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TWISTED ALEXANDER POLYNOMIALS OF GENUS ONE
TWO-BRIDGE KNOTS
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Abstract

Morifuji [14] computed the twisted Alexander polynomial of twist knots for
nonabelian representations. In this paper we compute the twisted Alexander polyno-
mial and Reidemeister torsion of genus one two-bridge knots, a class of knots which
includes twist knots. As an application, we give a formula for the Reidemeister torsion

. . 1 .
of the 3-manifold obtained by g-Dehn surgery on a genus one two-bridge knot.

1. Introduction

The twisted Alexander polynomial, a generalization of the Alexander poly-
nomial, was introduced by Lin [10] for knots in S* and by Wada [19] for finitely
presented groups. It was interpreted in terms of Reidemeister torsion by Kitano
[9] and Kirk-Livingston [5]. Twisted Alexander polynomials have been exten-
sively studied in the past ten years by many authors, see the survey papers [2, 13]
and references therein.

In [14] Morifuji computed the twisted Alexander polynomial of twist knots
for nonabelian representations. In this paper we will generalize his result to
genus one two-bridge knots. In a related direction, Kitano [6] gave a formula

. . . . . 1
for the Reidemeister torsion of the 3-manifold obtained by 5-Dehn surgery on the

figure eight knot. In [17] we generalized his result to twist knots. In this paper
we will also compute the Reidemeister torsion of the 3-manifold obtained by

l-Dehn surgery on a genus one two-bridge knot.

9 Let J(k,I) be the knot/link in Figure 1, where k, / denote the numbers of
half twists in the boxes. Positive (resp. negative) numbers correspond to right-
handed (resp. left-handed) twists. Note that J(k,/) is a knot if and only if / is
even. It is known that the set of all genus one two-bridge knots is the same as
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FiGURE 1. The knot/link J(k,I).

the set of all the knots J(2m,2n) with mn # 0, see e.g. [1]. The knots J(2,2n)
are known as twist knots. For more information on J(k,/), see [3].

From now on we fix K = J(2m,2n) with mn # 0. Let Xx = S°\K be the
complement of K in S°. The knot group of K, which is the fundamental group
of Xk, has a presentation 7;(Xx) = {a,b|w"a = bw") where a,b are meridians
and w = (ba=")"(b~'a)". A representation p : m(Xx) — SL,(C) is called non-
abelian if the image of p is a nonabelian subgroup of SL,(C). Suppose
p:m(Xg) — SLy,(C) is a nonabelian representation. Up to conjugation, we
may assume that

1 s 0
R I R R A

where s # 0 and y # 2 satisfy p(w"a) = p(bw"). By [16] this matrix equation is
equivalent to a single equation ¢ (s, y) = 0, called the Riley equation of K. We
also call ¢g(s, y) € C[st!,y] the Riley polynomial of K. It will be computed
explicitly in Section 2. Note that y = tr p(ab™").

Let Si(v) be the Chebychev polynomials of the second kind defined by
So(v) =1, Si1(v) =v and Si(v) = vSk—1(v) — Sk—2(v) for all integers k.

Let x:=trp(a) =s+s ! and z:=trp(w) =2+ (y = 2)(y +2 — x2)S2_,(»).

THEOREM 1. Let K = J(2m,2n) with mn # 0. Suppose p : m1(Xk) — SLy(C)
is a nonabelian representation. Then the twisted Alexander polynomial of K is
given by

Axp(1) = (2 +1 - 1x) (Sm(y) yszz(y) - 2> <Sn(z) —Zsj,zz(z) - 2>

+ xS 1 (y)Snfl(Z)-

THEOREM 2. Let K = J(2m,2n) with mn # 0. Suppose p : m1(Xk) — SLy(C)
is a nonabelian representation. If x # 2 then the Reidemeister torsion of K is
given by

Tp(K) = (2 — X) <Sm(y) _ij’—zz(y) B 2) (S,,(Z) _ZSZ—ZZ(Z) -2

) + xSmu-1(»)Su-1(2).
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1
Now let M be the 3-manifold obtained by 5-surgery on the genus one two-
bridge knot J(2m,2n). The fundamental group 7;(M) has a presentation
(M) =<a,b|w'a=bw"al! = 1),

where A is the canonical longitude corresponding to the meridian u = a.

THEOREM 3. Let K = J(2m,2n) with mn # 0.  Suppose p : n;(Xg) — SLy(C)
is a nonabelian representation which extends to a representation p:m (M) —
SLy(C). If x¢{0,2} then the Reidemeister torsion of M is given by

Su(y) —yszz(y) - 2> (sn<z> S a) - 2)

T, (M) = {(2 - x)<

+xsm_,(y)S”_l(z)} <4xz + (y+2x2)(y2)5311(y)>.

X2(y—2)°82_,(y)

Remark 1.1. (1) Theorem 1 generalizes the formula for the twisted
Alexander polynomial of twist knots by Morifuji [14].
(2) Theorem 3 generalizes the formulas for the Reidemeister torsion of the

1
3-manifold obtained by 5-surgery on the figure eight knot by Kitano [6] and on
twist knots by the author [17].
The paper is organized as follows. In Section 2 we give a formula for the
Riley polynomial of a genus one two-bridge knot, and compute the trace of a
canonical longitude. In Section 3 we review the twisted Alexander polynomial

and Reidemeister torsion of a knot. We prove Theorems 1, 2 and 3 in Section 4.
We would like to thank the referee for helpful comments and suggestions.

2. Nonabelian representations
In this section we give a formula for the Riley polynomial of a genus one
two-bridge knot. We also compute the trace of a canonical longitude.

2.1. Chebyshev polynomials. Recall that Si(v) are the Chebychev poly-
nomials defined by Sp(v) =1, Si(v) =v and Sk(v) = vSk_1(v) — Sk—2(v) for all
integers k. The following lemma is elementary. We will use it many times
without referring to it.

LemMMA 2.1. We have S7(v) — vSk(v)Sk—1(v) + SE_,(v) = 1.

Let Pr(v) := Zf{:o S;(v). The next two lemmas are proved in [17].
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Si1(v) = Si(v) — 1
v—2 '

LemMa 2.2. We have Pi(v) =

b
Lemma 2.3, Suppose V = {z d] € SLy(C). Then

v [Sk(v) —dSi-1(v) bSi-1(v)

(2.1) Ve = [ ¢Si_1(v) Sk (v) — aSk—l(”):|7
k P Pk(v) — defl(U) bPk,l(l))

22 2.V'= e noamo)

where v:=tr V =a+d. Moreover, we have

(2.3) det(Z V> Sier1(0) - f"z‘l(“) -2

2.2. The Riley polynomial. Recall that K = J(2m,2n) with mn # 0. The
knot group of K has a presentation 7;(Xx) = <{a,b|w"a = bw") where a, b are
meridians and w = (ba=!)"(b~'a)"™, see [3]. Suppose p: 7 (Xx) — SL,(C) is a
nonabelian representation. Up to conjugation, we may assume that

pa=ly L] e se=[,0 0

0 2—y s

where s # 0 and y # 2 satisfy p(w"a) = p(bw™). By [16], this matrix equation is
equivalent to the Riley equation ¢ (s,y) =0. We now compute ¢g(s, y).

. _ —S _
haveSlnce p(ba=!) = 2y e 1} and y = tr p(ba™!), by Lemma 2.3 we
—1ymy __ Sn(¥) = (v =1)Su1(y) —$Su-1(y)
o =1 0G0 s st

Similarly

~1,)m) — Su(y) = (y = 1DSu-1() SilSmfl(y)
pUb™a)") = [ s(y = 2)Su-1(y) Sn(y) — Sm—l(y)].

Hence p(w) = p((bafl)m(bfla)m) _ [ wii w12

2—=y)win wxn
Wit = S () + (2= 20)Su(1)Sp-1(9) + (1 +25° =2y =y + ¥?) S5, (»),
wiz = (57" = 8)Su(»)Su1(¥) + (s + s =598 1 (1),
wn = Sp(¥) = 28u(»)Sn1(¥) + (1 + 2572 = s729)S0 1 ()

Let z=trp(w). Since S2(¥) — ¥Smu(»)Sm—1(¥) +S2 () =1 (by Lemma
2.1), we have

} where
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z=wy +wn = 2(537()’) = YSu(¥)Sm-1(y) + Sifl(J’))
+ (287 4257 =2y =Py — s Ty + 37)Sh ()
=24+ (y=2(y—s —s)Sp_ ().

{Sn(z) —wxSu—1(2) wi2Su—1(2)

By L 2. h ) = )
y Lemma 2.3 we have p(w") (2= PwnSei()  Su(z) — witSu ()

Hence

na_ Wn _ 0 ¢K(S7y)
pra=m)=| o o
where @ (s, )
=Su(z) = {(s—s~ 1)W1z+wzz}Sn 1(2)
Su(2) = {Sp(3) = (> +57)Su(P)Su1(P) + (1 + 57 + 577 = 1) Sh (1) }Sa1(2)

=Su(z) — {1+ (y—s*—s 2)Sm—l(y)(Sm(y) = S 1 (W)} Sn1(2).
Remark 2.4. Similar formulas for ¢, (s, y) were already obtained in [11, 15].

2.3. Trace of the longitude. By [3] the canonical longitude of K =
J(2m,2n) corresponding to the meridian g =a is A= W”"w", where W is the
word in the letters a, b obtained by writing w in the reversed order. We now
compute its trace. This computation will be used in the proof of Theorem 3.

Let a=1+4(y 5> =57)Su-1(2)(Sn(¥) = Sw-1(1))-

Lemma 2.5. We have
o~z 1=y =5 =5 ) (N2 =5 =5+ (=57 =5y =28, ()

Proof. By a direct calculation we have

Pzt 1= (y =8 s 2y (r =5t =57

(Srfa(y) - ySm(y)Sm—l(y) + (y - 1)Sr%zfl(y))}
The lemma follows, since S2(y) — ySu(3)Spu-1(¥) +S% ,(») = 1. O
LEmMMA 2.6. We have
S @) ={(r—5"=sSp (2= =5+ (y— =5 -2)SH_, )} -

Proof. Since s # 0 and y # 2 satisfy the Riley equation ¢, (s, y) =0, we
have S,(z) = aS,-1(z). Hence

1= Sﬁ(z) —28,(2)Su-1(2) + Sffl(z) = (oc2 —za + I)S,ffl(z).

The lemma then follows from Lemma 2.5. O
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ProrosiTiION 2.7. We have

(s+s (-2’82 ,(»)

t ;\. - 2 - .
rp(2) 252 =52+ (y—s2—s)(y—2)S2 ,(»)
W W
Proof. We have p(w) = . 21 where

2-»)Win W
Wit =Sp(3) = 28u(3)Sm-1(¥) + (1425 = 5»)S5, 1 (),
Wiz = (5= )Su(»)Sma(») + (s~ +5 =)0, (1),
War = Sp(1) + (2= 20)Su(1)Sn1(») + (1 + 2572 =29 =572y + 1)) (1)
By Lemma 2.3 we have

Su(2) = WnS,-1(z) W12S,-1(2)

P =] 22 TS S - TuSea())

By a direct calculation, using S2(p) — pSu(3)Sn-1(») +S2_(») =1, we
have

tr p(3) = tr(p(")p(w™)
=287(2) =202+ (y =)y =5 —s)S0 1(M}Su(2)Su1(2)
H{2— s+ (=2 (=5 =5 DS (MISE(2)
=2—(s+5 ) (=2 (y - —s S5 (1)S1_(2).

The lemma then follows from Lemma 2.6. O

3. Twisted Alexander polynomial and Reidemeister torsion

In this section we briefly review the twisted Alexander polynomial and the
Reidemeister torsion of a knot. For more details, see [10, 19, 2, 13, 4, 12, 18].

3.1. Twisted Alexander polynomial of a knot. Let L be a knot in S and
X = S3\L its complement. We choose a Wirtinger presentation for the knot
group of L:

7[1(XL) = <a1,...,a1|r1,...,rl,1>.

The abelianization homomorphism f :7;(Xy) — H | (X1;Z) = Z = {¢) is given
by f(a))=---= f(a;) =t. Here we specify a generator ¢ of H(X;Z) and
denote the sum in Z multiplicatively.

Let p: m1(Xz) — SLy(C) be a representation. The maps p and f naturally
induce two ring homomorphisms p: Z[n(X.)] — M>(C) and f: Z[n(X.)] —
Z[t*"] respectively, where Z[r;(X7)] is the group ring of 7;(Xz) and M>(C) is the
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matrix algebra of degree 2 over C. Then ®:=p® f defines a ring homomor-
phism Z[r;(X7)] — M>(C[t£1]).
Consider the (/ — 1) x / matrix 4 whose (i, j)-component is the 2 x 2 matrix

o(5) e i)

where 0/0a denotes the Fox’s free calculus. For 1 < j </, denote by A4; the
(I—1)x (I —1) matrix obtained from A by removing the jth column. We
regard A; as a 2(/—1)x2(/—1) matrix with coefficients in C[t*!]. Then
Wada’s twisted Alexander polynomial [19] of a knot L associated to a repre-
sentation p : 7;(Xz) — SLy(C) is defined to be

Note that Az ,(7) is well-defined up to a factor 1* (ke Z).

AL (1)

3.2. Torsion of a chain complex. Let C be a chain complex of finite

dimensional vector spaces over C:
C=(0— Cp—25% Gy 22 20 0 5 6 — 0)

such that for each i=0,1,...,m the followings hold

+ the homology group H;(C) is trivial, and

+ a preferred basis ¢; of C; is given.

Let B; C C; be the image of 0;;1. For each i choose a basis b; of B;. The
short exact sequence of C-vector spaces

0—>Bi—>CiiBl;1—>O

implies that a new basis of C; can be obtained by taking the union of the vectors
of b, and some lifts b;,_; of the vectors b;_;. Define [(b;Ub;_1)/c;] to be the
determinant of the matrix expressing (b; Ub;_;) in the basis ¢;. Note that this
scalar does not depend on the choice of the lift b, of b;_;.

The torsion of C is defined to be

m

o(C) = [[1Bi ) /e) TV e C\f0}.

i=0

Remark 3.1. Once a preferred basis of C is given, the torsion 7(C) is
independent of the choice of by, ..., b,.

3.3. Reidemeister torsion of a CW-complex. Let M be a finite CW-
complex and p : m (M) — SLy(C) a representation. Denote by M the universal
covering of M. The fundamental group 7;(M) acts on M as deck transforma-
tions. Then the chain complex C(M;Z) has the structure of a chain complex of
left Z[r (M)]-modules.
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Let ¥ be the 2-dimensional vector space C> with the canonical basis
{e1,e2}. Using the representation p, 7 has the structure of a right Z[n(M)]-
module which we denote by V). Define the chain complex C(M;V,) to be
Vy ®zjm,(my) C(M;Z), and choose a preferred basis of C(M; V) as follows. Let
{uf,...,u},} be the set of i-cells of M, and choose a lift & of each cell. Then
{es@ul,e;@ui,...,e ®ﬁjni,ez®ﬁj;li} is chosen to be the preferred basis of
Ci(M; V).

The Reidemeister torsion 7,(M) is defined as follows:

(C(M;V,)) if p is acyclic,
0 otherwise.

(M) = {

Here a representation p is called acyclic if all the homology groups H;(M; V) are
trivial.
For a knot L in S and a representation p : 7;(X7) — SL,(C), the Reide-
meister torsion 7,(L) of L is defined to be that of the knot complement X;.
The following result which relates the Reidemeister torsion and the twisted
Alexander polynomial of a knot is due to Johnson.

THEOREM 3.2 ([4]). Let p:m(Xr) — SLy(C) be a representation such that
det(p(u) — I) # 0, where u is a meridian of L. Then the Reidemeister torsion of
L is given by

(L) = A y(1).

4. Proof of main results

4.1. Proof of Theorem 1. Recall that K =J(2m,2n) and = (Xk)=
{a,b|w"a = bw"), where a, b are meridians and w = (ba™")" (b~ 'a)".

0 .

Let r=w"aw™"b~!. We have Ak (1) = det (D<6_;> Jdet®(b—1). Tt is
easy to see that det ®(b—1) =12 —t(s+s )+ 1 =22 —tx+ 1.

For an integer k and a word u (in 2 letters a, b), let 6 (u) = 1 +u+ --- + u*.

LemMa 4.1. We have

o, IRl
il <1 + (1 =a)o,—1(w Hw 6a>
where
w! % = (@ '0)" 01 (b )bt =6, _1(ab7T)).

Proof. The lemma follows from direct calculations. O
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Let
Qi = p(Ou1(w )(a"'D)"),
Q = {7 p(Ou-1(b"'a)b™") = p(Om-1(ab™ ")} — tp(a)).
Then by Lemma 4.1 we have

det O (%) = det(l + Q1) =1+ tr(QQy) + det(Q; Q).

LemMma 4.2. We have

[ BPu-1(z) = yPu2(2) =St (V)™ Puea(2) = SPn—Z(Z))]
(2= )Sn-1(¥)(sPu-1(2) =57 Pya(2)) YPu-1(2) — BPu-2(2)

where ﬂ = Sm(y> - Smfl(y) and V= Sm(y) - (y - 1>Smfl(y)-

Q=

Proof. By Lemma 2.3 we have

—1z\m Sm(y) - Smfl(y) _Silsmfl(y)
a0 = | 2 e S (o D)
and
POt (w1)) = |:Pn1(z) —wii1Pp2(2) —wiaPp2(2) }
(y =2)wiaPu_2(z)  Pu_i(z) —wanPy_2(z)
The lemma then follows by a direct calculation. O

LEmMA 4.3. We have

(st+ st — 2)(Pu-1(y) = Pu—2(p)) (t— S_I)mel(y) + (t_l —8)Ppu_a(y) }
2=yt =D Poca(y) =57 Pua()) (57 145171 = ) (Poct () = Pra(9) ]

Moreover

H =

det Q) = (l+ P x)2 <Sm(y) - Sm72(y) — 2)

y—2
Proof. By Lemma 2.3 we have

Py1(y) = Pua(y) sPu2(y) ]

(y 2) m— 2()’) Py1(y) = (y = 1)Pua(y) ’

me - Pm Silef
p(5m71(b—la)) — |: l(y) ( ) Z(y) 2(y) :|
s(y = 2)Pm2(y) Pp1(y) = Pua(y)
The formula for Q, then follows by a direct calculation. The one for det Q, is
Sk1(¥) — Se(y) —
y—2

ponr(ab ) = | 7

1.
obtained by using the formula Pi(y) = in Lemma 2.2. [
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We now complete the proof of Theorem 1 by computing the determinant
and the trace of the matrix Q;Q;. By Lemma 2.3 we have detQ; =
Sn(z) - San(Z) -2

H
p— ence

(4.1) det(@ Q) = (141" - x)? <S"(Z) ~ Si2(8) - 2) (S’”(y) ~ Su2y) - 2).

z—2 y—2
By a direct calcultion, using the matrix forms of Q; and Q, in Lemmas 4.2
_ Sk (y) = Sk(y) — 1
y—2
(@) = {(1+ 17 )x = X2+ (x* = 2= »)(Su(¥) = (¥ = )Su-1(1))}
X Syt (1) (Paoi(2) = Paa(2) + (2= ») (3% =2 = 1) S (1) Pua(2)
={(t+ 1 x =+ (¥ = 2= p)(Su(») = (v = DSu-1())}
X Sp-1(¥)Sn-1(2) + (z = 2) Py_2(2)
= {(t+ 1 )x =X+ (2 =2 = 2(Su(y) = (¥ = DS ()}
X Sp-1(P)Sn-1(2) + Su-1(2) — Su-2(z) — 1.
Since Sy-2(2) = {1 = (¥ +2 = x?)Su-1(V)(S-1() = S-2(¥))}Su-1(z) we get
(4.2) tr(Q1 Q) = (1 4+t x — xS, 1(1)Su_1(2) — 1.

and 4.3 and the formula Pj(y) , we have

Finally, by combining the equations (4.1), (4.2) and

1+ tI’(ngz) + det(ngz)
Axp(t) = 2 —tx+1

we obtain Theorem 1, since Ak ,(¢) is defined up to multiplication by a factor
?k (keZ).

4.2. Proof of Theorem 2. Note that det(p(b) —I) =2 —x. Since 7,(K) =
Ak, (1) for x # 2, Theorem 2 follows directly from Theorem 1.

. . 1
4.3. Proof of Theorem 3. Let M be the 3-manifold obtained by 5-surgery

on the genus one two-bridge knot K = J(2m,2n). Suppose p : 71 (Xk) — SLy(C)
is a nonabelian representation which extends to a representation p:m (M) —
SL,(C). Recall that 1 is the canonical longitude corresponding to the meridian
w=a. If tr p(1) # 2, then by [6] (see also [7, 8]) the Reidemeister torsion of M
is given by

(4.3) (M) = %.
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By Theorem 2 we have

z—2 ) + xS-1(y)Sn-1(2)

y—2

if x# 2. By Proposition 2.7 we have

xz(y_2)2531_1(y)
4—x2+(y+2-x2)(y—-2)S2_,(»)

trp(l) —2=—

By Lemma 2.6 we have S,,_1(y) # 0. This implies that tr p(1) # 2 if and only if
x #0. Theorem 3 then follows from (4.3).
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