TWISTED ALEXANDER POLYNOMIALS OF GENUS ONE TWO-BRIDGE KNOTS

Anh T. Tran

Abstract

Morifuji [14] computed the twisted Alexander polynomial of twist knots for nonabelian representations. In this paper we compute the twisted Alexander polynomial and Reidemeister torsion of genus one two-bridge knots, a class of knots which includes twist knots. As an application, we give a formula for the Reidemeister torsion of the 3 -manifold obtained by $\frac{1}{q}$-Dehn surgery on a genus one two-bridge knot.

1. Introduction

The twisted Alexander polynomial, a generalization of the Alexander polynomial, was introduced by Lin [10] for knots in S^{3} and by Wada [19] for finitely presented groups. It was interpreted in terms of Reidemeister torsion by Kitano [9] and Kirk-Livingston [5]. Twisted Alexander polynomials have been extensively studied in the past ten years by many authors, see the survey papers [2, 13] and references therein.

In [14] Morifuji computed the twisted Alexander polynomial of twist knots for nonabelian representations. In this paper we will generalize his result to genus one two-bridge knots. In a related direction, Kitano [6] gave a formula for the Reidemeister torsion of the 3 -manifold obtained by $\frac{1}{q}$-Dehn surgery on the figure eight knot. In [17] we generalized his result to twist knots. In this paper we will also compute the Reidemeister torsion of the 3-manifold obtained by ${ }^{1}$-Dehn surgery on a genus one two-bridge knot.
q Let $J(k, l)$ be the knot/link in Figure 1, where k, l denote the numbers of half twists in the boxes. Positive (resp. negative) numbers correspond to righthanded (resp. left-handed) twists. Note that $J(k, l)$ is a knot if and only if $k l$ is even. It is known that the set of all genus one two-bridge knots is the same as

[^0]

Figure 1. The knot/link $J(k, l)$.
the set of all the knots $J(2 m, 2 n)$ with $m n \neq 0$, see e.g. [1]. The knots $J(2,2 n)$ are known as twist knots. For more information on $J(k, l)$, see [3].

From now on we fix $K=J(2 m, 2 n)$ with $m n \neq 0$. Let $X_{K}=S^{3} \backslash K$ be the complement of K in S^{3}. The knot group of K, which is the fundamental group of X_{K}, has a presentation $\pi_{1}\left(X_{K}\right)=\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$ where a, b are meridians and $w=\left(b a^{-1}\right)^{m}\left(b^{-1} a\right)^{m}$. A representation $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is called nonabelian if the image of ρ is a nonabelian subgroup of $S L_{2}(\mathbf{C})$. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
2-y & s^{-1}
\end{array}\right]
$$

where $s \neq 0$ and $y \neq 2$ satisfy $\rho\left(w^{n} a\right)=\rho\left(b w^{n}\right)$. By [16] this matrix equation is equivalent to a single equation $\phi_{K}(s, y)=0$, called the Riley equation of K. We also call $\phi_{K}(s, y) \in \mathbf{C}\left[s^{ \pm 1}, y\right]$ the Riley polynomial of K. It will be computed explicitly in Section 2. Note that $y=\operatorname{tr} \rho\left(a b^{-1}\right)$.

Let $S_{k}(v)$ be the Chebychev polynomials of the second kind defined by $S_{0}(v)=1, S_{1}(v)=v$ and $S_{k}(v)=v S_{k-1}(v)-S_{k-2}(v)$ for all integers k.

Let $x:=\operatorname{tr} \rho(a)=s+s^{-1}$ and $z:=\operatorname{tr} \rho(w)=2+(y-2)\left(y+2-x^{2}\right) S_{m-1}^{2}(y)$.
Theorem 1. Let $K=J(2 m, 2 n)$ with $m n \neq 0$. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. Then the twisted Alexander polynomial of K is given by

$$
\begin{aligned}
\Delta_{K, \rho}(t)= & \left(t^{2}+1-t x\right)\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right)\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right) \\
& +t x S_{m-1}(y) S_{n-1}(z) .
\end{aligned}
$$

Theorem 2. Let $K=J(2 m, 2 n)$ with $m n \neq 0$. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. If $x \neq 2$ then the Reidemeister torsion of K is given by
$\tau_{\rho}(K)=(2-x)\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right)\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right)+x S_{m-1}(y) S_{n-1}(z)$.

Now let M be the 3 -manifold obtained by $\frac{1}{q}$-surgery on the genus one twobridge knot $J(2 m, 2 n)$. The fundamental group $\pi_{1}(M)$ has a presentation

$$
\pi_{1}(M)=\left\langle a, b \mid w^{n} a=b w^{n}, a \lambda^{q}=1\right\rangle,
$$

where λ is the canonical longitude corresponding to the meridian $\mu=a$.
Theorem 3. Let $K=J(2 m, 2 n)$ with $m n \neq 0$. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation which extends to a representation $\rho: \pi_{1}(M) \rightarrow$ $S L_{2}(\mathbf{C})$. If $x \notin\{0,2\}$ then the Reidemeister torsion of M is given by

$$
\begin{aligned}
\tau_{\rho}(M)=\{ & (2-x)\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right)\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right) \\
& \left.+x S_{m-1}(y) S_{n-1}(z)\right\}\left(\frac{4-x^{2}+\left(y+2-x^{2}\right)(y-2) S_{m-1}^{2}(y)}{x^{2}(y-2)^{2} S_{m-1}^{2}(y)}\right) .
\end{aligned}
$$

Remark 1.1. (1) Theorem 1 generalizes the formula for the twisted Alexander polynomial of twist knots by Morifuji [14].
(2) Theorem 3 generalizes the formulas for the Reidemeister torsion of the 3-manifold obtained by $\frac{1}{q}$-surgery on the figure eight knot by Kitano [6] and on twist knots by the author [17].

The paper is organized as follows. In Section 2 we give a formula for the Riley polynomial of a genus one two-bridge knot, and compute the trace of a canonical longitude. In Section 3 we review the twisted Alexander polynomial and Reidemeister torsion of a knot. We prove Theorems 1, 2 and 3 in Section 4.

We would like to thank the referee for helpful comments and suggestions.

2. Nonabelian representations

In this section we give a formula for the Riley polynomial of a genus one two-bridge knot. We also compute the trace of a canonical longitude.
2.1. Chebyshev polynomials. Recall that $S_{k}(v)$ are the Chebychev polynomials defined by $S_{0}(v)=1, S_{1}(v)=v$ and $S_{k}(v)=v S_{k-1}(v)-S_{k-2}(v)$ for all integers k. The following lemma is elementary. We will use it many times without referring to it.

Lemma 2.1. We have $S_{k}^{2}(v)-v S_{k}(v) S_{k-1}(v)+S_{k-1}^{2}(v)=1$.
Let $P_{k}(v):=\sum_{i=0}^{k} S_{i}(v)$. The next two lemmas are proved in [17].

Lemma 2.2. We have $P_{k}(v)=\frac{S_{k+1}(v)-S_{k}(v)-1}{v-2}$.
Lemma 2.3. Suppose $V=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbf{C})$. Then

$$
\begin{align*}
V^{k} & =\left[\begin{array}{cc}
S_{k}(v)-d S_{k-1}(v) & b S_{k-1}(v) \\
c S_{k-1}(v) & S_{k}(v)-a S_{k-1}(v)
\end{array}\right], \tag{2.1}\\
\sum_{i=0}^{k} V^{i} & =\left[\begin{array}{cc}
P_{k}(v)-d P_{k-1}(v) & b P_{k-1}(v) \\
c P_{k-1}(v) & P_{k}(v)-a P_{k-1}(v)
\end{array}\right], \tag{2.2}
\end{align*}
$$

where $v:=\operatorname{tr} V=a+d$. Moreover, we have

$$
\begin{equation*}
\operatorname{det}\left(\sum_{i=0}^{k} V^{i}\right)=\frac{S_{k+1}(v)-S_{k-1}(v)-2}{v-2} \tag{2.3}
\end{equation*}
$$

2.2. The Riley polynomial. Recall that $K=J(2 m, 2 n)$ with $m n \neq 0$. The knot group of K has a presentation $\pi_{1}\left(X_{K}\right)=\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$ where a, b are meridians and $w=\left(b a^{-1}\right)^{m}\left(b^{-1} a\right)^{m}$, see [3]. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
2-y & s^{-1}
\end{array}\right]
$$

where $s \neq 0$ and $y \neq 2$ satisfy $\rho\left(w^{n} a\right)=\rho\left(b w^{n}\right)$. By [16], this matrix equation is equivalent to the Riley equation $\phi_{K}(s, y)=0$. We now compute $\phi_{K}(s, y)$.

Since $\rho\left(b a^{-1}\right)=\left[\begin{array}{cc}1 & -s \\ s^{-1}(2-y) & y-1\end{array}\right]$ and $y=\operatorname{tr} \rho\left(b a^{-1}\right)$, by Lemma 2.3 we

$$
\rho\left(\left(b a^{-1}\right)^{m}\right)=\left[\begin{array}{cc}
S_{m}(y)-(y-1) S_{m-1}(y) & -s S_{m-1}(y) \\
s^{-1}(2-y) S_{m-1}(y) & S_{m}(y)-S_{m-1}(y)
\end{array}\right] .
$$

Similarly

$$
\rho\left(\left(b^{-1} a\right)^{m}\right)=\left[\begin{array}{cc}
S_{m}(y)-(y-1) S_{m-1}(y) & s^{-1} S_{m-1}(y) \\
s(y-2) S_{m-1}(y) & S_{m}(y)-S_{m-1}(y)
\end{array}\right] .
$$

Hence $\rho(w)=\rho\left(\left(b a^{-1}\right)^{m}\left(b^{-1} a\right)^{m}\right)=\left[\begin{array}{cc}w_{11} & w_{12} \\ (2-y) w_{12} & w_{22}\end{array}\right]$ where

$$
\begin{aligned}
& w_{11}=S_{m}^{2}(y)+(2-2 y) S_{m}(y) S_{m-1}(y)+\left(1+2 s^{2}-2 y-s^{2} y+y^{2}\right) S_{m-1}^{2}(y) \\
& w_{12}=\left(s^{-1}-s\right) S_{m}(y) S_{m-1}(y)+\left(s^{-1}+s-s^{-1} y\right) S_{m-1}^{2}(y) \\
& w_{22}=S_{m}^{2}(y)-2 S_{m}(y) S_{m-1}(y)+\left(1+2 s^{-2}-s^{-2} y\right) S_{m-1}^{2}(y)
\end{aligned}
$$

Let $z=\operatorname{tr} \rho(w)$. Since $S_{m}^{2}(y)-y S_{m}(y) S_{m-1}(y)+S_{m-1}^{2}(y)=1$ (by Lemma 2.1), we have

$$
\begin{aligned}
z=w_{11}+w_{22}= & 2\left(S_{m}^{2}(y)-y S_{m}(y) S_{m-1}(y)+S_{m-1}^{2}(y)\right) \\
& +\left(2 s^{2}+2 s^{-2}-2 y-s^{2} y-s^{-2} y+y^{2}\right) S_{m-1}^{2}(y) \\
= & 2+(y-2)\left(y-s^{2}-s^{-2}\right) S_{m-1}^{2}(y) .
\end{aligned}
$$

By Lemma 2.3 we have $\rho\left(w^{n}\right)=\left[\begin{array}{cc}S_{n}(z)-w_{22} S_{n-1}(z) & w_{12} S_{n-1}(z) \\ (2-y) w_{12} S_{n-1}(z) & S_{n}(z)-w_{11} S_{n-1}(z)\end{array}\right]$.

$$
\rho\left(w^{n} a-b w^{n}\right)=\left[\begin{array}{cc}
0 & \phi_{K}(s, y) \\
(2-y) \phi_{K}(s, y) & 0
\end{array}\right]
$$

where $\phi_{K}(s, y)$

$$
\begin{aligned}
& =S_{n}(z)-\left\{\left(s-s^{-1}\right) w_{12}+w_{22}\right\} S_{n-1}(z) \\
& =S_{n}(z)-\left\{S_{m}^{2}(y)-\left(s^{2}+s^{-2}\right) S_{m}(y) S_{m-1}(y)+\left(1+s^{2}+s^{-2}-y\right) S_{m-1}^{2}(y)\right\} S_{n-1}(z) \\
& =S_{n}(z)-\left\{1+\left(y-s^{2}-s^{-2}\right) S_{m-1}(y)\left(S_{m}(y)-S_{m-1}(y)\right)\right\} S_{n-1}(z) .
\end{aligned}
$$

Remark 2.4. Similar formulas for $\phi_{K}(s, y)$ were already obtained in [11, 15].
2.3. Trace of the longitude. By [3] the canonical longitude of $K=$ $J(2 m, 2 n)$ corresponding to the meridian $\mu=a$ is $\lambda=\overleftarrow{w}^{n} w^{n}$, where \overleftarrow{w} is the word in the letters a, b obtained by writing w in the reversed order. We now compute its trace. This computation will be used in the proof of Theorem 3.

Let $\alpha=1+\left(y-s^{2}-s^{-2}\right) S_{m-1}(y)\left(S_{m}(y)-S_{m-1}(y)\right)$.
Lemma 2.5. We have

$$
\alpha^{2}-z \alpha+1=\left(y-s^{2}-s^{-2}\right) S_{m-1}^{2}(y)\left(2-s^{2}-s^{-2}+\left(y-s^{2}-s^{-2}\right)(y-2) S_{m-1}^{2}(y)\right) .
$$

Proof. By a direct calculation we have

$$
\begin{aligned}
\alpha^{2}-z \alpha+1= & \left(y-s^{2}-s^{-2}\right) S_{m-1}^{2}(y)\left\{2-y+\left(y-s^{2}-s^{-2}\right)\right. \\
& \left.\left(S_{m}^{2}(y)-y S_{m}(y) S_{m-1}(y)+(y-1) S_{m-1}^{2}(y)\right)\right\} .
\end{aligned}
$$

The lemma follows, since $S_{m}^{2}(y)-y S_{m}(y) S_{m-1}(y)+S_{m-1}^{2}(y)=1$.
Lemma 2.6. We have
$S_{n-1}^{2}(z)=\left\{\left(y-s^{2}-s^{-2}\right) S_{m-1}^{2}(y)\left(2-s^{2}-s^{-2}+\left(y-s^{2}-s^{-2}\right)(y-2) S_{m-1}^{2}(y)\right)\right\}^{-1}$.
Proof. Since $s \neq 0$ and $y \neq 2$ satisfy the Riley equation $\phi_{K}(s, y)=0$, we have $S_{n}(z)=\alpha S_{n-1}(z)$. Hence

$$
1=S_{n}^{2}(z)-z S_{n}(z) S_{n-1}(z)+S_{n-1}^{2}(z)=\left(\alpha^{2}-z \alpha+1\right) S_{n-1}^{2}(z) .
$$

The lemma then follows from Lemma 2.5 .

Proposition 2.7. We have

$$
\operatorname{tr} \rho(\lambda)=2-\frac{\left(s+s^{-1}\right)^{2}(y-2)^{2} S_{m-1}^{2}(y)}{2-s^{2}-s^{-2}+\left(y-s^{2}-s^{-2}\right)(y-2) S_{m-1}^{2}(y)} .
$$

Proof. We have $\rho(\overleftarrow{w})=\left[\begin{array}{cc}\overleftarrow{w}_{11} & \overleftarrow{w}_{12} \\ (2-y) \overleftarrow{w}_{12} & \overleftarrow{w}_{22}\end{array}\right]$ where

$$
\begin{aligned}
& \overleftarrow{w}_{11}=S_{m}^{2}(y)-2 S_{m}(y) S_{m-1}(y)+\left(1+2 s^{2}-s^{2} y\right) S_{m-1}^{2}(y), \\
& \overleftarrow{w}_{12}=\left(s-s^{-1}\right) S_{m}(y) S_{m-1}(y)+\left(s^{-1}+s-s y\right) S_{m-1}^{2}(y), \\
& \overleftarrow{w}_{22}=S_{m}^{2}(y)+(2-2 y) S_{m}(y) S_{m-1}(y)+\left(1+2 s^{-2}-2 y-s^{-2} y+y^{2}\right) S_{m-1}^{2}(y)
\end{aligned}
$$

By Lemma 2.3 we have

$$
\rho\left(\overleftarrow{w}^{n}\right)=\left[\begin{array}{cc}
S_{n}(z)-\overleftarrow{w}_{22} S_{n-1}(z) & \overleftarrow{w}_{12} S_{n-1}(z) \\
(2-y) \overleftarrow{w}_{12} S_{n-1}(z) & S_{n}(z)-\overleftarrow{w}_{11} S_{n-1}(z)
\end{array}\right]
$$

By a direct calculation, using $S_{m}^{2}(y)-y S_{m}(y) S_{m-1}(y)+S_{m-1}^{2}(y)=1$, we have

$$
\begin{aligned}
\operatorname{tr} \rho(\lambda)= & \operatorname{tr}\left(\rho\left(\overleftarrow{w}^{n}\right) \rho\left(w^{n}\right)\right) \\
= & 2 S_{n}^{2}(z)-2\left\{2+(y-2)\left(y-s^{2}-s^{-2}\right) S_{m-1}^{2}(y)\right\} S_{n}(z) S_{n-1}(z) \\
& +\left\{2-\left(s+s^{-1}\right)^{2}(y-2)^{2}\left(y-s^{2}-s^{-2}\right) S_{m-1}^{4}(y)\right\} S_{n-1}^{2}(z) \\
= & 2-\left(s+s^{-1}\right)^{2}(y-2)^{2}\left(y-s^{2}-s^{-2}\right) S_{m-1}^{4}(y) S_{n-1}^{2}(z) .
\end{aligned}
$$

The lemma then follows from Lemma 2.6 .

3. Twisted Alexander polynomial and Reidemeister torsion

In this section we briefly review the twisted Alexander polynomial and the Reidemeister torsion of a knot. For more details, see [10, 19, 2, 13, 4, 12, 18].
3.1. Twisted Alexander polynomial of a knot. Let L be a knot in S^{3} and $X_{L}=S^{3} \backslash L$ its complement. We choose a Wirtinger presentation for the knot group of L :

$$
\pi_{1}\left(X_{L}\right)=\left\langle a_{1}, \ldots, a_{l} \mid r_{1}, \ldots, r_{l-1}\right\rangle .
$$

The abelianization homomorphism $f: \pi_{1}\left(X_{L}\right) \rightarrow H_{1}\left(X_{L} ; \mathbf{Z}\right) \cong \mathbf{Z}=\langle t\rangle$ is given by $f\left(a_{1}\right)=\cdots=f\left(a_{l}\right)=t$. Here we specify a generator t of $H_{1}\left(X_{L} ; \mathbf{Z}\right)$ and denote the sum in \mathbf{Z} multiplicatively.

Let $\rho: \pi_{1}\left(X_{L}\right) \rightarrow S L_{2}(\mathbf{C})$ be a representation. The maps ρ and f naturally induce two ring homomorphisms $\tilde{\rho}: \mathbf{Z}\left[\pi_{1}\left(X_{L}\right)\right] \rightarrow M_{2}(\mathbf{C})$ and $\tilde{f}: \mathbf{Z}\left[\pi_{1}\left(X_{L}\right)\right] \rightarrow$ $\mathbf{Z}\left[t^{ \pm 1}\right]$ respectively, where $\mathbf{Z}\left[\pi_{1}\left(X_{L}\right)\right]$ is the group ring of $\pi_{1}\left(X_{L}\right)$ and $M_{2}(\mathbf{C})$ is the
matrix algebra of degree 2 over \mathbf{C}. Then $\Phi:=\tilde{\rho} \otimes \tilde{f}$ defines a ring homomorphism $\mathbf{Z}\left[\pi_{1}\left(X_{L}\right)\right] \rightarrow M_{2}\left(\mathbf{C}\left[t^{ \pm 1}\right]\right)$.

Consider the $(l-1) \times l$ matrix A whose (i, j)-component is the 2×2 matrix

$$
\Phi\left(\frac{\partial r_{i}}{\partial a_{j}}\right) \in M_{2}\left(\mathbf{Z}\left[t^{ \pm 1}\right]\right)
$$

where $\partial / \partial a$ denotes the Fox's free calculus. For $1 \leq j \leq l$, denote by A_{j} the $(l-1) \times(l-1)$ matrix obtained from A by removing the j th column. We regard A_{j} as a $2(l-1) \times 2(l-1)$ matrix with coefficients in $\mathbf{C}\left[t^{ \pm 1}\right]$. Then Wada's twisted Alexander polynomial [19] of a knot L associated to a representation $\rho: \pi_{1}\left(X_{L}\right) \rightarrow S L_{2}(\mathbf{C})$ is defined to be

$$
\Delta_{L, \rho}(t)=\frac{\operatorname{det} A_{j}}{\operatorname{det} \Phi\left(a_{j}-1\right)}
$$

Note that $\Delta_{L, \rho}(t)$ is well-defined up to a factor $t^{2 k}(k \in \mathbf{Z})$.
3.2. Torsion of a chain complex. Let C be a chain complex of finite dimensional vector spaces over \mathbf{C} :

$$
C=\left(0 \longrightarrow C_{m} \xrightarrow{\partial_{m}} C_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \longrightarrow 0\right)
$$

such that for each $i=0,1, \ldots, m$ the followings hold

- the homology group $H_{i}(C)$ is trivial, and
- a preferred basis c_{i} of C_{i} is given.

Let $B_{i} \subset C_{i}$ be the image of ∂_{i+1}. For each i choose a basis b_{i} of B_{i}. The short exact sequence of \mathbf{C}-vector spaces

$$
0 \rightarrow B_{i} \rightarrow C_{i} \xrightarrow{\partial_{i}} B_{i-1} \rightarrow 0
$$

implies that a new basis of C_{i} can be obtained by taking the union of the vectors of b_{i} and some lifts \tilde{b}_{i-1} of the vectors $b_{i_{\tilde{1}}}$. Define $\left[\left(b_{i} \cup \tilde{b}_{i-1}\right) / c_{i}\right]$ to be the determinant of the matrix expressing $\left(b_{i} \cup \tilde{b}_{i-1}\right)$ in the basis c_{i}. Note that this scalar does not depend on the choice of the lift \tilde{b}_{i-1} of b_{i-1}.

The torsion of C is defined to be

$$
\tau(C):=\prod_{i=0}^{m}\left[\left(b_{i} \cup \tilde{b}_{i-1}\right) / c_{i}\right]^{(-1)^{i+1}} \in \mathbf{C} \backslash\{0\} .
$$

Remark 3.1. Once a preferred basis of C is given, the torsion $\tau(C)$ is independent of the choice of b_{0}, \ldots, b_{m}.
3.3. Reidemeister torsion of a CW-complex. Let M be a finite CWcomplex and $\rho: \pi_{1}(M) \rightarrow S L_{2}(\mathbf{C})$ a representation. Denote by \tilde{M} the universal covering of M. The fundamental group $\pi_{1}(M)$ acts on \tilde{M} as deck transformations. Then the chain complex $C(\tilde{M} ; \mathbf{Z})$ has the structure of a chain complex of left $\mathbf{Z}\left[\pi_{1}(M)\right]$-modules.

Let V be the 2 -dimensional vector space \mathbf{C}^{2} with the canonical basis $\left\{e_{1}, e_{2}\right\}$. Using the representation ρ, V has the structure of a right $\mathbf{Z}\left[\pi_{1}(M)\right]$ module which we denote by V_{ρ}. Define the chain complex $C\left(M ; V_{\rho}\right)$ to be $V_{\rho} \otimes_{\mathbf{Z}\left[\pi_{1}(M)\right]} C(\tilde{M} ; \mathbf{Z})$, and choose a preferred basis of $C\left(M ; V_{\rho}\right)$ as follows. Let $\left\{u_{1}^{i}, \ldots, u_{m_{i}}^{i}\right\}$ be the set of i-cells of M, and choose a lift \tilde{u}_{j}^{i} of each cell. Then $\left\{e_{1} \otimes \tilde{u}_{1}^{i}, e_{2} \otimes \tilde{u}_{1}^{i}, \ldots, e_{1} \otimes \tilde{u}_{m_{i}}^{i}, e_{2} \otimes \tilde{u}_{m_{i}}^{i}\right\}$ is chosen to be the preferred basis of $C_{i}\left(M ; V_{p}\right)$.

The Reidemeister torsion $\tau_{\rho}(M)$ is defined as follows:

$$
\tau_{\rho}(M)= \begin{cases}\tau\left(C\left(M ; V_{\rho}\right)\right) & \text { if } \rho \text { is acyclic } \\ 0 & \text { otherwise }\end{cases}
$$

Here a representation ρ is called acyclic if all the homology groups $H_{i}\left(M ; V_{\rho}\right)$ are trivial.

For a knot L in S^{3} and a representation $\rho: \pi_{1}\left(X_{L}\right) \rightarrow S L_{2}(\mathbf{C})$, the Reidemeister torsion $\tau_{\rho}(L)$ of L is defined to be that of the knot complement X_{L}.

The following result which relates the Reidemeister torsion and the twisted Alexander polynomial of a knot is due to Johnson.

Theorem 3.2 ([4]). Let $\rho: \pi_{1}\left(X_{L}\right) \rightarrow S L_{2}(\mathbf{C})$ be a representation such that $\operatorname{det}(\rho(\mu)-I) \neq 0$, where μ is a meridian of L. Then the Reidemeister torsion of L is given by

$$
\tau_{\rho}(L)=\Delta_{L, \rho}(1)
$$

4. Proof of main results

4.1. Proof of Theorem 1. Recall that $K=J(2 m, 2 n)$ and $\pi_{1}\left(X_{K}\right)=$ $\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$, where a, b are meridians and $w=\left(b a^{-1}\right)^{m}\left(b^{-1} a\right)^{m}$.

Let $r=w^{n} a w^{-n} b^{-1}$. We have $\Delta_{K, \rho}(t)=\operatorname{det} \Phi\left(\frac{\partial r}{\partial a}\right) / \operatorname{det} \Phi(b-1)$. It is easy to see that $\operatorname{det} \Phi(b-1)=t^{2}-t\left(s+s^{-1}\right)+1=t^{2}-t x+1$.

For an integer k and a word u (in 2 letters a, b), let $\delta_{k}(u)=1+u+\cdots+u^{k}$.
Lemma 4.1. We have

$$
\frac{\partial r}{\partial a}=w^{n}\left(1+(1-a) \delta_{n-1}\left(w^{-1}\right) w^{-1} \frac{\partial w}{\partial a}\right)
$$

where

$$
w^{-1} \frac{\partial w}{\partial a}=\left(a^{-1} b\right)^{m}\left(\delta_{m-1}\left(b^{-1} a\right) b^{-1}-\delta_{m-1}\left(a b^{-1}\right)\right) .
$$

Proof. The lemma follows from direct calculations.

Let

$$
\begin{aligned}
& \Omega_{1}=\rho\left(\delta_{n-1}\left(w^{-1}\right)\left(a^{-1} b\right)^{m}\right) \\
& \Omega_{2}=\left\{t^{-1} \rho\left(\delta_{m-1}\left(b^{-1} a\right) b^{-1}\right)-\rho\left(\delta_{m-1}\left(a b^{-1}\right)\right)\right\}(I-t \rho(a))
\end{aligned}
$$

Then by Lemma 4.1 we have

$$
\operatorname{det} \Phi\left(\frac{\partial r}{\partial a}\right)=\operatorname{det}\left(I+\Omega_{1} \Omega_{2}\right)=1+\operatorname{tr}\left(\Omega_{1} \Omega_{2}\right)+\operatorname{det}\left(\Omega_{1} \Omega_{2}\right)
$$

Lemma 4.2. We have
$\Omega_{1}=\left[\begin{array}{cc}\beta P_{n-1}(z)-\gamma P_{n-2}(z) & -S_{m-1}(y)\left(s^{-1} P_{n-1}(z)-s P_{n-2}(z)\right) \\ (2-y) S_{m-1}(y)\left(s P_{n-1}(z)-s^{-1} P_{n-2}(z)\right) & \gamma P_{n-1}(z)-\beta P_{n-2}(z)\end{array}\right]$
where $\beta=S_{m}(y)-S_{m-1}(y)$ and $\gamma=S_{m}(y)-(y-1) S_{m-1}(y)$.
Proof. By Lemma 2.3 we have

$$
\rho\left(\left(a^{-1} b\right)^{m}\right)=\left[\begin{array}{cc}
S_{m}(y)-S_{m-1}(y) & -s^{-1} S_{m-1}(y) \\
-s(y-2) S_{m-1}(y) & S_{m}(y)-(y-1) S_{m-1}(y)
\end{array}\right]
$$

and

$$
\rho\left(\delta_{n-1}\left(w^{-1}\right)\right)=\left[\begin{array}{cc}
P_{n-1}(z)-w_{11} P_{n-2}(z) & -w_{12} P_{n-2}(z) \\
(y-2) w_{12} P_{n-2}(z) & P_{n-1}(z)-w_{22} P_{n-2}(z)
\end{array}\right] .
$$

The lemma then follows by a direct calculation.
Lemma 4.3. We have
$\Omega_{2}=\left[\begin{array}{cc}\left(s t+s^{-1} t^{-1}-2\right)\left(P_{m-1}(y)-P_{m-2}(y)\right) & \left(t-s^{-1}\right) P_{m-1}(y)+\left(t^{-1}-s\right) P_{m-2}(y) \\ (2-y)(s t-1)\left(t^{-1} P_{m-1}(y)-s^{-1} P_{m-2}(y)\right) & \left(s^{-1} t+s t^{-1}-y\right)\left(P_{m-1}(y)-P_{m-2}(y)\right)\end{array}\right]$.
Moreover

$$
\operatorname{det} \Omega_{2}=\left(t+t^{-1}-x\right)^{2}\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right) .
$$

Proof. By Lemma 2.3 we have

$$
\begin{aligned}
& \rho\left(\delta_{m-1}\left(a b^{-1}\right)\right)=\left[\begin{array}{cc}
P_{m-1}(y)-P_{m-2}(y) & s P_{m-2}(y) \\
s^{-1}(y-2) P_{m-2}(y) & P_{m-1}(y)-(y-1) P_{m-2}(y)
\end{array}\right], \\
& \rho\left(\delta_{m-1}\left(b^{-1} a\right)\right)=\left[\begin{array}{cc}
P_{m-1}(y)-(y-1) P_{m-2}(y) & s^{-1} P_{m-2}(y) \\
s(y-2) P_{m-2}(y) & P_{m-1}(y)-P_{m-2}(y)
\end{array}\right] .
\end{aligned}
$$

The formula for Ω_{2} then follows by a direct calculation. The one for $\operatorname{det} \Omega_{2}$ is obtained by using the formula $P_{k}(y)=\frac{S_{k+1}(y)-S_{k}(y)-1}{y-2}$ in Lemma 2.2.

We now complete the proof of Theorem 1 by computing the determinant and the trace of the matrix $\Omega_{1} \Omega_{2}$. By Lemma 2.3 we have $\operatorname{det} \Omega_{1}=$ $\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}$. Hence

$$
\begin{equation*}
\operatorname{det}\left(\Omega_{1} \Omega_{2}\right)=\left(t+t^{-1}-x\right)^{2}\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right)\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right) \tag{4.1}
\end{equation*}
$$

By a direct calcultion, using the matrix forms of Ω_{1} and Ω_{2} in Lemmas 4.2 and 4.3 and the formula $P_{k}(y)=\frac{S_{k+1}(y)-S_{k}(y)-1}{y-2}$, we have

$$
\begin{aligned}
\operatorname{tr}\left(\Omega_{1} \Omega_{2}\right)= & \left\{\left(t+t^{-1}\right) x-x^{2}+\left(x^{2}-2-y\right)\left(S_{m}(y)-(y-1) S_{m-1}(y)\right)\right\} \\
& \times S_{m-1}(y)\left(P_{n-1}(z)-P_{n-2}(z)\right)+(2-y)\left(x^{2}-2-y\right) S_{m-1}^{2}(y) P_{n-2}(z) \\
= & \left\{\left(t+t^{-1}\right) x-x^{2}+\left(x^{2}-2-y\right)\left(S_{m}(y)-(y-1) S_{m-1}(y)\right)\right\} \\
& \times S_{m-1}(y) S_{n-1}(z)+(z-2) P_{n-2}(z) \\
= & \left\{\left(t+t^{-1}\right) x-x^{2}+\left(x^{2}-2-y\left(S_{m}(y)-(y-1) S_{m-1}(y)\right)\right\}\right. \\
& \times S_{m-1}(y) S_{n-1}(z)+S_{n-1}(z)-S_{n-2}(z)-1 .
\end{aligned}
$$

Since $S_{n-2}(z)=\left\{1-\left(y+2-x^{2}\right) S_{m-1}(y)\left(S_{m-1}(y)-S_{m-2}(y)\right)\right\} S_{n-1}(z)$ we get

$$
\begin{equation*}
\operatorname{tr}\left(\Omega_{1} \Omega_{2}\right)=\left(\left(t+t^{-1}\right) x-x^{2}\right) S_{m-1}(y) S_{n-1}(z)-1 . \tag{4.2}
\end{equation*}
$$

Finally, by combining the equations (4.1), (4.2) and

$$
\Delta_{K, \rho}(t)=\frac{1+\operatorname{tr}\left(\Omega_{1} \Omega_{2}\right)+\operatorname{det}\left(\Omega_{1} \Omega_{2}\right)}{t^{2}-t x+1}
$$

we obtain Theorem 1, since $\Delta_{K, \rho}(t)$ is defined up to multiplication by a factor $t^{2 k}(k \in \mathbf{Z})$.
4.2. Proof of Theorem 2. Note that $\operatorname{det}(\rho(b)-I)=2-x$. Since $\tau_{\rho}(K)=$ $\Delta_{K, p}(1)$ for $x \neq 2$, Theorem 2 follows directly from Theorem 1 .
4.3. Proof of Theorem 3. Let M be the 3-manifold obtained by $\frac{1}{q}$-surgery on the genus one two-bridge knot $K=J(2 m, 2 n)$. Suppose $\rho: \pi_{1}\left(X_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation which extends to a representation $\rho: \pi_{1}(M) \rightarrow$ $S L_{2}(\mathbf{C})$. Recall that λ is the canonical longitude corresponding to the meridian $\mu=a$. If $\operatorname{tr} \rho(\lambda) \neq 2$, then by [6] (see also [7, 8]) the Reidemeister torsion of M is given by

$$
\begin{equation*}
\tau_{\rho}(M)=\frac{\tau_{\rho}(K)}{2-\operatorname{tr} \rho(\lambda)} \tag{4.3}
\end{equation*}
$$

By Theorem 2 we have

$$
\tau_{\rho}(K)=(2-x)\left(\frac{S_{m}(y)-S_{m-2}(y)-2}{y-2}\right)\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right)+x S_{m-1}(y) S_{n-1}(z)
$$

if $x \neq 2$. By Proposition 2.7 we have

$$
\operatorname{tr} \rho(\lambda)-2=-\frac{x^{2}(y-2)^{2} S_{m-1}^{2}(y)}{4-x^{2}+\left(y+2-x^{2}\right)(y-2) S_{m-1}^{2}(y)} .
$$

By Lemma 2.6 we have $S_{m-1}(y) \neq 0$. This implies that $\operatorname{tr} \rho(\lambda) \neq 2$ if and only if $x \neq 0$. Theorem 3 then follows from (4.3).

References

[1] G. Burde and H. Zieschang, Knots, de Gruyter studies in mathematics 5, Walter de Gruyter \& Co., Berlin, 2003.
[2] S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, The mathematics of knots: Theory and application (Contributions in mathematical and computational sciences), eds. Markus Banagl and Denis Vogel, 2010, 45-94.
[3] J. Hoste and P. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13 (2004), 193-209.
[4] D. Johnson, A geometric form of Casson invariant and its connection to Reidemeister torsion, unpublished lecture notes.
[5] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661.
[6] T. Kitano, Reidemeister torsion of a 3-manifold obtained by an integral Dehn-surgery along the figure-eight knot, Kodai Math. J. 39 (2016), 290-296.
[7] T. Kitano, Reidemeister torsion of Seifert fibered spaces for $S L_{2}(\mathbf{C})$-representations, Tokyo J. Math. 17 (1994), 59-75.
[8] T. Kitano, Reidemeister torsion of the figure-eight knot exterior for $S L_{2}(\mathbf{C})$-representations, Osaka J. Math. 31 (1994), 523-532.
[9] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442.
[10] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380.
[11] M. Macasieb, K. Petersen and R. van Luijk, On character varieties of two-bridge knot groups, Proc. Lond. Math. Soc. 103 (2011), 473-507.
[12] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 348-426.
[13] T. Morifuil, Representations of knot groups into $S L(2, \mathbf{C})$ and twisted Alexander polynomials, Handbook of group actions 1, Advanced lectures in mathematics 31, 2015, 527-576.
[14] T. Morifusi, Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math. 132 (2008), 439-453.
[15] T. Morifuil and A. Tran, Twisted Alexander polynomials of two-bridge knots for parabolic representations, Pacific J. Math. 269 (2014), 433-451.
[16] R. Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. 35 (1984), 191-208.
[17] A. Tran, Reidemeister torsion and Dehn surgery on twist knots, Tokyo J. Math. 39 (2016), 517-526.
[18] V. Turaev, Introduction to combinatorial torsions, Lectures in mathematics, Birkhauser, 2001.
[19] M. WADA, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256.

Anh T. Tran
Department of Mathematical Sciences
The University of Texas at Dallas
Richardson, TX 75080
USA
E-mail: att140830@utdallas.edu

[^0]: 2010 Mathematics Subject Classification. Primary 57N10; Secondary 57M25.
 Key words and phrases. Dehn surgery, nonabelian representation, Reidemeister torsion, twist knot.

 Received January 25, 2017; revised March 14, 2017.

