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Abstract

We prove a continuity property in the sense of currents of a continuous family
of holomorphic functions which allows us to obtain a Lojasiewicz inequality with an
effective exponent independent of the parameter.

1. Introduction

The Zojasiewicz inequality introduced in [12] is one of the most important
tools in singularity theory, both complex and real. The first result concerning a
parametrized family—but, of course, with an exponent that is independent of the
parameter—is due to Lojasiewicz and Wachta [13]. Fairly recently, we have
obtained in [8] an effective Lojasiewicz inequality with parameter in complex
analytic geometry, using only complex analytic methods. This article is some-
how a continuation of that work, inspired to some extent by the observations
made in [7] and the intersection theory results introduced in [18].

Our best results are presented in the following theorem. Throughout the
paper we assume that the topological space T is Ist countable.

THEOREM 1.1. Assume that f: T x Q — C is a continuous function where
T is a locally compact, connected topological space, Q C C" is a domain, and for
all te T, f; e O(Q) does not vanish identically. Assume moreover that 0 € Q and
f:(0) =0 for any t. Then
(1) Z, — Zy, in the sense of currents, where Zj, denotes the cycle of zeroes
of 11
(2) there is a neighbourhood U C Q of zero in which, for all t close enough
to 1y,

|fi(x)| = e(2) dist(x, £,71(0))7,
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where ¢(t) > 0 is a constant depending on the parameter, but the exponent
o = ordy fo is uniform.

For the convenience of the reader let us recall two basic notions of conver-
gence of sets, especially useful in analytic geometry (see e.g. [4] and [19]). We
consider the following situation: 7 is a topological space and E C T x R”" is
a set with closed sections E; = {xeR"|(t,x) e E} and we put F:=n(E) for
n(t,x) =t. Assume that 7y is an accumulation point of F.

DeriNITION 1.2 (see e.g. [4]). We say that E, converges in the sense of
Kuratowski to a set A, when t — fy, if

+ for any x € 4, for any neighbourhood U of x, there is a neighbourhood
V of 1y such that UNE, #0 for all te VN F\{tx}, i.e. 4 C liminf,_, E,
(the lower Kuratowski limit);

« if x is such that for any neighbourhood U > x and any neighbourhood
V' >ty there is a point e V\{#} such that UNE, # 0, then x € 4, i.e.
A D limsup, ., E, (the upper Kuratowski limit).

We write then E, X Ak
If for each 1), E; — E;, then we say that E has continuously varying fibres.

Remark 1.3. It is easy to see (cf. [19], [4]) that this convergence for the
graphs of a sequence continuous functions is precisely the local uniform conver-
gence of the functions themselves.

We have the following straightforward observation:

Lemma 1.4. If any point in T has a countable basis of neighbourhoods, then
E,£>A when t — ty iff
* if xe A, then for any sequence t, — ty we can find points E; 3 x, — X;
* if x is such that there is a sequence t, — ty and points E, > x, — x, then
xe A

In complex analytic geometry this kind of convergence is very useful for
different purposes (Bishop’s Theorem, algebraic approximation as in [1] or alge-
braicity criteria as in [10]). We may refine it taking into account multiplicities
(cf. [18] and [2]). In order to do so, consider a sequence of positive pure
k-dimensional analytic cycles' Z,, v=0,1,2,... in some open set Q C C” (of
course, everything can be carried over to manifolds).

DeriNITION 1.5 (Tworzewski [18]). We say that Z, converges to Zy in the
sense of Tworzewski, which we denote by Z, — Z,, if

! A positive pure k-dimensional cycle Z is a formal sum > o,S, where «, > 0 are integers and {S,}
is a locally finite family of irreducible k-dimensional analytic sets; then the analytic set |Z] :=J S, is
called the support of Z; for details see [18].
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+ the supports |Z,] LS |Zol;
« for any regular point a € Reg|Zy| and any relatively compact manifold
M of complementary dimension, transversal to |Zy| at a and such that
M N |Zy| = {a}, we have for the total number of intersection® deg(Z, - M)
=deg(Zy- M) from some index v, onwards.
We will call M a testing manifold for Z, at a.

Remark 1.6. As noted by Alain Yger [22], this convergence is precisely
the weak convergence of the corresponding integration currents [Z,]. See also the
general though not very precise discussion in [2] and the elegant construction in
[15].

By [18] Lemma 3.2 it is sufficient to consider testing manifolds at a dense
subset of the regular points of |Zy|.

Of course, the definition may be extended to families {Z;} where ¢ belongs
to a topological space T.

It will be useful to state clearly the following observation being a mere
corollary to the result of [19]:

ProrosiTION 1.7. If Xy, Yy are analytic subsets of an open set Q C C™ of
pure dimensions p, q respectively, and if Xo N Yy has pure dimension p + q —m,
then for any sequences X, X Xo and Y, — Yy of analytic subsets of Q of pure
dimension p and q respectively, locally the intersections X, N'Y, are proper (i.e. of
pure dimension p+q —m) for all indices large enough.

Proof. By [19] we know that X, NY, LS XoN Yy. Besides, at any ae
X, N Y, we obviously have dim, X, NY,>p+qg—m.

Now fix a point a € Xy N Yy and choose coordinates in such a way that in
a bounded neighbourhood W = U x V' C CPT4™™ x C*" =4 of g the natural
projection onto U restricted to the set Zy = Xp N Yy is a branched covering. We
may ask that (U x 0V)NZy=0. Write Z, := X, N Y, N W. Then, by the con-
vergence, for all indices large enough, (U x dV)N Z, = (), whereas Z, # ().

This means that any such Z, projects properly on U. Therefore, if we pick
a point z € Z, and an arbitrarily small polydisc around it, then by the Remmert
Proper Map Theorem, dim, Z, < p+ ¢ —m. This implies that all the Z,’s have
pure dimension p + g — m.

Since any subsequence of X,N Y, converges to XyN Yy the proof is
accomplished. O

Finally, we briefly recall the notion of c-holomorphic functions (cf. [16] and
[21]) i.e. complex continuous functions that are defined on an analytic set A

2By [19], almost all interesections |Z,| N M are discrete and so finite. Then the total number
of intersection is the formal sum of the intersection points with their respective Draper intersection
indices [11] taken into account.



362 MACIEJ P. DENKOWSKI

and holomorphic at its regular points Reg 4. We denote by .(A4) their ring for
a fixed 4. Their study from the geometric point of view was carried to some
extent in [5]—[8]. They share many a property of holomorphic functions, though
they form a larger class without really useful differential properties. Their main
feature is the fact that they are characterized among all the continuous func-
tions 4 — C by the analycity of their graphs (see [21]). That allows the use of
geometric methods. In particular there is an identity principle on irreducible sets
(cf. [6]) and we can consider the order of vanishing (see [5] where it is introduced
and studied) at a point f(a) =0 (when f #0) as

ord, f :=max{n > 0||f(x)| < const.||x||”, in a neighbourhood of ae A4}.

For a holomorphic function defined in an open set this coincides with the degree
of the first non-zero form in the expansion into homogeneous forms at a.

2. Continuity principle

Lemma 2.1. Let E C R,k x RY be a closed, nonempty set with continuously
varying sections E; over F :=n(E) where n(t,x) =1t Then the function

o(t, x) ;= dist(x, E;), (t,x)e F xR"
is continuous.
Proof.  The function d(¢,-) is 1-Lipschitz which means that lim,_y, d(¢, x) =
o(t,xp) is uniform with respect to ¢. Therefore, in view of the Iterated Limits

Theorem, we need only to check that # — J(¢,x) is continuous for all x. Indeed,
then

lim 5(2‘,)6) = lim 5([0,)(7) :5([0,)(0).

(t,x)—(t0,x0) X=X

Fix (#p,x0). We know that E, — E,, in the sense of Kuratowski. Then let
d:=d(x,E;). In particular, for any ¢ > 0,

(K) B(xo,d +&)NE,#0 and B(xo,d —&)NE, =0.

Then, the convergence implies (cf. [4] Lemma 2.1) that for all ¢ sufficiently close
to fy, condition (K) holds for E, instead of E;,. That in turn implies that for all
such ¢,

d—e¢<dist(xg, E) <d+¢

and the proof is complete. ]

Remark 2.2. Of course, the lemma is true for a product of metric spaces.
In particular we can replace the parameter space R¥ by a Ist countable
topological space T, since for such a 7 the following general Iterated Limits
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Theorem holds®: if f: T x X — Y where X, Y are metric spaces with ¥ com-
plete, is such that

« Alim,,, f(t,x) = ¢(x) for any x € X;

+ 3lim,_y, f(z,x) = Y(¢) uniformly in ¢,
then there exists lim, vy, x) /(¢ X) = lim,_, f(t0,X) = ¥(%).

ProposiTION 2.3.  Consider a pure (k + n)-dimensional analytic set A C
U x V x C? with proper projection n(t,z,w) = (t,z) onto the product domain
UxVcChxC" Then

(1) The sections A, vary continuously;

(2) The function 6 : U x (V x C?) 3 (t,x) — dist(x, 4,) € R is continuous.

Proof. Since A is closed, the sections 4, are upper semi-continuous, by [4]

Proposition 2.7, i.e. for any ¢,
limsup A4, C Ay,.
t—to

We need to check that A4, C liminf, ., 4,. This amounts to proving that for
any x € A,, and any t, — ) we can find points x, € 4;, converging to x. Since 7
is a branched covering on A, we see that the fibres 7~ !(z(¢,,x)) N A converge to
the fibre 7! (n(t9, x)) N A containing (7, x) which gives exactly what we need and
the proof of (1) is complete.

Now (2) follows from the previous lemma. O

Remark 2.4. We stress once again that (2) is a simple consequence of (1).

LemMMa 2.5. Let T be a locally compact topological space and X C C™ a
nonempty, locally closed set. If f:T x X — C is continuous and we write
fi(x) = f(t,x), then t — ty in T implies the convergence of graphs:

K
Ff, — Ff’o'

Proof. In view of Remark 1.3 we need only to check that for any ¢, — 1,
fi, — fi, locally uniformly on X. Take a compact set K C X. Then K'=
{t} x K is compact and for a fixed ¢ > 0 and any x € K we find neighbourhoods
U, x B(x,ry) of (f,x) at points (z, y) for which

|/ (2, ) = f (10, %) <e

By compacity we choose a finite covering K’ € |J7_, U; x B(x;,r;) and put U :=
? | Ui, then for any (1,x) e U x K we have (1,x) e U; x B(x;,r;) for some i
and so

|f(t,x) = f(t0,x)| <e.
This ends the proof. O

3We do not have a reference for this fact, but the proof is obvious.
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PROPOSITION 2.6. Let T be a locally compact, connected topological space, A

a pure k-dimensional analytic subset of some open set Q CC" and f: T x A — C

a continuous function such that for each t € T, f;(x) := f(x,t) is c-holomorphic on
A. Then t — ty in T implies

Iy

Jt

T
- rﬁo'
Proof. By Lemma 2.5 we have

Iy,

t

1y,

This means that on Reg A4, for any ¢, — 3, we have a sequence of holomorphic
functions converging locally uniformly.

Now, observe that for any ge 0.(4), T gl 4 C Reg Ty is dense. For a
testing M at a e F.f}o\kcg 4 we have the equality 7,M N T, ”Ffro = {0} where T, (,l"ﬁo
denotes the tangent space at a, and so deg(M -I'; ) = 1. But since in the holo-
morphic case, the local uniform convergence is a convergence with the tangents,
we easily conclude that for sufficiently large indices v, M is transversal to the
manifold (near a) I'y and so deg(M -I;) =1, too (there are no multiplicities
attached to the graphs). To be somewhat more precise, if a = (a’, f;,(a’)), then

K
T @) s, = T gy @),
and we apply [19] to conclude that M intersects I'y, transversally. O

Recall (cf. [5]-[7]) that if f e O.(4) does not vanish identically on any
irreducible component of 4, where A is a pure k-dimensional analytic subset of
a domain D C C", then we define the cycle of zeroes as the Draper proper
intersection cycle ([11])

Zf = Ff . (D X {0})
In the same way we may define the fibre cycle, namely

[/~ (f(@)] =Ty (D x {f(a)})

and consider this as a cycle in D.
Now we can state the following Hurwitz-type theorem:

THEOREM 2.7. Let T be a connected topological space, A a pure k-
dimensional analytic subset of some domain D C C", f: T x A — C a continuous
Sunction such that for each te€ T, f;(x):= f(x,t) is c-holomorphic on A. Then if
Jfio 0 on any irreducible component of A and fto’l(O) # 0, we have

Z,

t

T
—>Zf,0, t— 1.

Proof. By the previous Proposition we have

Iy,

Jt

T
— l"f,O.
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Of course, fto‘l(O) is a hypersurface in 4 (cf. the identity principle from [6])
which means that the intersection I'y, N (D x {0}) is proper (i.e of the minimal
dimension possible: &k —1). By [18] Lemma 3.5 (cf. Proposition 1.7) we con-
clude that for any sequence ¢, — 1,

T
Ly, - (D x{0}) = Iy - (D x{0}).
This ends the proof. ]

CorOLLARY 2.8. Let g€ (.(A), g # const. on any irreducible component of
A C D, where A is pure k-dimensional. Then for any ty € A,

97 @) 5 g7 W), 1o

Proof. Let f:AxC>3(x,t)— g(x)—teC. By [6], we conclude that all
the nonempty fibres of g have pure dimension k& — 1. Then f satisfies the
assumptions of the preceding Theorem and

Zs, =Ty, - (D x{0})

=Ty (D x{1})

=[g~' ()],
since ®(x,s) = (x,s+ 1) is an automorphism of D x C sending I';, to I'y and
D x {0} to D x {t}. This ends the proof. O

Before the next corollary recall that for any positive cycle Z =3 o,S, we
define its local degree at a €|Z| as deg, Z := > o, deg, S,, where deg, S, is the
usual local degree (Lelong number) with the convention that deg, S, =0 if a ¢ S,.

COROLLARY 2.9. Under the assumptions of the preceding Theorem suppose in
addition that fi,(a) =0 for all te T and some fixed ae A. Then for all t close
enough to ty,

deg, Z;, < deg, Zj,
for the local degrees at a.

Proof. Take any affine subspace L through a, of dimension m — k + 1 and
such that

L. Zf'o = dega Zf’o : {a}
Then by Theorem 2.7 together with [18] Lemma 3.5,
L7, 5 L-7,

which ends the proof, since

L-Z;= Z i(L'meb){b}
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and for each Draper intersection index (multiplicity) i(L - Zs,b) we have
l(L . Zf’,b) > deg, Zf’,

for deg, L =1. Therefore, we obtain by the convergence, for all ¢ sufficiently
close to t,

deg, Z;, = deg(L - Zj, )
= deg(L - Zy)
= i(L- Z,b)
be LA, (0)
2 i(L-Zy,a) = deg, Zj,
as ae LN f71(0) (for all 7). O

3. On the Lojasiewicz inequality and the total degree

We recall one result from [17] (see also [7] Theorem 2.3) which is the basis
which we shall work upon.

THEOREM 3.1 ([17] Theorem 1). Let f:Q — C be holomorphic in a (con-
nected) neighbourhood Q of 0 € C™. If f is non-constant and f(0) = 0 then there
is a neighbourhood U of zero such that the following Lojasiewicz inequality
holds:

|/ (x)| > const.dist(x, f~1(0))* ™/ xeU

where ordy f denotes the order of vanishing of f at zero. Moreover, this is the
best exponent possible.

As before we consider the intersection cycle of zeroes Zy =T, - (Q x {0}).

ProposiTiON 3.2 ([7] Proposition 2.1). In the setting introduced above,
degy Zy = ordy f.

We easily generalize these results to c-holomorphic functions, although only
in a weak sense (compare the following theorem with the results of [8]). Con-
sider a pure k-dimensional (k > 2) analytic subset 4 of a neighbourhood Q
of 0 C™ with 0 € A. Assume that f € (.(A4) satisfies f(0) =0 and does not
vanish identically on any irreducible component of A4 containing zero.

THEOREM 3.3. In the c-holomorphic setting introduced above, there is a neigh-
bourhood W of zero such that

£ (z)] > const.dist(z, £ ~1(0)) %@ Zdee /7O e 4.
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Proof.  Write C" = C*1 x C" ¥ with coordinates (x, y).

We may assume that the coordinates are chosen in such a way that the
projection 7(x, y) = x onto the first k — 1 coordinates is proper on Z := f~1(0) N
(U x V) with covering number equal to the local degree deg, f~'(0) =: d. Here
U x V is a neighbourhood of the origin satisfying ({0} x V)N f~1(0) = {0}.

Applying Proposition 2.2 from [3] we find a holomorphic mapping
F:UxC"* ! - P such that F~1(0) = f~'(0)N (U x V) and

(*) 1F(x, )| = dist((x, ), Z)%,  (x, ) € U x C"F*1.

If we write F = (Fy,..., F,) we observe that F,'(0)n4 D f~1(0)N (U x V)
for all j. The intersection of the graph I'y with Q x {0} being proper, we can
now apply the c-holomorphic Nullstellensatz from [6]. In other words, we find a
neighbourhood W C U x V of zero and p c-holomorphic functions #; on W N 4
for which

(%) F)=hf on AnNW, j=1,..p

with ¢ = deg, Z;.
Combining (x) and (*%) we eventually obtain the inequality looked for.

]
ProOPOSITION 3.4.  Under the assumptions of the previous theorem,
degy Zy - degy f'(0) = ordy f.
Proof. This follows from Lemma 4.8 in [5]. OJ

Using Corollary 2.9 and Proposition 3.2 or simply looking at the expansion
into a (Hartogs) power series, we easily obtain

Lemma 3.5, If f = f(t,x) € Oy is such that f;(0) := f(1,0) =0 for all t
small enough and fy = f(0,-) is non-constant, then

ordy f; < ordg fo

for all t sufficiently close to zero.

Example 3.6. The inequality may be strict as we easily see by taking
f(t,x) = tx+x?; then for t#0, ordg f; =1 < ordy fo =2 =ordy f. But of
course there is no direct relation with ordy f, it suffices to take f(z,x)=
tx + x3 in order to have ordy f; = 1 < ordy f =2 < ordy fp.

The proof of Theorem 3.1 suggests the following result.

PROPOSITION 3.7. Let V x W &€ C" ' x C be a bounded, connected neigh-
bourhood of zero (a polydisc) and let Pe O(V)[t] be unitary and such that
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P~1(0) C (V x W) projects properly onto V. Then in V x W there is
IP(x, )] = dist((x, 1), P (0))°
with 6 = deg(({0}"" x W) - Zp).

Proof. Recall from (7] that Zp =) a;S; where S; are the irreducible
components of P~1(0) and o; = min{ord. P|z € Reg S;} is the generic order of
vanishing of P along S;. Note that each S; projects onto the whole of V.

Now, since the intersections ({x} x W) N P~1(0) are proper, by [18] (see also
[2]) we conclude that for any x, — 0 we have

({x ) x W) - Zp 5 ({0Y" x W) - Zp

and so deg(({x,} x W)-Zp) =0 for sufficiently large v.

Observe that for the generic xe V' we have the following situation:
{x} x W intersects P~'(0) transversally at d regular points b() = (x, (")), where
d is the multiplicity of the branched covering P~!(0) — ¥, each of these points
belongs to exactly one §j, all the S;’s appear in this assignment, and ord,y P = o;
for the unique j such that 5 € S;. Therefore, we may write

0= Z ord, P.
be({x}x W)NP-1(0)
On the other hand, for any such point x we have
d

P(x, 1) = [ — )"
i-1
with #n; independent of the point chosen. We observe that n; = ord,u P.
Indeed, if we write {x} x W as the zero-set of an affine mapping /= (4,...,
{m—1) restricted to V' x W, then the transversality of the intersection ({x} x W) n
P~1(0) implies by the Tsikh-Yuzhakov result (see [2]) that the multiplicity
myo (P, /) at each point b) of the proper mapping germ (P,/) is equal to the
product of the orders of P and the /s, i.e. to ord,» P. On the other hand, by
[2] pp. 107-108 we easily see that

My i) (P, /) = ordtm P‘{X}XW = n;.

Therefore, 0 = Zld: ni. This allows us to write, for the generic x € V, the
following inequalities:

d
|Px, o)) = T Ie— 21"
i=1
d .
= [T 0 = (e ey
i=1

d
> dist((x, £), P~ (0)) 2=,
Extending this by continuity to the whole of V' x W ends the proof. O
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Remark 3.8. The proof above is in fact an extrapolation of the proof of
Theorem 3.1, where we use the Weierstrass Preparation in a neighbourhood of
zero such that ({0} x W) N f~1(0) = {0} and ordy f = ordy P.

CorROLLARY 39. If f:V x W — C is a holomorphic function such that
£7Y0) projects properly onto V, then for some possibly smaller neighbourhood
UCV X W of zero, f satisfies the Lojasiewicz inequality in U with exponent
deg(({0} x W) - Zy)

Proof. In V x W we can apply the Weierstrass Preparation Theorem and
write f = hP with a holomorphic function / such that #7!(0) = @. Shrinking the
neighbourhood (actually, we need only to shrink V' if any), we may assume that
inf|#| > 0. Then Zy = Zp, since ord, f = ord, P. The preceding Proposition
gives the result. O

4. The Lojasiewicz inequality with parameter

Eventually, we are ready to prove the main result.

THEOREM 4.1.  Assume that [ : T x Q — C is a continuous function where T
is a locally compact, connected topological space, Q C C™ is a domain, and for
all te T, f; € O(Q) does not vanish identically. Assume moreover that 0 € Q and

f:(0) =0 for any t. Then there is a neighbourhood U C Q of zero such that, for
all t close enough to t,

|fi(x)] = e(2) dist(x, £,71(0)*, xeU
where ¢(t) > 0 is a constant depending on the parameter, but the exponent

o = ordy f;,
is uniform.
Proof. By Theorem 2.7 we know in particular that f,~1(0) LS £710). Of
course these sets are hypersurfaces. The type of convergence implies that we can

choose coordinates in C™” in such a way that for some neighbourhood V x W C
C" ! x C of zero, V connected and W a disc, we have

HoynV xow) =0

for all ¢ close enough to #y. This means that the zero-sets intersected with
V x W project properly onto V. Moreover, we may assume that

({0} x W) - Z;, = ordy f;,{0}.

In the situation considered, the proof of Proposition 3.7 shows that the
Lojasiewicz inequality for f; is satisfied in V' x W with the exponent d, =
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deg(({0}"" x W) - Zp):
(+) Lfi(x)] = c(t) dist(x, £,71(0), xeVx W

where ¢(7) > 0 is a constant.

But then, for ¢ close enough to fy, the numbers d; fortunately coincide with
deg({0}" ! x W) - Zy, = ordy f;, by the convergence (Theorem 2.7).

This ends the proof. O

It seems hard to obtain a satisfactory c-holomorphic counter-part to this
Theorem due to the use of the Nullstellensatz with parameter. The best we were
able to obtain is the following Theorem.

THEOREM 4.2. Assume that : T x A — C is a continuous function where
T is a locally compact, connected topological space, A is a pure k-dimensional
analytic subset of an open set Q C C", 0 € A, and for all te T, f;€ O.(A) does
not vanish identically on any irreducible component of A through zero. Assume
moreover that f,(0) =0 for any t. Then there is a neighbourhood U C Q of zero
such that, for all t close enough to ty,

|£i(x)] = () dist(x, £,71(0))*, xedNU
where ¢(t) > 0 is a constant depending on the parameter, but the exponent
o = (degy Zy,)?

is uniform.
Proof. We give the proof in several steps.

Step 1. Choose coordinates in C” in such a way that A4 projects properly
onto the first k coordinates and, moreover,
i(({0} ! x Ry L Z, 10) = deg, Zy, -

Let /: C"™ — C*! be the linear epimorphism whose kernel is exactly {O}k_l X
Cm K+ Write

g, : A3 x— (fi(x),/(x)) e Cx CK!
for 1€ T. Fix a polydisc ¥V x W c C¥ ! x C"**1 centred at zero such that
({0} x W)n £, (0) = {0}
In particular we may assume that fm‘l(O) projects properly onto V.
STEP 2. The latter intersection corresponds to (¥ x W x {0})n Iy, which
means that there is a polydisc P C C* such that the pure k-dimensional analytic

set (V' x W x P)nT, projects properly onto P along V' x W. In other words,
. o .
@il (vxwyna is proper with image P.
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As in Lemma 2.5, the continuity of
®:T x A3 (t,x) — ¢,(x) e CF

implies the Kuratowski convergence of the graphs I',, X F%O as t — ty. There-

fore, by the same argument as in Proposition 1.7, we conclude that for all ¢ close
enough to #y, the restrictions of the natural projection

o (VxWxP)nl, — P
are branched coverings. In particular, all these ¢, have the same image P. Let

¢, denote the multiplicity of the branched covering ¢, ANV X

Step 3. By the choice of V' x W and Theorem 2.7, we know (cf. the proof
of the previous Theorem) that for all ¢ close enough to 7, the zero-sets £,~1(0) N
(V x W) project properly onto V. Let d; denote the multiplicity of such a
branched covering.

Since by Theorem 2.7 we know that the cycles of zeroes of the restrictions
Jilan(vw) converge with ¢ — 1o in the sense of Tworzewski, we easily conclude
from [18] Lemma 3.5 and [19] that

(%) di < deg(({0}" x W) - Zy) = deg(({0} x W) - Z;,) = deg Z,.

On the other hand, we observe that ¢, = deg(({0}*' x W) - Z;) and so

(%) q: < degy Zj, .

Indeed, it is easy to see that ¢, is in fact the multiplicity g, of the projection
n: CH L "R % C s (u, 0, w) — (u,w) e CK1 €

over P when restricted to I', :== Iz, N (V x W x C), because for a generic point
(x0,wo) € P, we have

g, =#{(x, y, fi(x, »)) [ (x, ) € V x W,n(x, p, fi(x, ¥)) = (x0, wo)}
= #{ye Wlwo = filxo, )} = #£" (wo) N ({xo} x W)
= #{(x, 0, [i(x, ), £(x, ) [ (x, 9) € V X W,wo = fi(x,¥),4(x, ¥) = xo}
=#{(x, 2, 0,(x, ) [ (x, ) € V x W,m(x, y, 0,(x, y)) = (x0,w0)} = ¢s.

The multiplicity g,, in turn, by the classical Stoll Formula®*, coincides with the
total degree of the intersection cycle z~!(0)-I';. In other words, we obtain

gi = deg(({0}~! x W x {0}) - ).

4If the natural projection 7: D x C” — D onto the domain D C C¥ is proper on the pure
k-dimensional analytic set X C D x C? with covering degree d, then Stoll’s Formula states that for
any yeD, d =3 1(yny Mx(n|y) where my(n|y) denotes the local multiplicity of the projection at
the point x of the fibre. As already observed in [11], my(n|y) = i(X - #~'(); x), which means that
d = deg(X -7~ (y)).
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However, in view of [20] Theorem 2.2, we can write
{0y x W x {0}) - T,
= ({0} W {0]) vaemwngoy (V5 W {0}) v T)
= ({0} " 5 W5 {01) vew i) Zt o
= {0y x W) vew 2y,

whence ¢, = deg(({0}*~' x W) - Zr) as required.

Step 4. As in the proof of Theorem 3.3, by [3] Proposition 2.2 we know
that for each ¢ close to fy there are p, = d;(m —k)+ 1 holomorphic functions
F.j: V x C"™**! — C whose common zeroes form coincide with the set f,~1(0) N
(V x W) and for which

[(Eutae o Eup) ()l = distCx, £, (0) 0 (1 W)

for all xe V' x W.
Now, we can apply Lemma 3.1 from [6] (compare [14]) in order to get on the
whole of AN (V x W),

Fffj.; - hl,jfla Jj= I,... , Do

with some functions #, ;€ O.(AN(V x W)).
This leads to the inequalities

(#) fi(x)] = e(0) dist(x, £;71(0) ", xedn(V x W)

for all ¢ close to 7 and some constants c¢(¢) > 0.

Step 5. Thanks to the continuity of the zero-sets (cf. Theorem 2.7),
Proposition 2.3 (cf. Remark 2.4) allows us to choose an arbitrarily small neigh-
bourhood T of #, and a neighbourhood U C V x W of zero such that for all
teTy and all xe U, we have

dist(x, £,71(0)) < 1.

Therefore, we may increase ad libitum the exponent in (#), provided xe AN U.
The estimates (%) and (%x) end the proof. O

Remark 4.3. In both theorems in this section the assumption that for
any te T, f; does not vanish identically on the irreducible components of the
domain is automatically satisfied, if we just assume that f;, does not vanish
identically on the irreducible componens of the domain (cf. Proposition 1.7 and
Theorem 2.7).
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