

j

{
1 + 1

n
− 1 + j

n2
− t2

2λ0jn
+ ϑC

n2

}
, (5.40)

Nn(t, j)

Dn(t, j)
= tn1/2

λ
1/2
0 j

{
1 + 1

n
− 2j

n2
− t2

2λ0jn
+ ϑC

n2

}
(5.41)

and, consequently, we obtain the following:

argPn4

(
t

τn

)
= 2tan

λ
1/2
0 n3/2

+
n∑

j=n−an+1

tn1/2

λ
1/2
0 j

{
1 + 1

n
− 2j

n2
− t2

2λ0jn
+ ϑC

n2

}

= 2tan

λ
1/2
0 n3/2

+ tn1/2

λ
1/2
0

(
1 + 1

n

)
(Hn − Hn−an)

− 2tan

λ
1/2
0 n3/2

− t3

2λ
3/2
0 n1/2

(
H(2)

n − H
(2)
n−an

) + o(1)

= tn1/2

λ
1/2
0

(
1 + 1

n

)
(Hn − Hn−an) + o(1)

= tn1/2

λ
1/2
0

(
1 + 1

n

)

×
{

lnn − ln(n − an) + 1

2n
− 1

2(n − an)
+ ϑC

n2

}
+ o(1)

= − tn1/2

λ
1/2
0

ln

(
1 − an

n

)
+ o(1) as n → ∞; (5.42)

arg
n∏

j=n−an+1

fnj

(
t

λ
1/2
0 n3/2

)
= − tn1/2

λ
1/2
0

ln

(
1 − an

n

)
+ o(1), n → ∞;

fS∗
n,an

(t) = exp

(
− itνn

λ
1/2
0 n3/2

) n∏
j=n−an+1

fnj

(
t

λ
1/2
0 n3/2

)
;

argfS∗
n,an

(t) = − tνn

λ
1/2
0 n3/2

− tn1/2

λ
1/2
0

ln

(
1 − an

n

)
+ o(1) = o(1), n → ∞.
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Case 3. Let an

n
→ 1 as n → ∞ and bn = n − an > 0 for all n. We then have τ 2

n = n4b−1
n ,

τn = n2b
−1/2
n and νn = −n2 ln(1 − an

n
) = n2 ln n

bn
. We now get

Nn(t, j) = tb
1/2
n

n2

{
1 − j

n2
+ ϑC

n2

}
, (5.43)

D−1
n (t, j) = n2

j

{
1 + 1

n
− j

n2
− t2bn

2jn2
+ ϑC

n2

}
, (5.44)

Nn(t, j)

Dn(t, j)
= tb

1/2
n

j

{
1 + 1

n
− 2j

n2
− t2bn

2jn2
+ ϑC

n2

}
(5.45)

and, consequently, we obtain the following:

argPn4

(
t

τn

)
= 2tanb

1/2
n

n2
+

n∑
j=n−an+1

tb
1/2
n

j

{
1 + 1

n
− 2j

n2
− t2bn

2jn2
+ ϑC

n2

}

= 2tanb
1/2
n

n2
+ tb

1/2
n

(
1 + 1

n

)
(Hn − Hn−an)

− 2tanb
1/2
n

n2
− t3b

3/2
n

2n2

(
H(2)

n − H
(2)
n−an

) + o(1)

= tb
1/2
n

(
1 + 1

n

)
(Hn − Hn−an) + o(1)

= tb
1/2
n

(
1 + 1

n

)(
lnn − lnbn + 1

2n
− 1

2bn

+ · · ·
)

+ o(1)

= tb
1/2
n ln

n

bn

+ o(1) as n → ∞; (5.46)

arg
n∏

j=n−an+1

fnj

(
tb

1/2
n

n2

)
= tb

1/2
n ln

n

bn

+ o(1), n → ∞;

fS∗
n,an

(t) = exp

(
− itνn

n2b
−1/2
n

) n∏
j=n−an+1

fnj

(
tb

1/2
n

n2

)
;

argfS∗
n,an

(t) = − tνn

n2b
−1/2
n

+ tb
1/2
n ln

n

bn

+ o(1) = o(1), n → ∞.

Finally, using relations (5.9)–(5.14), (5.18), (5.19), (5.23) and (5.32), we obtain that in all cases
considered, fS∗

n,an
(t) → e−t2/2 as n → ∞ and therefore the proof of Theorem 3.2 is comple-

ted. �

Proof of Theorem 3.3. We shall first prove a few lemmas.
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Lemma 5.6. Let X∗
nj , j ∈ {1,2, . . . , n}, be independent random variables with the same proba-

bility distribution,

P {X∗
nj = k} =

[k/2]−1∑
s=0

(
k − 2 − s

s

)(
1 − 1

n

)k−s−2 1

ns+2
, k ≥ 2, (5.47)

and let M∗
n = max{X∗

n1, . . . ,X
∗
nn}. For every real x, the following equality then holds:

lim
n→∞P {M∗

n ≤ n2(x + lnn)} = e−e−x

. (5.48)

Proof. The statements P {M∗
n ≤ un} → e−τ as n → ∞ and n(1 − Fn(un)) → τ as n → ∞ are

equivalent. Hence, (5.48) follows from (2.11). �

Lemma 5.7. If j is a fixed positive integer and n → ∞, then the following asymptotic relation
holds:

P {Ynj > n2(x + lnn)} = e−jx

nj

{
1 + j (x + lnn)

n
+ O

((
lnn

n

)2)}
. (5.49)

Proof. Let un = n2(x + lnn) and rn = un − [un]. Using (2.12), we obtain that

P {Ynj > un} = P {Ynj > [un]}

= j

(n − t1){(n + 1)2 − 4j}1/2
·
(

t1

n

)[un]

− j

(n − t2){(n + 1)2 − 4j}1/2
·
(

t2

n

)[un]

≡ A1 − A2.

Using (5.1), (5.3) and (5.5), we obtain that

lnA1 = ln j − ln(n − t1) − ln{(n + 1)2 − 4j}1/2 + (un − rn) ln(t1/n)

= ln j − ln j + lnn − ln

(
1 − 1

n
+ O

(
1

n2

))
− lnn − ln

(
1 + 1

n
+ O

(
1

n2

))
+ {n2(x + lnn) − rn} ln

(
1 − j

n2
+ j

n3
+ O

(
1

n4

))
= −j (x + lnn) + j (x + lnn)

n
+ O

(
lnn

n2

)
and, consequently,

A1 = e−jx

nj

{
1 + j (x + lnn)

n
+ O

((
lnn

n

)2)}
. (5.50)
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Since t2/n ∼ −1/n as n → ∞, A2 is negligible in P {Ynj > un} = A1 −A2 and hence the equal-
ity (5.49) follows from (5.50). �

Lemma 5.8. Let pnj = P {Ynj > n2(x + lnn)}. For any positive integer j ≥ 2, the following
relation holds as n → ∞:

pnj − pn,j−1pn1 = e−jx

nj+1
· o(1). (5.51)

Proof. Relation (5.51) follows from (5.49). �

Lemma 5.9. Let x be a real number and k and l positive integers, such that k + l ≤ n. There
then exists a constant C(x) such that for un = n2(x + lnn), the inequality∣∣∣∣∣P

(
k+l⋂
i=1

{Xni ≤ un}
)

− P

(
k⋂

i=1

{Xni ≤ un}
)

P

(
k+l⋂

i=k+1

{Xni ≤ un}
)∣∣∣∣∣

≤ C(x)min{k, l} 1

n2
≤ C(x)

n

holds, that is, the condition D(un) is satisfied, where this condition is defined in Chapter 3,
Section 3.2 of Leadbetter et al. (1983).

Proof. Let

	n(k,1) = P

(
k+1⋂
j=1

{Xnj ≤ un}
)

− P

(
k⋂

j=1

{Xnj ≤ un}
)

· P {Xn,k+1 ≤ un},

Dj = {Xnj > un}, j = 1,2, . . . , k and A = {Xn,k+1 > un}.
We then have

	n(k,1) = P(Dc
1 . . .Dc

kA
c) − P(Dc

1 . . .Dc
k)P (Ac)

= 1 − P(D1 ∪ · · · ∪ Dk ∪ A) − (
1 − P(D1 ∪ · · · ∪ Dk)

)(
1 − P(A)

)
= P

(
(D1 ∪ · · · ∪ Dk) ∩ A

) − P(D1 ∪ · · · ∪ Dk)P (A)

= P(D1A ∪ · · · ∪ DkA) − P(D1 ∪ · · · ∪ Dk)P (A).

Using the inclusion–exclusion principle, we obtain that

	n(k,1) =
k+1∑
m=2

(−1)m
(

k

m − 1

)
(pnm − pn,m−1pn1). (5.52)

Using (5.51) and (5.52), we get the statement of the lemma, first for integers k and l = 1, then
for arbitrary k and l, where k + l ≤ n. �
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Lemma 5.10. For un = un(x) = n2(x + lnn), the condition D′(un) is satisfied (this condition is
defined in Chapter 3, Section 3.4 of Leadbetter et al. (1983)):

lim
k→∞ lim sup

n→∞
n ·

[n/k]∑
j=2

P {Xn1 > un,Xnj > un} = 0. (5.53)

Proof. It follows from (2.9) that P {Xn1 > un,Xnj > un} = P {Yn2 > un} holds for every j ≥ 2.
Hence, as n → ∞, we get

n

[n/k]∑
j=2

P {Xn1 > un,Xnj > un} = n

([
n

k

]
− 1

)
e−2x

n2

(
1 + o(1)

)
= e−2x

k

(
1 + o(1)

)
and, consequently, (5.53) holds.

Now, Theorem 3.3 follows from Lemma 5.6, Lemma 5.9, Lemma 5.10 and Theorem 5.3.1
from Leadbetter, Lindgren and Rootzén (1983). �
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