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Abstract

Let f be an entire function with the form f ðzÞ ¼ PðezÞ=ez, where P is a polynomial

with degðPÞb 2 and Pð0Þ0 0. We prove that the area of the complement of the fast

escaping set (hence the Fatou set) of f in a horizontal strip of width 2p is finite. In

particular, the corresponding result can be applied to the sine family a sinðzþ bÞ, where
a0 0 and b A C.

1. Introduction

Let f : C ! C be a transcendental entire function. Denote by f �n the n-th
iterate of f . The Fatou set Fð f Þ of f is defined as the maximal open set in
which the family of iterates f f �n : n A Ng is normal in the sense of Montel.
The complement of F ð f Þ is called the Julia set of f , which is denoted by
Jð f Þ. It is well known that Jð f Þ is a perfect completely invariant set which is
either nowhere dense or coincides with C. For more details about these sets, one
can refer [3], [6] and [17] for rational maps, and [4] and [11] for meromorphic
functions.

Already in 1920s, Fatou considered the iteration of transcendental entire
functions [13] and one of his study object was f ðzÞ ¼ a sinðzÞ þ b, where 0 < a <
1 and b A R. After Misiurewicz showed that the Fatou set of f ðzÞ ¼ ez is empty
in 1981 [18], the dynamics of exponential maps and trigonometric functions
attracted many interests from then on. See [8], [9] and [7] for example. In
particular, in 1987 McMullen [16] proved a remarkable result which states that
the Julia set of sinðazþ bÞ, a0 0 always has positive Lebesgue area and the
Hausdor¤ dimension of the Julia set of lez, l0 0 is always 2. From then on a
series of papers considered the area and the Hausdor¤ dimension of the dynami-
cal objects of the transcendental entire functions, not only for the Julia sets in
dynamical planes (see [29], [14], [15], [30], [23], [2], [21], [1], [20], [27] and the
references therein for example), but also the bifurcation loci in the parameter
spaces (see [19] and [31]).
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Unlike the polynomials, the Julia set of a transcendental entire function f is
always unbounded. Since the Fatou set of f is dense in the complex plane (if
Fð f Þ0j), it is interesting to ask when the Fatou set of f has finite area. For
the sine function f ðzÞ ¼ sin z, Milnor conjectured that the area of the Fatou
set of f is finite in a vertical strip of width 2p. By applying the tools in [16],
Schubert proved this conjecture in 2008 [24].

For a transcendental entire function f , the escaping set Ið f Þ was studied
firstly by Eremenko in [10]. A subset of the escaping set, called the fast escaping
set Að f Þ, was introduced by Bergweiler and Hinkkanen in [5]. These sets have
received quite a lot of attention recently. Especially for the fast escaping set, see
[25], [22], [26], [28], [12] and the references therein. In this paper, we consider
the area of the complement of the fast escaping sets of a family of entire func-
tions and try to extend the result of Schubert to this class. Our main result is
the following.

Theorem 1.1. Let P be a polynomial with degðPÞb 2 and Pð0Þ0 0. Then
the area of the complement of the fast escaping set of any function with the form
f ðzÞ ¼ PðezÞ=ez is finite in any horizontal strip of width 2p.

The method in this paper is strongly inspired by the work of McMullen and
Schubert ([16] and [24]). It is worth to mention that we give also a specific
formula of the upper bound of AreaðS \ Að f ÞcÞ in terms of the coe‰cients of the
polynomial P (see Theorem 3.1), where S is any horizontal strip of width 2p and
Að f Þc is the complement of the fast escaping set of f . In fact, we believe that
our method can be adopted also to the type of entire functions with the form

f ðzÞ ¼ PðwÞ
wm

� expðzÞ

completely similarly, where mb 1 is a positive integer, P is a polynomial with
degree degðPÞbmþ 1 and Pð0Þ0 0.

As a consequence of Theorem 1.1 and Theorem 3.1, we have the following
result on the area of the complement of the fast escaping set of the sine family.

Theorem 1.2. Let S be any vertical strip of width 2p. Then the area of the
complement of the fast escaping set of f ðzÞ ¼ a sinðzþ bÞ with a0 0 satisfies

AreaðS \ Að f ÞcÞa ð4pþ 4rÞ x� þ rþ 8ce4�x�=2 r

1� e�r=2

� �
;

where

r ¼ 1

8
; c ¼ 536

ffiffiffi
2

p

jaj þ 1

jaj2
and

x� ¼ max log 1þ 18K

jaj

� �
; log

8ðK þ 1Þ
jaj

� �
; 6 log 2; 12þ 2 log c

� �

532 song zhang and fei yang



with K ¼ maxfjaj=2; jbjg. In particular, if f ðzÞ ¼ sin z or cos z, then

AreaðS \ Að f ÞcÞ < 361:

Since the fast escaping set of f ðzÞ ¼ PðezÞ=ez is contained in the Julia
set (see Corollary 2.11), it means that the complement of the fast escaping set
contains the Fatou set and hence Theorem 1.2 is a generalization of Schubert’s
result. In [24] Schubert proved that AreaðS \ F ð f ÞÞ < 574 for f ðzÞ ¼ sin z,
where S is a vertical strip with width 2p. See Figure 1.

We collect some notations which will be used throughout of this paper.
Let N, Z, R and C, respectively, be the set of natural numbers, integers, real
numbers and complex numbers. For any xb 0, we use ½x� to denote the integer
part of x. Hence x� 1 < ½x�a x. For a subset X of C, we use X c to denote
the complement of X in C. All the distance and diameter in this paper are
measured in the Euclidean metric and the area is regarded as the two-dimensional
planar Lebesgue area. We use Dða; rÞ :¼ fz A C : jz� aj < rg to denote the
round disk with center a A C and radius r > 0.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (grant Nos. 11671092, 11671191) and the Fundamental
Research Funds for the Central Universities (grant No. 0203-14380013). We
would like to thank Lasse Rempe-Gillen for valuable comments which improved
the statements of the main results in this paper and Liangwen Liao for helpful
conversations.

2. Distortion lemmas and some basic settings

2.1. Distortion quantities. As in [16] and [24], we introduce some quanti-
ties of distortion in this subsection. Let D be a bounded set in the complex

Figure 1. The Fatou sets (white regions) of f ðzÞ ¼ sin z and f ðzÞ ¼ cos z. Both of these functions

have period 2p. It is shown in Theorem 1.2 that the area of the complement of the fast escaping set

(hence the Fatou set) of f in a vertical strip with width of 2p is bounded above by 361.
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plane C and let f be a holomorphic function defined in a neighbourhood of
D. We say that f has bounded distortion on D if there are positive constants c
and C, such that for all distinct x and y in D, one has

c <
j f ðxÞ � f ðyÞj

jx� yj < C:ð1Þ

The quantity

Lð f jDÞ :¼ inffC=c : c and C satisfy ð1Þg

is the distortion of f on D. By (1) we have

sup
z AD

j f 0ðzÞjaC and inf
z AD

j f 0ðzÞjb c:

Therefore, Lð f jDÞ has a lower bound satisfying

Lð f jDÞb
supz ADj f 0ðzÞj
inf z ADj f 0ðzÞj :ð2Þ

The equality holds in this inequality if D is a convex domain.
Let AreaðEÞ be the Lebesgue area of the measurable set E � C. If X and D

are two measurable subsets of the complex plane with AreaðDÞ > 0, we use

densityðX ;DÞ :¼ AreaðX \DÞ
AreaðDÞ

to denote the density of X in D. If c and C satisfy (1), then c2 AreaðXÞa
Areað f ðX ÞÞaC2 AreaðXÞ. This means that

densityð f ðX Þ; f ðDÞÞaLð f jDÞ
2 densityðX ;DÞ:ð3Þ

The nonlinearity of f on D is defined as

Nð f jDÞ :¼ sup
j f 00ðzÞj
j f 0ðzÞj : z A D

� �
� diamðDÞ;ð4Þ

provided the right-hand side is finite. In the following by square we mean a
closed square whose sides are parallel to the coordinate axes. We will use the
following relation between the distortion and nonlinearity on squares.

Lemma 2.1. Let Q be a compact and convex domain in C (in particular if Q
is a square) and let f be a conformal map defined in a neighbourhood of Q with
Nð f jQÞ < 1. Then

Lð f jQÞa 1þ 2Nð f jQÞ:

Proof. Since f is conformal, let z0 be a point in Q such that

j f 0ðz0Þj ¼ sup
z AQ

j f 0ðzÞj > 0:
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Since Q is convex, for any z A Q we have

j f 0ðzÞ � f 0ðz0Þj
j f 0ðz0Þj

¼
j
Ð z
z0

f 00ðzÞ dzj
j f 0ðz0Þj

a
supz AQj f 00ðzÞj

j f 0ðz0Þj
� jz� z0j

a sup
z AQ

j f 00ðzÞj
j f 0ðzÞj

� �
� diamðQÞ ¼ Nð f jQÞ < 1:

Therefore, the image of Q under f 0ðzÞ is contained in the disk Dð f 0ðz0Þ; j f 0ðz0ÞjÞ
and hence log f 0ðzÞ is well-defined on Q.

Since Q is compact, let z1 A Q such that

j f 0ðz1Þj ¼ inf
z AQ

j f 0ðzÞj > 0:

Since Q is convex and log f 0ðzÞ is well-defined, we have

log Lð f jQÞ ¼ log
j f 0ðz0Þj
j f 0ðz1Þj

a jlog f 0ðz1Þ � log f 0ðz0Þj

¼
ð z1
z0

ðlog f 0ðzÞÞ0 dz
����

����¼
ð z1
z0

f 00ðzÞ
f 0ðzÞ dz

����
����

a sup
z AQ

j f 00ðzÞj
j f 0ðzÞj

� �
� diamðQÞ ¼ Nð f jQÞ:

Since ex a 1þ 2x for x A ½0; 1Þ, we have

Lð f jQÞa expðNð f jQÞÞa 1þ 2Nð f jQÞ: r

Remark. McMullen notes in [16] that Lð f jQÞ is bounded above by

1þOðNð f jQÞÞ if Nð f jQÞ is small. After that Schubert states in [24] that

Lð f jQÞa 1þ 8Nð f jQÞ if Nð f jQÞ < 1=4 but without a proof.

Let n be a positive integer. For each 1a ia n, let Di � C be an open
set and fi : Di ! C a conformal map. Let s and M > 0 be two constants
satisfying

j f 0
i ðzÞj > s > 1 and

j f 00
i ðzÞj

j f 0
i ðzÞj

< M; where z A Di and 1a ia n:

Furthermore, let Qi � Di, 1a ia n be squares with sides of length r > 0
satisfying Qiþ1 � fiðQiÞ for all 1a ia n� 1. Define V :¼ fnðQnÞ and

F :¼ ð fn � � � � � f1Þ�1 : V ! Q1:

Then F is a conformal map. McMullen proved that the distortion of F on V
is bounded above by a constant depending only on s, M and r, but not on fi
and n ([16]). Actually, this upper bound can be formulated in the following
lemma.
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Lemma 2.2. If the sides of length r of Qi is chosen such that ra 1=ð4MÞ for
all 1a ia n, then the distortion of F on V satisfies

LðF jV Þa exp
s

s� 1

� �
:

Proof. Let gi be the inverse of fi which maps fiðQiÞ to Qi for 1a ia n.
Recall that V ¼ fnðQnÞ. Define Vi :¼ gi � � � � � gnðVÞ, where 1a ia n. In par-
ticular, Vn ¼ gnðVÞ ¼ Qn. Since j f 0

i ðzÞj > s > 1 for all 1a ia n, we have

diamðViÞa
ffiffiffi
2

p
r

sn�i
; for all 1a ia n:

Note that Vi � Qi � Di for 1a ia n since Qiþ1 � fiðQiÞ for all 1a ia n� 1.
This means that there exists a square Q 0

i � Qi such that Vi � Q 0
i and the length of

the sides of Q 0
i is at most

ffiffiffi
2

p
r=sn�i. Hence by (4), the nonlinearity of fi on Q 0

i

satisfies

Nð fijQ 0
i
Þ ¼ sup

z AQ 0
i

j f 00
i ðzÞj

j f 0
i ðzÞj

 !
� diamðQ 0

i Þa
2Mr

sn�i
a

1

2
:

By Lemma 2.1, we have

Lð fijQ 0
i
Þa 1þ 4Mr

sn�i
; for all 1a ia n:

For any holomorphic functions f and g, it is straightforward to verify that
the distortion of f and g satisfies1

Lð f jV Þ ¼ Lð f �1jf ðVÞÞ and Lððg � f ÞjV ÞaLð f jV ÞLðgjf ðVÞÞ:
Hence, we have

LðF jV Þ ¼ Lðð fn � � � � � f1ÞjV1
Þ

aLð f1jV1
ÞLð f2jV2

Þ � � �Lð fnjVn
ÞaLð f1jQ 0

1
ÞLð f2jQ 0

2
Þ � � �Lð fnjQ 0

n
Þ

a
Yn�1

i¼0

1þ 4Mr

s i

� �
a
Yn�1

i¼0

1þ 1

s i

� �
:

Since logð1þ xÞa x for all x > 0, we have

LðF jV Þa exp
Xn�1

i¼0

1

s i

 !
< exp

Xy
i¼0

1

s i

 !
¼ exp

s

s� 1

� �
: r

2.2. Nesting conditions, density and area. In his proof of the existence of
Julia sets of entire functions having positive area, McMullen introduced a system

1We suppose that the inverse of f exists in the first equality.
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of compact sets which satisfies the nesting conditions [16]. We now recall the
precise definition.

Definition (Nesting conditions). For k A N, let Ek be a finite collection
of measurable subsets of C, i.e. Ek :¼ fEk; i : 1a ia dkg, where each Ek; i is a
measurable subset of C and dk :¼aEk < þy. We say that fEkgyk¼0 satisfies the
nesting conditions if E0 ¼ fE0;1g, where E0;1 is a compact connected measurable
set and for all k A N,

(a) every Ekþ1; i A Ekþ1 is contained in a Ek; j A Ek, where 1a ia dkþ1 and
1a ja dk;

(b) every Ek; i A Ek contains a Ekþ1; j A Ekþ1, where 1a ia dk and 1a ja
dkþ1;

(c) AreaðEk; i \ Ek; jÞ ¼ 0 for all 1a i; ja dk with i0 j; and
(d) there is rk > 0 such that for all 1a ia dk and Ek; i A Ek, we have2

densityðEkþ1;Ek; iÞ :¼ density
[dkþ1

j¼1

Ekþ1; j;Ek; i

 !
b rk:

Let fEkgyk¼0 be a sequence satisfying the nesting conditions. Define E :¼Ty
k¼0 Ek. The following lemma was established in [16, Proposition 2.1].

Lemma 2.3. The density of E in E0;1 satisfies

densityðE;E0;1Þb
Yy
k¼0

rk:

Now we give the definition of some regions which are needed in the
following. For x > 0, we define

LðxÞ :¼ fz A C : jRe zj > xg:ð5Þ

For any given m; n A Z and r > 0, we define the closed square by

Qm;n
r :¼ fz A C : mraRe za ðmþ 1Þr and nra Im za ðnþ 1Þrg:

Let

Qr :¼ fQm;n
r : m; n A Zgð6Þ

be a partition of C by the grids with sides of length r > 0. Sometimes we write
Qm;n

r A Qr as Qr if we don’t want to emphasize the superscript of Qm;n
r .

2Note that Ek is a collection of measurable sets for k A N. For simplicity, sometimes we will not

distinguish Ek and the union of its elements
Sdk

i¼1 Ek; i.
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Lemma 2.4. Let Q � C be a square with sides of length r > 0 and suppose
that f is conformal in a neighbourhood of Q with distortion Lð f jQÞ < y. For any
x > 0 and z0 A Q, we have

Area
[

fQr A Qr : Qr \ ðqf ðQÞ [ ðqLðxÞ \ f ðQÞÞÞ0jg
� �

a cr2;

where c ¼ 16þ 12
ffiffiffi
2

p
Lð f jQÞj f 0ðz0Þj.

This lemma was established in [24, Lemma 2.3] with a di¤erent coe‰cient
c. For completeness we include a proof here and the argument is slightly
di¤erent.

Proof. If g � C is a vertical line with length l1 > 0, it is clear that

afQr A Qr : Qr \ g0jga 4þ 2l1
r
:ð7Þ

Let g � C be a continuous curve with length l2 ¼ 2
ffiffiffi
2

p
kr > 0, where k is a

positive integer. We claim that

k 0 :¼afQr A Qr : Qr \ g0jga 4þ 8k:ð8Þ

Indeed, if k ¼ 1, then it is easy to see k 0 a 12. Assume that k ¼ n and in this
case k 0 a 4þ 8n. If k ¼ nþ 1, let gðtÞ : ½0; 1� ! C be a parameterization of g

such that the length of gð½0; t0�Þ is 2
ffiffiffi
2

p
nr while the length of gð½t0; 1�Þ is 2

ffiffiffi
2

p
r,

where 0 < t0 < 1. Since gð½t0; 1�Þ can intersect at most 8 squares while gð½0; t0�Þ
can intersect at most 4þ 8n by the assumption, it follows that k 0 a 4þ 8ðnþ 1Þ if
k ¼ nþ 1. Hence the claim (8) is proved.

For the general case, we assume that g � C is a continuous curve with length
l3 > 0. Let ½x� be the integer part of x > 0. By (8), we have

afQr A Qr : Qr \ g0jga 4þ 8
l3

2
ffiffiffi
2

p
r

	 

þ 8a 12þ 2

ffiffiffi
2

p
l3

r
:ð9Þ

Since f is a conformal map in a neighbourhood of Q, we conclude that
qf ðQÞ ¼ f ðqQÞ. From (2), the length of qf ðQÞ satisfies

l4 :¼
ð
qf ðQÞ

jdxj ¼
ð
qQ

j f 0ðzÞj jdzja sup
z AQ

j f 0ðzÞj � 4rð10Þ

a 4Lð f jQÞj f 0ðz0Þjr:

Similarly, the length of qLðxÞ \ f ðQÞ satisfies

l5 a 2 diam f ðQÞa 2 sup
z AQ

j f 0ðzÞj � diamðQÞð11Þ

a 2
ffiffiffi
2

p
Lð f jQÞj f 0ðz0Þjr:

By (7), (9), (10) and (11), we have
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afQr A Qr : Qr \ ðqf ðQÞ [ ðqLðxÞ \ f ðQÞÞÞ0jg

a 4þ 2l5
r

� �
þ 12þ 2

ffiffiffi
2

p
l4

r

 !
¼ 16þ 2l5 þ 2

ffiffiffi
2

p
l4

r

a 16þ 12
ffiffiffi
2

p
Lð f jQÞj f 0ðz0Þj:

The proof is finished if we notice that the area of each Qr is r2. r

2.3. Basic properties of the polynomial and entire function. For Nb 2, let
P be a polynomial with degree at least 2 which has the form

PðzÞ ¼ a0 þ a1zþ � � � þ aNz
N ;

where ai A C for 0a iaN and a0aN 0 0. In the rest of this article, the
polynomial P will be fixed. We denote

K :¼ maxfja0j; ja1j; . . . ; jaN jg > 0:ð12Þ

Lemma 2.5. Let e > 0 be any given constant. The following statements
hold:

(a) If jzjb 1þ K

ejaN j
> 1, then

jPðzÞ � aNz
N ja ejaN j jzjN ;

(b) If jzja eja0j
K þ eja0j

< 1, then

jPðzÞ � a0ja eja0j:

Proof. By the definition of K in (12), if jzjb 1þ K

ejaN j
> 1, then

jPðzÞ � aNz
N jaKð1þ jzj þ � � � þ jzjN�1Þ < K

jzjN

jzj � 1
a ejaN j jzjN :

On the other hand, if jzja eja0j
K þ eja0j

< 1, then

jPðzÞ � a0jaKðjzj þ � � � þ jzjNÞ < K
jzj

1� jzj a eja0j: r

Note that

PðzÞ=z ¼ a0z
�1 þ a1 þ � � � þ aNz

N�1

is a rational function. Let Dða; rÞ :¼ fz A C : jz� aj < rg be the open disk
centered at a A C with radius r > 0. For each R > 0 and y; x A ½0; 2pÞ, we
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denote a closed domain

UðR; y; xÞ :¼ z A C : jzjbR and y� x

2
a argðzÞa yþ x

2

� �
:

Lemma 2.6. For every y A ½0; 2pÞ, the rational function PðzÞ=z is univalent in

a neighborhood of U 2R1; y;
p

N � 1

� �
and Dð0;R2=2Þ, where

R1 ¼ 1þ 4K

jaN j
and R2 ¼

ja0j
4K þ ja0j

:

Proof. (a) If jzjbR1, by Lemma 2.5(a) we have

PðzÞ
z

� aNz
N�1

����
����a 1

4
jaN j jzjN�1:

Then one can write PðzÞ=z as

P1ðzÞ ¼
PðzÞ
z

¼ aNz
N�1ð1þ jðzÞÞ;ð13Þ

where jðzÞ is holomorphic in Cnf0g and jjðzÞja 1=4 if jzjbR1.
Let w0 A Cnf0g. For any w A qUðjw0j=2; argðw0Þ; pÞ, we have

jw� w0j >
1

4
ðjwj þ jw0jÞ:ð14Þ

Let gðzÞ :¼ zN�1. For each z0 A C such that jz0jb 2R1, we define w0 :¼ gðz0Þ ¼
zN�1
0 . Note that g�1ðUðjw0j=2; argðw0Þ; pÞÞ consists of N � 1 disjoint closed
domains:

Dk :¼ U 2�1=ðN�1Þjz0j; argðz0Þ þ
2kp

N � 1
;

p

N � 1

� �
;

where 0a kaN � 2. Then for 0a kaN � 2, zk :¼ z0e
2kpi=ðN�1Þ is contained

in the interior of Dk.
For any z A qDk with 0a kaN � 2, we have zN�1 A qUðjw0j=2; argðw0Þ; pÞ.

Combining (13) and (14), we have

jzN�1 � zN�1
0 j > 1

4
ðjzjN�1 þ jz0jN�1Þb jzN�1jðzÞ � zN�1

0 jðz0Þj:

Define j1ðzÞ :¼ aNðzN�1 � zN�1
0 Þ and j2ðzÞ :¼ P1ðzÞ � P1ðz0Þ ¼ aNz

N�1ð1þ jðzÞÞ
� aNz

N�1
0 ð1þ jðz0ÞÞ. By Rouché’s theorem, j1ðzÞ ¼ 0 and j2ðzÞ ¼ 0 have the

same number of roots in each Dk, where 0a kaN � 2. Since j1ðzÞ ¼ 0 has
exactly one root zk in each Dk, this means that j2ðzÞ ¼ 0 has exactly one root in
each Dk, where 0a kaN � 2.
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On the other hand, (14) holds also for w A qUðjw0j=2;�argðw0Þ; pÞ. By
Rouché’s theorem again, j2ðzÞ ¼ 0 has no root in each �Dk, where 0a ka
N � 2. By the arbitrariness of z0, it means that P1ðzÞ ¼ PðzÞ=z is univalent in a

neighborhood of U 2R1; y;
p

N � 1

� �
, where y A ½0; 2pÞ.

(b) Similarly, by Lemma 2.5(b) one can write PðzÞ=z as

P1ðzÞ ¼
PðzÞ
z

¼ a0

z
ð1þ cðzÞÞ;

where cðzÞ is holomorphic in C and jcðzÞja 1=4 if jzjaR2. For each z0 A
Dð0;R2=2Þnf0g and z A qDð0;R2Þ, we have

jz� z0j >
1

4
ðjzj þ jz0jÞ:

Hence

1

z
� 1

z0

����
����> 1

4

jzj þ jz0j
jzz0j

b
cðzÞ
z

� cðz0Þ
z0

����
����:

Define c1ðzÞ :¼ a0ð1=z� 1=z0Þ and c2ðzÞ :¼ P1ðzÞ � P1ðz0Þ ¼
a0

z
ð1þ cðzÞÞ �

a0

z0
ð1þ cðz0ÞÞ. By Rouché’s theorem, c1ðzÞ ¼ 0 and c2ðzÞ ¼ 0 have the same

number of roots in Dð0;R2Þ. Since c1ðzÞ ¼ 0 has exactly one root z0 in
Dð0;R2Þ, this means that c2ðzÞ ¼ 0 has exactly one root in Dð0;R2Þ. By the
arbitrariness of z0, it means that P1ðzÞ ¼ PðzÞ=z is univalent in a neighborhood
of Dð0;R2=2Þ. r

Since P is a polynomial, it is easy to see that PðezÞ=ez is a transcendental
entire function. We now give some quantitative estimations on the mapping
properties of f ðzÞ ¼ PðezÞ=ez by applying some properties of PðzÞ=z obtained
above. Recall that LðxÞ ¼ fz A C : jRe zj > xg for x > 0. We denote

K0 :¼ minfja0j; jaN jg > 0:ð15Þ

Corollary 2.7. Let

r0 :¼
p

N � 1
and R3 :¼ log 2þ 8K

K0

� �
:ð16Þ

Then for any square Q � LðR3Þ with sides of length ra r0, the restriction of
f ðzÞ ¼ PðezÞ=ez on a neighbourhood of Q is a conformal map.

Proof. We have jezjb 2R1 if Re zb logð2R1Þ and jezjaR2=2 if Re za
logðR2=2Þ. Let Q � LðR3Þ be a square with sides of length p=ðN � 1Þ. It is
easy to see that exp is injective in a neighbourhood of Q and expðQÞ is contained
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in Dð0;R2=2Þ or U 2R1; y;
p

N � 1

� �
for some y A ½0; 2pÞ. This means that f ðzÞ ¼

PðezÞ=ez is conformal in a neighborhood of Q by Lemma 2.6. r

We will use the following lemma to estimate j f 0ðzÞj and j f 00ðzÞ=f 0ðzÞj for
f ðzÞ ¼ PðezÞ=ez.

Lemma 2.8. Suppose that jzjbR4 or jzjaR5, where

R4 ¼ 1þmax
2K þ 4

jaN j
;
K

jaN j
2N 2

N � 1
þ 1

� �� �
and

R5 ¼ min
ja0j

2ðKN þ 2Þ ;
1

2N

ffiffiffiffiffiffiffi
ja0j
K

r( )
:

Then

P 0ðzÞ � PðzÞ
z

����
����> 2 and

z2P 00ðzÞ
zP 0ðzÞ � PðzÞ � 1

����
����< N:

Proof. A direct calculation shows that

P 0ðzÞ ¼
XN
k¼1

kakz
k�1 and P 00ðzÞ ¼

XN
k¼2

kðk � 1Þakzk�2:

This means that

P 0ðzÞ � PðzÞ
z

¼
XN
k¼1

kakz
k�1 �

XN
k¼0

akz
k�1 ¼

XN
k¼0

ðk � 1Þakzk�1ð17Þ

and

z2P 00ðzÞ
zP 0ðzÞ � PðzÞ � 1 ¼

PN
k¼0 kðk � 1ÞakzkPN
k¼0ðk � 1Þakzk

� 1 ¼
PN

k¼0ðk � 1Þ2akzkPN
k¼0ðk � 1Þakzk

:ð18Þ

If jzjb 1þ 2K þ 4

jaN j
> 3, by (17) we have

P 0ðzÞ � PðzÞ
z

����
����b jaN jðN � 1ÞjzjN�1 � KðN � 1ÞðjzjN�2 þ � � � þ jzj þ 1Þð19Þ

b ðN � 1ÞjzjN�1 jaN j �
K

jzj � 1

� �

b
jaN j
2

jzjN�1
b

jaN j
2

jzj > 2:

If jzja ja0j
2ðKN þ 2Þ <

1

2
, we have
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P 0ðzÞ � PðzÞ
z

����
����b ja0j

jzj � KðN � 1Þðjzj þ � � � þ jzjN�1Þð20Þ

b
ja0j
jzj � KðN � 1Þ > ja0j

2jzj bKN þ 2 > 2:

For the second inequality, if jzjb 1þ K

jaN j
2N 2

N � 1
þ 1

� �
> 8, by (18) we have

z2P 00ðzÞ
zP 0ðzÞ � PðzÞ � 1

����
����aN � 1þ

PN�1
k¼0 ðk � 1ÞðN � kÞakzkPN

k¼0ðk � 1Þakzk

�����
�����

aN � 1þ KN 2

N � 1
� jzj þ � � � þ jzjN�1

jaN j jzjN � Kðjzj þ � � � þ jzjN�1Þ

aN � 1þ KN 2

N � 1
� 1

jaN jðjzj � 1Þ � K
aN � 1

2
< N:

If jzja 1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja0j=K

p
<

1

2
, by (18) we have

z2P 00ðzÞ
zP 0ðzÞ � PðzÞ � 1

����
����a 1þ

PN
k¼2 kðk � 1ÞakzkPN
k¼0ðk � 1Þakzk

�����
�����

a 1þ KN 2ðjzj2 þ � � � þ jzjNÞ
ja0j � KNðjzj2 þ � � � þ jzjNÞ

a 1þ 2KN 2jzj2

ja0j � 2KNjzj2
a 1þ N

2N � 1
a

5

3
< N: r

Corollary 2.9. Let

R6 :¼ maxflog R4;�log R5g:ð21Þ

Then for any z A LðR6Þ, the function f ðzÞ ¼ PðezÞ=ez satisfies

j f 0ðzÞj > 2 and
j f 00ðzÞj
j f 0ðzÞj < N:

Proof. Denote P1ðwÞ :¼ PðwÞ=w. Therefore, f ðzÞ ¼ PðezÞ=ez ¼ P1 �
expðzÞ. It is easy to check that

f 0ðzÞ ¼ P 0
1ðezÞez and f 00ðzÞ ¼ P 00

1 ðezÞe2z þ P 0
1ðezÞez:

Let w ¼ ez. By a straightforward computation, we have

f 0ðzÞ ¼ P 0
1ðwÞw ¼ P 0ðwÞ � PðwÞ

w
ð22Þ
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and

f 00ðzÞ
f 0ðzÞ ¼ P 00

1 ðwÞw2 þ P 0
1ðwÞw

P 0
1ðwÞw

¼ w2P 00ðwÞ
wP 0ðwÞ � PðwÞ � 1:

Then the result follows from Lemma 2.8 immediately. r

2.4. Escaping and fast escaping sets. Let f be a transcendental entire
function. A point a A C is called an asymptotic value of f if there exists a
continuous curve gðtÞ � C with 0 < t < y, such that gðtÞ ! y as t ! y and
f ðgðtÞÞ ! a as t ! y.

Lemma 2.10. The entire function f ðzÞ ¼ PðezÞ=ez does not have any finite
asymptotic value.

Proof. Assume that a A C is a finite asymptotic value of f ðzÞ. Then by
definition, there exists a continuous curve gðtÞ � C with 0 < t < y, such that
gðtÞ ! y as t ! y and f ðgðtÞÞ ! a as t ! y. This means that

lim
t!y

PðwÞ
w

� egðtÞ ¼ a:

Denote gðtÞ ¼ xðtÞ þ iyðtÞ and let w1;w2; . . . ;wN be the N roots of the equation
PðwÞ ¼ aw. We define the set Y :¼ farg wi þ 2kp : 1a iaN; k A Zg. If xðtÞ
is unbounded as t ! y, then f ðgðtÞÞ is also unbounded and this is a contra-
diction. Hence jxðtÞjaA for some constant A > 0 for all t. Since gðtÞ ! y
as t ! y, this implies that yðtÞ ! y as t ! y. Therefore, for each y0 A RnY ,
there exists a sequence fzng � gðtÞ such that Im zn ! y as n ! y and
limn!y e i Im zn ¼ e iy0 . Since jxðtÞjaA, it follows that limt!y exðtÞ 0 0. This
implies that limn!y f ðznÞ ¼ limn!y PðeznÞ=ezn 0 a, which is a contradiction.

r

Let f be a transcendental entire function. The set

Ið f Þ :¼ fz A C : f �nðzÞ ! y as n ! ygð23Þ

is called the escaping set of f . We use singð f �1Þ to denote the set of singular
values of f which consists of all the critical values and asymptotic values of f
and their accumulation points.

Corollary 2.11. The escaping set Ið f Þ of f ðzÞ ¼ PðezÞ=ez is contained in
the Julia set Jð f Þ.

Proof. It is clear that the set of the critical values of f ðzÞ ¼ PðezÞ=ez is
finite. From Lemma 2.10, it follows that singð f �1Þ is bounded. According to
[11, Theorem 1], we have Ið f Þ � Jð f Þ. r
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Actually, we will estimate the area of the complement of the fast escaping
set in next section. Let f be a transcendental entire function. The maximal
modulus function is defined by

Mðr; f Þ :¼ max
jzj¼r

j f ðzÞj; where r > 0:

We use M �nðr; f Þ to denote the n-th iterate of Mðr; f Þ with respect to the
variable r > 0, where n A N. The notation Mðr; f Þ is written as MðrÞ if the
function f is known clearly. A subset of the escaping set, called the fast
escaping set Að f Þ was introduced in [5] and can be defined [22] by

Að f Þ :¼ fz : there is l A N such that j f �ðnþlÞðzÞjbM �nðRÞ for n A Ng:ð24Þ
Here R > 0 is a constant such that M �nðRÞ ! y as n ! y. It is proved in
[22, Theorem 2.2(b)] that Að f Þ is independent of the choice of R such that
M �nðRÞ ! y as n ! y.

Lemma 2.12. Let R > 0 be a constant and define u0 :¼ R. For nb 1,
define un inductively by un :¼ ReRun�1 . Let v0 A R and define vn inductively by
vn :¼ 2evn�1=2 for nb 1. Then there is l A N such that vnþl b 4Run for all n A N.

Proof. By the definition of vn, we can obtain that there exists l A N such
that vl b 4Ru0 ¼ 4R2. Suppose that n ¼ k and in this case vkþl b 4Ruk: If n ¼
k þ 1, we hope to obtain that vkþlþ1 b 4Rukþ1. Note that vkþlþ1 ¼ 2evkþl=2 b

2e2Ruk ¼ 2R�1eRukukþ1: It is su‰cient to obtain Ruk b logð2R2Þ: This is true
since uk bR for all k A N and R2 b logð2R2Þ for all R > 0. r

Corollary 2.13. Let z0 A C and suppose that zn ¼ f �nðz0Þ satisfies jznjb xn
for all n A N, where xn > 0 is defined inductively by

xn ¼ 2 expðxn�1=2Þ with x0 > 0:

Then z0 is contained in the fast escaping set of f ðzÞ ¼ PðezÞ=ez.

Proof. Recall that Nb 2 is the degree of the polynomial P and K > 0 is
defined in (12). According to Lemma 2.5, there exists d0 b 1 such that if db d0,
then the maximal modulus function of f satisfies

MðdÞ ¼ Mðd; f Þa 2KeðN�1Þd:

On the other hand, there exists d1 > 0 such that for all db d1, then M �nðdÞ is
monotonically increasing as n increases. Since the Julia set of f is non-empty,
this means that M �nðdÞ ! y as n ! y if db d1.

Define

R :¼ maxf2K ; ðN � 1Þd0; d1gb 1:

We denote u0 ¼ R and for nb 1, define un inductively by un ¼ ReRun�1 . Then
we have M �nðRÞa un for all n A N. By the definition of xn, we have xn ¼
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2 exp�nðx0=2Þ. According to Lemma 2.12, there exists l A N such that for all
n A N,

j f �ðnþlÞðz0Þj ¼ jznþljb xnþl b un bM �nðRÞ:

By the defintion of R, we have M �nðRÞ ! y as n ! y. This means that z0 is
contained in the fast escaping set of f . r

3. Proof of the theorems

3.1. Proof of Theorem 1.1. Recall that Nb 2 is the degree of the poly-
nomial P. Let r > 0 be fixed such that

ra
1

4N
:ð25Þ

We define

x 0 :¼ maxfR3;R6; 6 log 2g;ð26Þ

where R3 and R6 are constants introduced in Corollary 2.7 and Corollary 2.9
respectively.

Recall that LðxÞ ¼ fz A C : jRe zj > xg is the set defined in (5) for all x > 0.
Let Q0 be a square in LðxÞ with sides of length r, where xb x 0. Since r < r0 ¼
p=ðN � 1Þ, from Corollary 2.7 we know that f is conformal in a neighbourhood
of Q0. For k A N, define

xk :¼ 2 exp�kðx=2Þ:ð27Þ

In particular, x0 ¼ xb x 0 and we have xkþ1 ¼ 2 expðxk=2Þ > xk b x 0 since

2ex=2 > x for all x A R. Recall that Qr is a collection of grids with sides of length
r > 0 defined in (6). For any subset E of Q0 in Lðx0Þ and k A N, define

packð f �kðEÞÞ :¼ fQr A Qr : Qr � f �kðEÞ \LðxkÞg:

We now define a sequence of families of measurable sets satisfying the
nesting conditions based on the square Q0. Let E0 :¼ fQ0g and for kb 1, define
inductively

Ek :¼ fFk � Q0 : Fk � Ek�1 A Ek�1 and f �kðFkÞ A packð f �kðEk�1ÞÞg:

It is clear that Ek is a finite collection of measurable subsets of C for all k A N.
Denote the elements of Ek by Ek; i, where 1a ia dk.

By definition, for all k A N, we have f �ðkþ1ÞðEk; iÞ ¼ f ðQk
r Þ, where3 Qk

r is a
square with sides of length r and Qk

r � LðxkÞ. From (4), Corollary 2.9 and (25),

3Note that Qk
r � LðxkÞ is a square depending also on the subscript ‘i’ of Ek; i , where k A N and

1a ia dk . We omit this index here for simplicity.
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we have

Nð f jQk
r
Þ < N

ffiffiffi
2

p
ra

ffiffiffi
2

p

4
:

By Lemma 2.1, the distortion of f on Qk
r satisfies

Lð f jQk
r
Þa 1þ 2Nð f jQk

r
Þ < 2:ð28Þ

For every k A N, let zk be any point in Qk
r � LðxkÞ. From (2) and (28) we

have

Areað f ðQk
r ÞÞ ¼

ð
Qk

r

j f 0ðzÞj2 dxdyb inf
z AQk

r

j f 0ðzÞj2 �AreaðQk
r Þð29Þ

b
j f 0ðzkÞj2

ðLð f jQk
r
ÞÞ2

� r2 > 1

4
j f 0ðzkÞj2r2

and

diamð f ðQk
r ÞÞa sup

z AQk
r

j f 0ðzÞj � diamðQk
r Þð30Þ

aLð f jQk
r
Þj f 0ðzkÞj �

ffiffiffi
2

p
r < 2

ffiffiffi
2

p
j f 0ðzkÞjr:

Recall that K0 ¼ minfja0j; jaN jg > 0 is the constant defined in (15). By (19), (20)
and (22), we have

j f 0ðzkÞj >
1

2
K0e

jRe zk j >
1

2
K0e

xk :ð31Þ

For k A N and 1a ia dk, we denote

B1 :¼
[

fQr A Qr : Qr � f �ðkþ1ÞðEk; iÞ \ ðCnLðxkþ1ÞÞg
and

B2 :¼
[

fQr A Qr : Qr \ ðqf �ðkþ1ÞðEk; iÞ [ ðqLðxkþ1Þ \ f �ðkþ1ÞðEk; iÞÞÞ0jg:

Recall that f �ðkþ1ÞðEk; iÞ ¼ f ðQk
r Þ for some square Qk

r in LðxkÞ with sides of
length r, where k A N and 1a ia dk. From (29), (30) and (31), we have

AreaðB1Þ
Areað f �ðkþ1ÞðEk; iÞÞ

a
2xkþ1 diamð f �ðkþ1ÞðEk; iÞÞ

Areað f �ðkþ1ÞðEk; iÞÞ
ð32Þ

¼ 2xkþ1 diamð f ðQk
r ÞÞ

Areað f ðQk
r ÞÞ

<
16

ffiffiffi
2

p
xkþ1

j f 0ðzkÞjr
<

32
ffiffiffi
2

p

K0r
� xkþ1

exk
:

Note that xkþ1 b x1 ¼ 2ex=2 for all k A N and xb 6 log 2 by (26). By Lemma
2.4, (28), (29) and (31), we have
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AreaðB2Þ
Areað f kþ1ðEk; iÞÞ

a
ð16þ 12

ffiffiffi
2

p
Lð f jQk

r
Þj f 0ðzkÞjÞr2

Areað f ðQk
r ÞÞ

ð33Þ

<
32ð2þ 3

ffiffiffi
2

p
j f 0ðzkÞjÞ

j f 0ðzkÞj2
<

256

K 2
0 e

2xk
þ 192

ffiffiffi
2

p

K0exk

a
128

K 2
0

� 1

e3x=2
þ 96

ffiffiffi
2

p

K0
� 1

ex=2

 !
� xkþ1

exk

a
1

4K 2
0

þ 12
ffiffiffi
2

p

K0

 !
� xkþ1

exk
:

For all k A N and 1a ia dk, by (32) and (33), we have

density
[

packð f �ðkþ1ÞðEk; iÞÞ; f �ðkþ1ÞðEk; iÞ
� �

ð34Þ

b
Areað

S
fQr A Qr : Qr \ f �ðkþ1ÞðEk; iÞ0jÞ

Areað f �ðkþ1ÞðEk; iÞÞ
�AreaðB1Þ þAreaðB2Þ

Areað f �ðkþ1ÞðEk; iÞÞ

> 1� c0
xkþ1

exk
b 1� c1

xkþ1

exk
;

where

c1 b c0 :¼
32

ffiffiffi
2

p

K0r
þ 1

4K 2
0

þ 12
ffiffiffi
2

p

K0
:ð35Þ

Comparing (26), we assume that x� > 0 is a fixed constant such that

x�
bmaxfR3;R6; 6 log 2; 12þ 2 log c1g:ð36Þ

Moreover, we suppose that the sequence fxkgk AN in (27) is chosen such that the
initial point satisfies x0 ¼ xb x�. Then, all the statements above are still true
since x� b x 0.

By a straightforward induction, one can show that for all k A N and x A R,

exp�ðkþ1ÞðxÞb expðkÞ expðxÞ:
Since xkþ1 ¼ 2exk=2, we have

xkþ1

exk
¼ 2

exk=2
¼ 2

exp�ðkþ1Þðx=2Þ a
2

ek
� 1

ex=2
:ð37Þ

On the other hand, by (36), we have ex=2 b c1e
6 > 6c1e

4 since xb x�. There-
fore,

c1e
4 xkþ1

exk
a c1e

4 � 2
ek

� 1

ex=2
a c1e

4 � 2

ex=2
<

1

3
:ð38Þ

Define V :¼ f ðQk
r Þ and let G :¼ f �ðkþ1Þ : V ! Q0 be the inverse of

f �ðkþ1ÞjEk; i
, where k A N and 1a ia dk. By Lemma 2.2, Corollary 2.9 and (25),
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the distortion of G on V satisfies

LðGjV Þ < exp
2

2� 1

� �
¼ e2:ð39Þ

From (3) and (39), we have

densityðEkþ1;Ek; iÞ
¼ 1� densityðEk; inEkþ1;Ek; iÞ

¼ 1� densityðGð f �ðkþ1ÞðEk; inEkþ1ÞÞ;Gð f �ðkþ1ÞðEk; iÞÞÞ

b 1� LðGjV Þ
2 density f �ðkþ1ÞðEk; iÞn

[
packð f �ðkþ1ÞðEk; iÞ; f �ðkþ1ÞðEk; iÞ

� �
b 1� e4 1� density

[
packð f �ðkþ1ÞðEk; iÞÞ; f �ðkþ1ÞðEk; iÞ

� �� �
:

Therefore, by (34) and (38), we have

densityðEkþ1;Ek; iÞb 1� c1e
4 xkþ1

exk
b

2

3
;ð40Þ

where k A N and 1a ia dk. For all k A N, by setting

rk :¼ 1� c1e
4 xkþ1

exk
;ð41Þ

it is easy to see that fEkgyk¼0 satisfies the nesting conditions.
Define E ¼

Ty
k¼0 Ek. Recall that Að f Þ is the fast escaping set of f defined

in (24). Since every point z A Ek; i satisfies f � jðzÞ A LðxjÞ for 0a ja k and
xk ! þy as k ! y, it means that E is contained in the fast escaping set Að f Þ
by (27) and Corollary 2.13. According to Lemma 2.3, we have

densityðAð f Þ;Q0Þb densityðE;Q0Þb
Yy
k¼0

rk:

Note that logð1� tÞ > �2t for t A ð0; 1=2Þ. By (38) and (41) we have

log
Yy
k¼0

rk

 !
¼
Xy
k¼0

log 1� c1e
4 xkþ1

exk

� �
b�2

Xy
k¼0

c1e
4 xkþ1

exk

b� 4c1e
4

ex=2

Xy
k¼0

1

ek
> � 8c1e

4

ex=2
:

Since e�t b 1� t for all t A R, we have

densityðAð f Þ;Q0Þ > exp � 8c1e
4

ex=2

� �
b 1� 8c1e

4

ex=2
ð42Þ

for all xb x� and all square Q0 � LðxÞ with sides of length r.
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Theorem 3.1. Let S be any horizontal strip of width 2p. Then the area of
the complement of the fast escaping set of f ðzÞ ¼ PðezÞ=ez satisfies

AreaðS \ Að f ÞcÞa ð4pþ 4rÞ x� þ rþ 8c1e
4�x �=2 r

1� e�r=2

� �
< y;ð43Þ

where r, c1 and x� are any positive constants satisfying (25), (35) and (36)
respectively.

Proof. Define the half strip Sþ by

Sþ :¼ fz A C : 0a Im za 2p and Re zb 0g:
We take

m0 ¼ ½x�=r� þ 1 and n0 ¼ ½2p=r� þ 1;ð44Þ

where ½x� denotes the integer part of xb 0. Recall that Qm;n
r is defined as

Qm;n
r :¼ fz A C : mraRe za ðmþ 1Þr and nra Im za ðnþ 1Þrg;

where m; n A Z. Since Qm;n
r � Lðx�Þ for all mbm0, we get

densityðAð f Þ;Qm;n
r Þ > 1� 8c1e

4

expðmr=2Þð45Þ

for all mbm0 by (42). So

AreaðSþ \ Að f ÞcÞaArea
[y
m¼0

[n0
n¼0

Qm;n
r

 !�
Að f Þ

 !

a
Xy
m¼0

Xn0
n¼0

AreaðQm;n
r nAð f ÞÞ

a
Xy
m¼0

Xn0
n¼0

ð1� densityðAð f Þ;Qm;n
r ÞÞ �AreaðQm;n

r Þ:

By (44) and (45), we obtain

AreaðSþ \ Að f ÞcÞa r2
Xm0�1

m¼0

Xn0
n¼0

1þ
Xy
m¼m0

Xn0
n¼0

8c1e
4

expðmr=2Þ

 !

a ð2pþ 2rÞ x� þ rþ 8c1e
4�x �=2 r

1� e�r=2

� �
:

This means that AreaðSþ \ Að f ÞcÞ < y for every fixed r > 0 satisfying (25).
Similarly, one can obtain

AreaðS� \ Að f ÞcÞa ð2pþ 2rÞ x� þ rþ 8c1e
4�x �=2 r

1� e�r=2

� �
;
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where S� ¼ fz A C : 0a Im za 2p and Re za 0g. Since f ðzÞ ¼ f ðzþ 2piÞ, for
any horizontal strip S of width 2p, we have

AreaðS \ Að f ÞcÞa ð4pþ 4rÞ x� þ rþ 8c1e
4�x �=2 r

1� e�r=2

� �
:

This completes the proof of Theorem 3.1 and hence Theorem 1.1. r

3.2. Proof of Theorem 1.2. Consider the quadratic polynomial

PðzÞ ¼ a

2
z2 þ ibz� a

2
; where a0 0 and b A C:

We then have

f ðzÞ :¼ PðezÞ
ez

¼ a

2
ez þ ib � a

2
e�z:

Note that a sinðzþ bÞ is conjugated by z 7! iðzþ bÞ to f ðzÞ. In order to prove
Theorem 1.2, it is su‰cient to prove the corresponding statements on f .

Now we collect all the needing constants in the proof. Note that the degree
of P is degðPÞ ¼ N ¼ 2. By (25) we fix the choice of r > 0 by setting

r ¼ 1=8:

By (15), we have K0 ¼ jaj=2. From (35), we fix

c1 ¼ c0 ¼
536

ffiffiffi
2

p

jaj þ 1

jaj2
:

By (16), we have

R3 ¼ log 2þ 16K

jaj

� �
; where K ¼ maxfjaj=2; jbjg:

According to Lemma 2.8, we have

R4 ¼ max 1þ 4ðK þ 2Þ
jaj ; 1þ 18K

jaj

� �
and R5 ¼ min

jaj
8ðK þ 1Þ ;

1

4

ffiffiffiffiffiffiffi
jaj
2K

r( )
:

Since K b jaj=2 > 0, we have

8ðK þ 1Þ
jaj >

8K

jaj b 4

ffiffiffiffiffiffiffi
2K

jaj

s
;

8ðK þ 1Þ
jaj ¼ 4K

jaj þ
4ðK þ 2Þ

jaj > 1þ 4ðK þ 2Þ
jaj

and

1þ 18K

jaj ¼ 1þ 16K

jaj þ K

jaj=2 b 2þ 16K

jaj :

Hence by (36), we can fix

x� ¼ max log 1þ 18K

jaj

� �
; log

8ðK þ 1Þ
jaj

� �
; 6 log 2; 12þ 2 log c1

� �
:
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By Theorem 3.1, the proof of Theorem 1.2 is finished module the statement on
the sine and cosine functions.

Let S be a vertical strip with width 2p. If a ¼ 1 and b ¼ 0, then K ¼ 1=2
and

r ¼ 1=8; c1 ¼ 536
ffiffiffi
2

p
þ 1 and x� ¼ 12þ 2 logð536

ffiffiffi
2

p
þ 1Þ:ð46Þ

From (43) we have

AreaðS \ Aðsin zÞcÞ

a 4pþ 1

2

� �
97

8
þ 2 logð536

ffiffiffi
2

p
þ 1Þ þ 1

e2 � e31=16

� �
< 361:

If a ¼ 1 and b ¼ p=2, then K ¼ p=2 and we still have (46). Also from (43) we
have

AreaðS \ Aðcos zÞcÞ < 361:

This finishes the proof of Theorem 1.2. r
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