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For a distribution F ∗τ of a random sum Sτ = ξ1 + · · · + ξτ of i.i.d. random variables with a common
distribution F on the half-line [0,∞), we study the limits of the ratios of tails F ∗τ (x)/F (x) as x → ∞
(here, τ is a counting random variable which does not depend on {ξn}n≥1). We also consider applications
of the results obtained to random walks, compound Poisson distributions, infinitely divisible laws, and
subcritical branching processes.
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1. Introduction

Let ξ, ξ1, ξ2, . . . , be independent identically distributed non-negative random variables. We as-
sume that their common distribution F on the half-line [0,∞) has an unbounded support, that
is, F(x) ≡ F(x,∞) > 0 for all x. Put S0 = 0 and Sn = ξ1 + · · · + ξn, n = 1,2, . . . .

Let τ be a counting random variable which does not depend on {ξn}n≥1 and which has finite
mean. Denote by F ∗τ the distribution of a randomly stopped sum Sτ = ξ1 + · · · + ξτ .

In this paper, we discuss how the tail behavior of F ∗τ relates to that of F and, in particular,
under what conditions

lim inf
x→∞

F ∗τ (x)

F (x)
= Eτ. (1)

Relations on lower limits of ratios of tails were first discussed by Rudin [21]. Theorem 2∗ of that
paper states (for an integer p) the following.

Theorem 1. Suppose there exists a positive p ∈ [1,∞) such that Eξp = ∞, but Eτp < ∞. Then
(1) holds.
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Rudin’s studies were motivated by Chover, Ney and Wainger [7] who considered, in particular,
the problem of existence of a limit for the ratio

F ∗τ (x)

F (x)
as x → ∞. (2)

From Theorem 1, it follows that if F and τ satisfy its conditions and if a limit of (2) exists, then
that limit must equal Eτ .

Rudin proved Theorem 1 via probability generating function techniques. Below, we give an
alternative and more direct proof of Theorem 1 in the case of any positive p (i.e., not necessarily
integer). Our method is based on truncation arguments; in this way, we propose a general scheme
(see Theorem 4 below) which may also be applied to distributions having all moments finite.

The condition Eξp = ∞ rules out many distributions of interest in, say, the theory of subexpo-
nential distributions. For example, log-normal and Weibull-type distributions have all moments
finite. Our first result presents a natural condition on a stopping time τ guaranteeing relation (1)
for the whole class of heavy-tailed distributions.

Recall that a random variable ξ has a light-tailed distribution F on [0,∞) if Eeγ ξ < ∞ with
some γ > 0. Otherwise, F is called a heavy-tailed distribution; this happens if and only if Eeγ ξ =
∞ for all γ > 0.

Theorem 2. Let F be a heavy-tailed distribution and τ have a light-tailed distribution. Then (1)
holds.

The proof of Theorem 2 is based on a new technical tool (see Lemma 2) and significantly
differs from the proof of Theorem 1 in Foss and Korshunov [15], where the particular case τ = 2
was considered. Theorem 2 is restricted to the case of light-tailed τ , but here, we extend Rudin’s
result to the class of all heavy-tailed distributions. The reasons for the restriction to Eeγ τ < ∞
come from the proof of Theorem 2, but are, in fact, rather natural: the tail of τ should be lighter
than the tail of any heavy-tailed distribution. Indeed, if ξ1 ≥ 1, then F ∗τ (x) ≥ P{τ > x}. This
shows that the tail of F ∗τ is at least as heavy as that of τ . Note that in Theorem 1, in some sense,
the tail of F is heavier than the tail of τ .

Theorem 2 may be applied in various areas where randomly stopped sums appear; see Sections
8–11 (random walks, compound Poisson distributions, infinitely divisible laws and branching
processes) and, for instance, Kalashnikov [17] for further examples.

For any distribution on [0,∞), let

ϕ(γ ) =
∫ ∞

0
eγ xF (dx) ∈ (0,∞], γ ∈ R,

and

γ̂ = sup{γ :ϕ(γ ) < ∞} ∈ [0,∞].
Note that the moment generating function ϕ(γ ) is increasing and continuous in the interval
(−∞, γ̂ ) and that ϕ(γ̂ ) = limγ↑γ̂ ϕ(γ ) ∈ [1,∞]. The following result was proven in Foss and
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Korshunov [15], Theorem 3. Let

F ∗ F(x)

F (x)
→ c as x → ∞,

where c ∈ (0,∞]. Then, necessarily, c = 2ϕ(γ̂ ). We state now a generalization to τ -fold convo-
lution.

Theorem 3. Let ϕ(γ̂ ) < ∞ and E(ϕ(γ̂ ) + ε)τ < ∞ for some ε > 0. Assume that

F ∗τ (x)

F (x)
→ c as x → ∞,

where c ∈ (0,∞]. Then c = E(τϕτ−1(γ̂ )).

For (comments on) earlier partial results in the case τ = 2, see, for example, Chover, Ney
and Wainger [6,7], Cline [8], Embrechts and Goldie [10], Foss and Korshunov [15], Pakes [19],
Rogozin [20], Teugels [23] and further references therein. The proof of Theorem 3 follows from
Lemmas 3 and 4 in Section 7.

2. Preliminary result

We start with the following result.

Theorem 4. Assume that there exists a non-decreasing concave function h : R+ → R+ such that

Eeh(ξ) < ∞ and Eξeh(ξ) = ∞. (3)

For any n ≥ 1, put An = Eeh(ξ1+···+ξn). Assume that F is heavy-tailed and that

EτAτ−1 < ∞. (4)

Then, for any light-tailed distribution G on [0,∞),

lim inf
x→∞

G ∗ F ∗τ (x)

F (x)
= Eτ. (5)

By considering G concentrated at 0, we get the following.

Corollary 1. In the conditions of Theorem 4, (1) holds.

In order to prove Theorem 4, first we restate Theorem 1∗ of Rudin [21] (in Lemma 1 below)
in terms of probability distributions and stopping times.
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Lemma 1. For any distribution F on [0,∞) with unbounded support and any counting random
variable τ ,

lim inf
x→∞

F ∗τ (x)

F (x)
≥ Eτ.

Proof. For any two distributions F1 and F2 on [0,∞) with unbounded supports,

F1 ∗ F2(x) ≥ (F1 × F2)
(
(x,∞) × [0, x]) + (F1 × F2)

([0, x] × (x,∞)
)

∼ F 1(x) + F 2(x) as x → ∞.

By induction arguments, this implies that, for any n ≥ 1,

lim inf
x→∞

F ∗n(x)

F (x)
≥ n.

Applying Fatou’s lemma to the representation

F ∗τ (x)

F (x)
=

∞∑
n=1

P{τ = n}F
∗n(x)

F (x)
,

completes the proof. �

Proof of Theorem 4. It follows from Lemma 1 that it is sufficient to prove the following in-
equality:

lim inf
x→∞

G ∗ F ∗τ (x)

F (x)
≤ Eτ.

Assume the contrary, that is, that there exist δ > 0 and x0 such that

G ∗ F ∗τ (x) ≥ (Eτ + δ)F (x) for all x > x0. (6)

For any positive b > 0, consider a concave function

hb(x) ≡ min{h(x), bx}, (7)

which is non-negative because h ≥ 0. Since F is heavy-tailed, h(x) = o(x) as x → ∞. Therefore,
for any fixed b, there exists x1 such that hb(x) = h(x) for all x > x1. Hence, by condition (3),

Eehb(ξ) < ∞ and Eξehb(ξ) = ∞. (8)

For any x, we have the convergence hb(x) ↓ 0 as b ↓ 0. Then, for any fixed n,

An,b ≡ Eehb(ξ1+···+ξn) ↓ 1 as b ↓ 0.
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This and condition (4) together imply that there exists b such that

EτAτ−1,b ≤ Eτ + δ/8. (9)

Let η be a random variable with distribution G which does not depend on {ξn}n≥1 and τ . Since
G is light-tailed,

Eηehb(η) < ∞. (10)

In addition, we may choose b > 0 sufficiently small that

Eehb(η)(Eτ + δ/8) ≤ Eτ + δ/4. (11)

For any real a and t , put a[t] = min{a, t}. Then

E(η + ξ
[t]
1 + · · · + ξ

[t]
τ )ehb(η+ξ1+···+ξτ )

Eξ
[t]
1 ehb(ξ1)

=
∞∑

n=1

Eηehb(η+ξ1+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n}

+
∞∑

n=1

n
Eξ

[t]
1 ehb(η+ξ1+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n}.

By the concavity of the function hb ,

∞∑
n=1

Eηehb(η+ξ1+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n} ≤
∞∑

n=1

Eηehb(η)+hb(ξ1+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n}

= Eηehb(η)

Eξ
[t]
1 ehb(ξ1)

EAτ,b

→ 0 as t → ∞,

due to (10), (9) and (8). Again, by the concavity of the function hb ,

∞∑
n=1

n
Eξ

[t]
1 ehb(η+ξ1+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n} ≤
∞∑

n=1

n
Eξ

[t]
1 ehb(η)+hb(ξ1)+hb(ξ2+···+ξn)

Eξ
[t]
1 ehb(ξ1)

P{τ = n}

= Eehb(η)
∞∑

n=1

nAn−1,bP{τ = n}

≤ Eτ + δ/4,

by (9) and (11). Hence, for sufficiently large t ,

E(η + ξ
[t]
1 + · · · + ξ

[t]
τ )ehb(η+ξ1+···+ξτ )

Eξ
[t]
1 ehb(ξ1)

≤ Eτ + δ/2. (12)
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On the other hand, since (η + ξ1 + · · · + ξτ )
[t] ≤ η + ξ

[t]
1 + · · · + ξ

[t]
τ ,

E(η + ξ
[t]
1 + · · · + ξ

[t]
τ )ehb(η+ξ1+···+ξτ )

Eξ
[t]
1 ehb(ξ1)

≥ E(η + ξ1 + · · · + ξτ )
[t]ehb(η+ξ1+···+ξτ )

Eξ
[t]
1 ehb(ξ1)

=
∫ ∞

0 x[t]ehb(x)(G ∗ F ∗τ )(dx)∫ ∞
0 x[t]ehb(x)F (dx)

. (13)

The right-hand side, after integration by parts, is equal to∫ ∞
0 G ∗ F ∗τ (x)d(x[t]ehb(x))∫ ∞

0 F(x)d(x[t]ehb(x))
.

Since Eξ1ehb(ξ1) = ∞, both integrals in this fraction tend to infinity as t → ∞. For the non-
decreasing function hb(x), the latter fact and assumption (6) together imply that

lim inf
t→∞

∫ ∞
0 G ∗ F ∗τ (x)d(x[t]ehb(x))∫ ∞

0 F(x)d(x[t]ehb(x))
= lim inf

t→∞

∫ ∞
x0

G ∗ F ∗τ (x)d(x[t]ehb(x))∫ ∞
x0

F(x)d(x[t]ehb(x))
≥ Eτ + δ.

Substituting this into (13), we get a contradiction of (12) for sufficiently large t . The proof is thus
complete. �

3. Proof of Theorem 1

Take an integer k ≥ 0 such that p − 1 ≤ k < p. Without loss of generality, we may assume that
Eξk < ∞ (otherwise, we may consider a smaller p).

Consider a concave non-decreasing function h(x) = (p − 1) lnx. Then Eeh(ξ1) < ∞ and
Eξ1eh(ξ1) = ∞. Thus,

An ≡ Eeh(ξ1+···+ξn) = E(ξ1 + · · · + ξn)
p−1

≤ (
E(ξ1 + · · · + ξn)

k
)(p−1)/k

since (p − 1)/k ≤ 1. Further,

E(ξ1 + · · · + ξn)
k =

n∑
i1,...,ik=1

E(ξi1 · · · · · ξik ) ≤ cnk,

where

c ≡ sup
1≤i1,...,ik≤n

E(ξi1 · · · · · ξik ) < ∞,

due to the fact that Eξk < ∞. Hence, An ≤ c(p−1)/knp−1 for all n. Therefore, we get EτAτ−1 ≤
c(p−1)/kEτp < ∞. All conditions of Theorem 4 are met and the proof is complete.
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4. Characterization of heavy-tailed distributions

In the sequel, we need the following existence result which strengthens a lemma in Rudin [21],
page 989; and Lemma 1 in Foss and Korshunov [15]. Fix any δ ∈ (0,1].

Lemma 2. If a random variable ξ ≥ 0 has a heavy-tailed distribution, then there exists a non-
decreasing concave function h : R+ → R+ such that Eeh(ξ) ≤ 1 + δ and Eξeh(ξ) = ∞.

Proof. Without loss of generality, assume that ξ > 0 a.s., that is, that F(0) = 1. We will construct
a piecewise linear function h(x). For that, we introduce two positive sequences, xn ↑ ∞ and
εn ↓ 0 as n → ∞, and let

h(x) = h(xn−1) + εn(x − xn−1) if x ∈ (xn−1, xn], n ≥ 1.

This function is non-decreasing since εn > 0. Moreover, this function is concave due to the
monotonicity of εn.

Put x0 = 0 and h(0) = 0. Since ξ is heavy-tailed, we can choose x1 ≥ 2 so that

E{eξ ; ξ ∈ (x0, x1]} + ex1F(x1) > 1 + δ.

Choose ε1 > 0 so that

E{eε1ξ ; ξ ∈ (x0, x1]} + eε1x1F(x1) = eh(x0)F (0) + δ/2 = 1 + δ/2,

which is equivalent to

E
{
eh(ξ); ξ ∈ (x0, x1]

} + eh(x1)F (x1) = eh(x0)F (0) + δ/2.

By induction, we construct an increasing sequence xn and a decreasing sequence εn > 0 such
that xn ≥ 2n and

E
{
eh(ξ); ξ ∈ (xn−1, xn]

} + eh(xn)F (xn) = eh(xn−1)F (xn−1) + δ/2n

for any n ≥ 2. For n = 1, this is already done. Make the induction hypothesis for some n ≥ 2.
Due to heavy-tailedness, there exists xn+1 ≥ 2n+1 sufficiently large that

E
{
eεn(ξ−xn); ξ ∈ (xn, xn+1]

} + eεn(xn+1−xn)F (xn+1) > 1 + δ.

Note that

E
{
eεn+1(ξ−xn); ξ ∈ (xn, xn+1]

} + eεn+1(xn+1−xn)F (xn+1)

as a function of εn+1 is continuously decreasing to F(xn) as εn+1 ↓ 0. Therefore, we can choose
εn+1 ∈ (0, εn) so that

E
{
eεn+1(ξ−xn); ξ ∈ (xn, xn+1]

} + eεn+1(xn+1−xn)F (xn+1)

= F(xn) + δ/
(
2n+1eh(xn)

)
.
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By definition of h(x), this is equivalent to the following equality:

E
{
eh(ξ); ξ ∈ (xn, xn+1]

} + eh(xn+1)F (xn+1) = eh(xn)F (xn) + δ/2n+1.

Our induction hypothesis now holds with n + 1 in place of n, as required.
Next,

Eeh(ξ) =
∞∑

n=0

E
{
eh(ξ); ξ ∈ (xn, xn+1]

}

=
∞∑

n=0

(
eh(xn)F (xn) − eh(xn+1)F (xn+1) + δ/2n+1)

= eh(x0)F (x0) + δ = 1 + δ.

On the other hand, since xk ≥ 2k ,

E
{
ξeh(ξ); ξ > xn

} =
∞∑

k=n

E
{
ξeh(ξ); ξ ∈ (xk, xk+1]

}

≥ 2n

∞∑
k=n

E
{
eh(ξ); ξ ∈ (xk, xk+1]

}

≥ 2n

∞∑
k=n

(
eh(xk)F (xk) − eh(xk+1)F (xk+1) + δ/2k+1).

Then, for any n,

E
{
ξeh(ξ); ξ > xn

} ≥ 2n
(
eh(xn)F (xn) + δ/2n

) ≥ δ,

which implies that Eξeh(ξ) = ∞. Also note that, necessarily, limn→∞ εn = 0; otherwise,
lim infx→∞ h(x)/x > 0 and ξ is light-tailed. The proof of the lemma is thus complete. �

5. Proof of Theorem 2

Since τ has a light-tailed distribution,

Eτ(1 + ε)τ−1 < ∞
for some sufficiently small ε > 0. By Lemma 2, there exists a concave increasing function h,
h(0) = 0, such that Eeh(ξ1) ≤ 1 + ε and Eξ1eh(ξ1) = ∞. Then, by concavity,

An ≡ Eeh(ξ1+···+ξn) ≤ Eeh(ξ1)+···+h(ξn) ≤ (1 + ε)n.

Combining, we get EτAτ−1 < ∞. All conditions of Theorem 4 are met and the proof is thus
complete.
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6. Fractional exponential moments

One can go further and obtain various results on lower limits and equivalences for heavy-tailed
distributions F which have all finite power moments (e.g., Weibull and log-normal distributions).
For instance, we have the following result (see Denisov, Foss and Korshunov [9] for the proof).

Suppose there exists α, 0 < α < 1, such that Eecξα = ∞ for all c > 0. If Eeδτα
< ∞ for some

δ > 0, then (1) holds.

7. Tail equivalence for randomly stopped sums

The following auxiliary lemma compares the tail behavior of the convolution tail and that of the
exponentially transformed distribution.

Lemma 3. Let the distribution F and the number γ ≥ 0 be such that ϕ(γ ) < ∞. Let the
distribution G be the result of the exponential change of measure with parameter γ , that is,
G(du) = eγ uF (du)/ϕ(γ ). Let τ be any counting random variable such that Eϕτ (γ ) < ∞ and
let ν have the distribution P{ν = k} = ϕk(γ )P{τ = k}/Eϕτ (γ ). Then

lim inf
x→∞

G∗ν(x)

G(x)
≥ 1

Eϕτ−1(γ )
lim inf
x→∞

F ∗τ (x)

F (x)

and

lim sup
x→∞

G∗ν(x)

G(x)
≤ 1

Eϕτ−1(γ )
lim sup
x→∞

F ∗τ (x)

F (x)
.

Proof. Put

ĉ ≡ lim inf
x→∞

F ∗τ (x)

F (x)
.

By Lemma 1, ĉ ∈ [Eτ,∞]. For any fixed c ∈ (0, ĉ), there exists x0 > 0 such that, for any x > x0,

F ∗τ (x) ≥ cF (x). (14)

By the total probability law,

G∗ν(x) =
∞∑

k=1

P{ν = k}G∗k(x)

=
∞∑

k=1

ϕk(γ )P{τ = k}
Eϕτ (γ )

∫ ∞

x

eγy F ∗k(dy)

ϕk(γ )

= 1

Eϕτ (γ )

∞∑
k=1

P{τ = k}
∫ ∞

x

eγyF ∗k(dy).
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Integrating by parts, we obtain

∞∑
k=1

P{τ = k}
[

eγ xF ∗k(x) +
∫ ∞

x

F ∗k(y)deγy

]
= eγ xF ∗τ (x) +

∫ ∞

x

F ∗τ (y)deγy.

Also using (14) we get, for x > x0,

G∗ν(x) ≥ c

Eϕτ (γ )

[
eγ xF (x) +

∫ ∞

x

F (y)deγy

]

= c

Eϕτ (γ )

∫ ∞

x

eγyF (dy) = c

Eϕτ−1(γ )
G(x).

Letting c ↑ ĉ, we obtain the first conclusion of the lemma. The proof of the second conclusion
follows similarly. �

Lemma 4. If 0 < γ̂ < ∞, ϕ(γ̂ ) < ∞ and E(ϕ(γ̂ ) + ε)τ < ∞ for some ε > 0, then

lim inf
x→∞

F ∗τ (x)

F (x)
≤ Eτϕτ−1(γ̂ )

and

lim sup
x→∞

F ∗τ (x)

F (x)
≥ Eτϕτ−1(γ̂ ).

Proof. We apply the exponential change of measure with parameter γ̂ and consider the dis-
tribution G(du) = eγ̂ uF (du)/ϕ(γ̂ ) and the stopping time ν with the distribution P{ν = k} =
ϕk(γ̂ )P{τ = k}/Eϕτ (γ̂ ). From the definition of γ̂ , the distribution G is heavy-tailed. The distri-
bution of ν is light-tailed because Eeκν < ∞ with κ = ln(ϕ(γ̂ ) + ε) − lnϕ(γ̂ ) > 0. Hence,

lim sup
x→∞

G∗ν(x)

G(x)
≥ lim inf

x→∞
G∗ν(x)

G(x)
= Eν,

by Theorem 2. The result now follows from Lemma 3 with γ = γ̂ , since Eν = Eτϕτ (γ̂ )/

Eϕτ (γ̂ ). �

Proof of Theorem 3. In the case where F is heavy-tailed, we have γ̂ = 0 and ϕ(γ̂ ) = 1. By
Theorem 2, c = Eτ , as required.

In the case γ̂ ∈ (0,∞) and ϕ(γ̂ ) < ∞, the desired conclusion follows from Lemma 4. �

8. Supremum of a random walk

Hereafter, we need the notion of subexponential distributions. A distribution F on R+ is called
subexponential if F ∗ F(x) ∼ 2F(x) as x → ∞.
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Let {ξn} be a sequence of independent random variables with a common distribution F on R
and Eξ1 = −m < 0. Put S0 = 0, Sn = ξ1 + · · · + ξn. By the strong law of large numbers (SLLN),
M = supn≥0 Sn is finite with probability 1.

Let FI be the integrated tail distribution on R+, that is,

FI (x) ≡ min

(
1,

∫ ∞

x

F (y)dy

)
, x > 0.

It is well known (see, e.g., Asmussen [1], Embrechts, Klüppelberg and Mikosch [12], Em-
brechts and Veraverbeke [13] and references therein) that if FI is subexponential, then

P{M > x} ∼ 1

m
FI (x) as x → ∞. (15)

Korshunov [18] proved the converse: (15) implies subexponentiality of FI . We now supplement
this assertion with the following result.

Theorem 5. Let FI be long-tailed, that is, FI (x + 1) ∼ FI (x) as x → ∞. If, for some c > 0,

P{M > x} ∼ cF I (x) as x → ∞,

then c = 1/m and FI is subexponential.

Proof. Consider the defective stopping time

η = inf{n ≥ 1 :Sn > 0} ≤ ∞
and let {ψn} be i.i.d. random variables with common distribution function

G(x) ≡ P{ψn ≤ x} = P{Sη ≤ x | η < ∞}.
It is well known (see, e.g., Feller [14], Chapter XII) that the distribution of the maximum M

coincides with the distribution of the randomly stopped sum ψ1 + · · · + ψτ , where the counting
random variable τ is independent of the sequence {ψn} and is geometrically distributed with
parameter p = P{M > 0} < 1, that is, P{τ = k} = (1 − p)pk for k = 0,1, . . . . Equivalently,

P{M ∈ B} = G∗τ (B).

It follows from Borovkov [4], Chapter 4, Theorem 10, that if FI is long-tailed, then

G(x) ∼ 1 − p

pm
FI (x). (16)

The theorem hypothesis then implies that

G∗τ (x) ∼ cpm

1 − p
G(x) as x → ∞.

Therefore, by Theorem 3 with γ̂ = 0, c = Eτ(1−p)/pm = 1/m. It then follows from Korshunov
[18] that FI is subexponential. The proof is now complete. �
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9. The compound Poisson distribution

Let F be a distribution on R+ and t a positive constant. Let G be the compound Poisson distrib-
ution

G = e−t
∑
n≥0

tn

n!F
∗n.

Considering τ in Theorem 3 with distribution P{τ = n} = tne−t /n!, we get the following result.

Theorem 6. Let ϕ(γ̂ ) < ∞. If, for some c > 0, G(x) ∼ cF (x) as x → ∞, then c = tet (ϕ(γ̂ )−1).

Corollary 2. The following statements are equivalent:

(i) F is subexponential;
(ii) G is subexponential;

(iii) G(x) ∼ tF (x) as x → ∞;
(iv) F is heavy-tailed and G(x) ∼ cF (x) as x → ∞, for some c > 0.

Proof. Equivalence of (i), (ii) and (iii) was proven in Embrechts, Goldie and Veraverbeke [11],
Theorem 3. The implication (iv) ⇒ (iii) follows from Theorem 3 with γ̂ = 0. �

Some local aspects of this problem for heavy-tailed distributions were discussed in Asmussen,
Foss and Korshunov [2], Theorem 6.

10. Infinitely divisible laws

Let H be an infinitely divisible law on [0,∞). The Laplace transform of an infinitely divisible
law F can be expressed as ∫ ∞

0
e−λxH(dx) = e−aλ−∫ ∞

0 (1−e−λx)ν(dx)

(see, e.g., Feller [14], Chapter XVII). Here, a ≥ 0 is a constant and the Lévy measure ν is a Borel
measure on (0,∞) with the properties µ = ν(1,∞) < ∞ and

∫ 1
0 xν(dx) < ∞. Put F(B) =

ν(B ∩ (1,∞))/µ.
Relations between the tail behavior of measure H and of the corresponding Lévy measure

ν were considered in Embrechts, Goldie and Veraverbeke [11], Pakes [19] and Shimura and
Watanabe [22]. The local analog of that result was proven in Asmussen, Foss and Korshunov
[2]. We strengthen the corresponding result of Embrechts, Goldie and Veraverbeke [11] in the
following way.

Theorem 7. The following assertions are equivalent:

(i) H is subexponential;
(ii) F is subexponential;

(iii) ν(x) ∼ H(x) as x → ∞;
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(iv) H is heavy-tailed and ν(x) ∼ cH(x) as x → ∞, for some c > 0.

Proof. Equivalence of (i), (ii) and (iii) was proven in Embrechts, Goldie and Veraverbeke [11],
Theorem 1.

It remains to prove the implication (iv) ⇒ (iii). It is pointed out in Embrechts, Goldie and
Veraverbeke [11] that the distribution H admits the representation H = G ∗ F ∗τ , where G(x) =
O(e−εx) for some ε > 0 and τ has a Poisson distribution with parameter µ. Since H is heavy-
tailed and G is light-tailed, F is necessarily heavy-tailed. Then, by Theorem 4, we get

lim inf
x→∞

H(x)

F (x)
≡ lim inf

x→∞
G ∗ F ∗τ (x)

F (x)
= Eτ = µ.

On the other hand, for x > 1,

H(x)

F (x)
= µ

H(x)

ν(x)
→ µc as x → ∞,

by assumption (iv). Hence, c = 1. �

11. Branching processes

In this section, we consider the limit behavior of subcritical, age-dependent branching processes
for which the Malthusian parameter does not exist.

Let h(z) be the particle production generating function of an age-dependent branching process
with particle lifetime distribution F (see Athreya and Ney [3], Chapter IV, Harris [16], Chap-
ter VI for background). We take the process to be subcritical, that is, A ≡ h′(1) < 1. Let Z(t)

denote the number of particles at time t . It is known (see, e.g., Athreya and Ney [3], Chapter IV,
Section 5, or Chistyakov [5]) that EZ(t) admits the representation

EZ(t) = (1 − A)

∞∑
n=1

An−1F ∗n(t).

It was proven in Chistyakov [5] for sufficiently small values of A and then in Chover, Ney and
Wainger [6,7] for any A < 1 that EZ(t) ∼ F(t)/(1 − A) as t → ∞, provided F is subexponen-
tial. The local asymptotics were considered in Asmussen, Foss and Korshunov [2].

Applying Theorem 3 with τ geometrically distributed and γ̂ = 0, we deduce the following.

Theorem 8. Let F be heavy-tailed, and, for some c > 0, EZ(t) ∼ cF (t) as t → ∞. Then c =
1/(1 − A) and F is subexponential.
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