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DEHN TWISTS ON KAUFFMAN BRACKET SKEIN ALGEBRAS
SHUNSUKE Tsuin

Abstract

We give an explicit formula for the action of the Dehn twist along a simple closed
curve in a compact connected oriented surface on the completion of the filtered skein
modules of the surface. To do this, we introduce filtrations of the Kauffman bracket
skein algebra and the Kauffman bracket skein modules of the surface.

1. Introduction

Recently it has come to light that the Goldman Lie algebra of a surface
plays an important role in the study of the mapping class group of the surface.
See [3], [4] and [7] for details. Before that, Turaev [13] drew an analogy between
the Goldman Lie algebra and some skein algebra. Hence it is important to
establish some explicit connection between the Kauffman bracket skein algebra
and the mapping class group. This new connection motivates much of the
interest in theory of the mapping class group of a surface and one of knots and
links. In fact, skein algebras give us a new way of studying the mapping class
group. Furthermore, we expect that this connection will bring us some infor-
mation about 3-manifolds including the Casson invariant.

The aim of this paper is to explain a new relationship between the Kauffman
bracket skein algebra and the mapping class group. Let ¥ be a compact
connected oriented surface with non-empty boundary. Kawazumi-Kuno [4]
[3] defined an action ¢ of the Goldman Lie algebra on the group ring of
the fundamental group of X. Using this action, Kawazumi-Kuno [4] [3] and
Massuyeau-Turaev [7] obtained a formula for the action of the right handed
Dehn twist 7. along a simple closed curve ¢

m = exp ({3 1108()?]) ) : QmE.w) — Qo)

where Qm (2, %) is the completed group ring of the fundamental group of X

—

with base point x € 0X, Q7j(X) is the completed Goldman Lie algebra and
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|-]:Qm(Z, %) — Qm(X) is the quotient map. Our goal in this paper is to
establish a skein algebra version of this formula.

Let £ be a compact connected oriented surface, 7 the closed interval [0, 1]
and Q[A4,A7"] the ring of Laurent polynomials over Q in an indeterminate A.
The Kauffman bracket skein algebra #(X) is defined to be the quotient of the
free Q[4, A~']-module with basis the set of unoriented framed links in X x I by
the skein relation which defines the Kauffman bracket. Let J be a finite subset
of 0¥. The Kauffman bracket skein module #(Z,J) is defined to be the quotient
of the free Q[A4, A~']-module with basis 7 (X,J) by the same skein relation,
where we denote by 7 (X,J) the set of unoriented framed tangles with the base
point set J x {%} For details, see Subsection 3.1. The Kauffman bracket skein
algebra #(X) has a structure of an associative algebra and a Lie algebra over
Q[4,47"]. The Kauffman bracket skein module #(X,J) has a structure of an
F(X¥)-bimodule. Furthermore, we define an action ¢ of & (X) on ¥ (Z,J) such
that #(X,J) is ¥ (X)-module under the action ¢ when we regard (%) as a Lie
algebra. For details, see Subsection 3.2. In this paper, we introduce a filtration
{F"?(Z)},s of L(X) and a filtration {F"¥(Z,J)}, -, of ¥ (X,J) defined by an
augmentation ideal ker ¢, where the augmentation map & is defined by &(4) = —1
and (L) = (—2)#”°(L) for any link L in £ x I. These operations are continuous
in the topologies of ¥ (X) and ¥(Z,J) induced by these filtrations. We remark
that there is some relationship between the completion of the group ring of
the fundamental group of X and these filtrations of & (X) and ¥ (X,J) which
will appear in [10]. We denote the completions of ¥ (X) and ¥ (X,J) in these
topologies by #(Z) and #(Z,J), respectively. For details, see Subsection 3.3.
The main result of the paper is the formula for the action of the Dehn twist ¢,
along a simple closed curve ¢

_ -1 A\ YV . 5
t.() = exp(g(ﬁ%(f/l) <arccosh<—§>> ))() FLET) - LE ).

which is a skein version of the formula (1). Here log(—4) =32, I—I(A +1)'e
2 4 i+
—c w il c?
Q4+ 1]] and <arccosh( 5 )) =20 (+ )i+ 1) <l 4> € Q[[c + 2]].
This skein version does not follow from the original one [3] [4] [7].
In Section 5, we prove the following three properties of the filtrations of
F(X) and F(Z,J).
(1) Let ¥ be a compact connected oriented surface with non-empty boun-
dary. The topology on ¥ (Z,J) introduced by the filtration is Haus-
dorff, in other words, we have (,_, F"¥(%,J) = 0.
(2) Let £ and X' be two oriented compact connected surfaces satisfying
1 (2) ~m(T), J and J’' finite subsets of 0¥ and 0X', respectively,
satisfying #J = #J’. There exists a diffecomorphism &: (X x I,J x I) —
(X' x1,J' xI). Then we have (F"9(X,J)) =F"¥(X',J"). But the
induced map ¢: ¥(X) — F(X') does not seem to be an algebra homo-
morphism.
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(3) We have

ST (=) (=2) L € (ker &)
L'CcL

for any link L in £ x I having components more than 7, where the sum
is over all sublinks € L' C L and |L| the number of components of L.
In other words, for any link L in X x 1, (—2)_‘L L") mod(ker &)" is a
finite type invariant of order n in the sense of Le [5] (3.2).
The second and third properties follow from Lemma 5.3. Using the second
property and Lickorish’s theorem [6] (Theorem 5.6), we prove the first prop-
erty. In subsequent papers, we need all the above properties. In particular, we
need the first property to prove the faithfulness of the action of the mapping class
group of a compact connected oriented surface with non-empty boundary on the
completed skein algebra of the surface.

In subsequent papers, using this formula of Dehn twists, we obtain an
embedding of the Torelli group of a surface into the completed skein algebra
of the surface defined in this paper. This embedding gives a construction of the
first Johnson homomorphism and a new filtration consisting of normal sub-
groups in the mapping class group. Furthermore, it gives an invariant z(M) e
Q[[4 +1]] for an integral homology 3-sphere M. The invariant induces
z(M) mod(A4 + 1)"+1 which is a finite type invariant of order n. The details
will appear elsewhere [11] and [12].
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2. Definition of tangles in X x /

In this section, let ¥ be a compact connected oriented surface.
We define the set of tangles in X x /.

DEeriNITION 2.1, Let J be a finite subset of 0X. We define £(Z,J) to be the
set consisting of all injective maps E =[], 7; U ]_[ v; from a domain D consisting
of a finite collection of stripes [[;7 x (—¢,¢) and annuli ;S I'x (—e,¢&) into

x (0,1) sat1sfy1ng the following.

(1) Each v; is an embedding into X x (0,1).

(2) The restriction of each 7; to (0,1) x (—¢,¢e) is an embedding into

x (0,1).

(3) The restriction of each 7; to {0,1} x (—e,¢) is an orientation preserving

embedding into J x [.

(4) For jelJ, E(D)N(jxI) is not empty and is connected.

Two elements Ey and E; of &(X,J) which have the same domain D are
unoriented-isotopic if there exists a continuous map H : D x I — X x I such that
H(D x {0}) =Ey(D), HD x {1}) =E|(D) and H(-,t)e &Z,J) for tel. We
denote by 7 (£,J) the set of unoriented-isotopy classes of elements of &(X,J).
We denote by <> the quotient map &(X,J) — 7 (X,J). If J =0, we simply
denote 7 (X,J) and &(X,J) by 7 (X) and &(X). An element of 7 (X,J) is called
a tangle.

The definition of ‘tangles’ is similar to the definition of ‘links’ of marked
surfaces in [8]. But, a tangle in this definition has one arc on each point of J.

DEerINITION 2.2, Let J be a finite subset of 0X. An element E of &(X,J) is

generic if E: ([[,7U]]; S1) x (—e,e) — X x I satisfies the following.

(1) For xe [[,1U H S!, the map (—¢,&) — I, t — py o E(x,1) is an orienta-
tion preserving embeddmg map, where we denote by p, the projection
2xI—1.

(2) The map [[,7U]];S' =%, x+— p1oE(x,0) is an immersion such that
the intersections of the image of the map consist of transverse double
points, where we denote by p; the projection X x I — X.

It is convenient to present tangles in X x / by tangle diagrams on X in the
same fashion in which links in R® may be presented by planar link diagrams.

DEerINITION 2.3.  Let J be a finite subset of 0%, T an element of 7 (X,J) and

E: ([ 1U]]; SN x (—e,&) — £ x I an element of &(Z,J) representing 7 which
is generic. The tangle diagram of T"is py o E((I[; 7 U I, S x {0}) together with
height-information, i.e., the choice of the upper branch of the curve at each
crossing. The chosen branch is called an over crossing; the other branch is called
an under crossing.
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FiGure 1. RI: Reidemester move I

FIGURE 2. RII: Reidemeister move II FiGURE 3. RIII: Reidemeister move III

PRrOPOSITION 2.4 (see, for example, [1]). Let J be a finite subset of 0X. Let
T and T' be two elements of T (X,J) presented by tangle diagrams d and d’,
respectively. Then, T equals T' if and only if d can be transformed into d' by
a sequence of isotopies of £ and the RI, RII, RIII moves as shown in Figure 1, 2,
and 3.

Let J and J’ be two finite subsets of 0X with JNJ' =0@. Here e; and e,
. t+1
denote the embedding maps from X x I to X x I defined by e;(x,?) = (x,%
t .
and ex(x, 1) = (x, 5), respectively. We define X:7(X,J)x 7(X,J) —
T(Z,JUJ’) by
(EYRCEY S a0 EUe; 0 B
for E€£(X,J) and E' € &(%,J).

Let J be a finite subset of X, T an element of 7 (X,J) represented by
Eecé&(%,J) and ¢ an element of .#(X) represented by a diffeomorphism %,
where we denote by .#(X) the mapping class group of X preserving the
boundary pointwise. We denote by &7 an element of 7 (X,J) represented by
(% xidj) o E€ (X, J).

3. Kauffman bracket skein modules

Throughout this section, let £ be a compact connected oriented surface.

3.1. Definition of Kauffman bracket skein modules. In this subsection, we
define Kauffman bracket skein modules.
First of all, we define Kauffman triples.
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FIGURE 4. Kauffman triple

0N X

FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8

DermNITION 3.1.  Let J be a finite subset of dX. A triple of three tangles 77,
T, and Ty e 7 (X,J) is a Kauffman triple if there exist E|, E,, and Ey € §(Z,J)
whose domains are D, D, and D, satisfying the following.

* We have {E|> =Ty, {Ex> =Ty and <{Ey) = Ty.

* The three images E|(D;), E, (D) and Ey(Dy) are identical except for

some neighborhood of a point, where they differ as shown in Figure 4.

In other words, there exist three tangle diagrams d;, d,, and d, presenting
T, T, and Ty, respectively, which are identical except for some neighborhood
of a point, where they differ as shown in Figure 5, Figure 7 and Figure 8,
respectively.

We define Kauffman bracket skein modules.

DerINITION 3.2 (Kauffman bracket skein module). Let J be a finite
subset of 0X. We define #(X,J) to be the quotient of the free Q[A4,47!]-
module Q[A4,47']7(X,J) by the skein relation, ie., by the submodule of
Q[4,47"7(Z,J) generated by

{-T1 + AT, +A_1T0|(T1,Tw,T0) is a Kauffman triple}
U{TRO+ (A*+ AT |TeT(2,J)}

where ¢ € 7 (X) is a trivial knot. Following [13], the element of ¥(X,J) repre-
sented by T € .7 (2,J) is denoted by [T]. We simply denote ¥ (Z,0) by ().

In [8], Muller also defined skein modules for a surface with boundary.
We, however, do not need ‘the boundary skein relation’ and ‘the value of a
contractible arc’.

Let J and J’ be two finite subsets of JX satisfying JNJ' =0@. The
Q[A4, A~ "]-bilinear homomorphism X : . (Z,J) x #(£,J') — #(X,J UJ') is de-
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fined by [7T]KX [T”] - [TXRT'] for Te T (X,J) and T' € 7 (X,J'). The skein

module #(X) is the associative algebra over Q[4, 4~!] with product defined by
ab=al b for aand b e (). The skein module ¥ (Z,J) is the & (X)-bimodule
given by av=aXv and va=vXa for ae ¥(Z) and ve ¥(X,J). For ve
FL(ET), v e F(Z,J') and ae S (%), we have (va) K v' = v X (av’).

3.2. Some Poisson-like structure on #(X). In this subsection, we define a
Lie bracket of #(X) and an action ¢ of ¥ (X) on F(X,J).

Let J be a finite subset of J0X. We denote by é&)(X,J) the set of
1-dimensional submanifolds of ¥ with boundary J and no inessential compo-
nents. Here a connected 1-dimensional submanifold of X is inessential if it is a
boundary of a disk in X. We denote the set of isotopy classes in &(%,J) by
(2 ).

THEOREM 3.3. Let J be a finite subset of 0X. The skein module & (X,J) is
the free Q[A, A~"-module with basis To(Z,J).

In the case when J = 0, this is proved by Przytycky [9]. For the general
case, it is proved in a similar way to [9].

COROLLARY 3.4. We have ¥ (S' x I) = Q[A, A~Y|[l] where I is the element
represented by the link whose diagram is S' x {%}

COROLLARY 3.5. Let J be a finite subset of 0X. The Q[A, A~ ']-module
homomorphism —A+ A~ : P (X,J) — L (X,J), x+= (—A+ A V)x is an injective
map.

LemMA 3.6. Let J be a finite subset of 0%. Let Ty, T,, T5 and Ty be four
elements of 7 (£,J) presented by four diagrams which are identical except for some
neighborhood of a point, where they differ as shown in Figure 5, Figure 6, Figure 7
and Figure 8, respectively. Then we have [Ti] — [T5] = (A — A=) ([T3] — [T4)).

Proof.  We have

[T1] = [T2] = (A[T3] + A7 [Ta)) — (A7 [T3) + A[Tu]) = (A — A7 )([T3) = [T]). O

In Definition 3.8, we introduce a Lie bracket in .%(X) by using the following
proposition and Corollary 3.5.

ProposITION 3.7. Let J and J' be two finite subsets of 0X satisfying
JNJ'=0. We have vRv'—v'Rve(d—A NS (E,JUJ) for ve S (Z,J)
and v' e S (2,J).

Proof. Let T be an element of 7 (X,J) and 7’ an element of 7 (X,J').
Choose tangle diagrams d and d’ presenting 7 and T, respectively, such that the
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g

(/\/d>

FIGURE 9 FIGURE 10

intersections of d and d’ consist of transverse double points Py, P,,...,P,. For
i=12...,m let d(1,i) and d(—1,i) be two tangle diagrams satisfying the
following.

+ The two tangle diagrams d(1,7) and d(—1,i) equal d Ud’ with the same
height-information as d and d’ except for the neighborhoods of the inter-
sections of d and d’'.

* The branches of d(1,i) and d(—1,) in the neighborhood of P; belonging to

d’ are over crossings for j=1,...,i— 1.
* The branches of d(1,i) and d(—1,) in the neighborhood of P; belonging to
d are over crossings for j=i+1,...,m.

+ The two tangle diagrams d(1,i) and d(—1,i) are as shown in Figure 9 and
Figure 10, respectively, in the neighborhood of P;.
We denote by T'(1,i) a tangle presented by d(1,i) and by T(—1,i) a tangle
presented by d(—1,i). Using Lemma 3.6, we have

2) [TX [T - [T"| X [T] = (4 —A’I)Zm:([T(l,i)] — [T(=1,1)).
i=1
This proves the proposition. O

DErFINITION 3.8.  Let J be a finite subset of 0X. We define a bracket [,] of
J(X) by

def.

[x, y] = (xy — yx)

—A +A—1
for x and ye ¥(X). We define an action ¢ of ¥ (X) on F(X,J) by

a(x)(v) &f- ﬁ (xv — vx)

for xe () and ve S(X,J).
It is easy to prove the following proposition.

PROPOSITION 3.9. Let J be a finite subset of 0%. The bracket [,] : ¥ (Z) x
S (X) = L(X) makes S (X) a Lie algebra. The action ¢: % (L) x L (,J) —
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S (X, J) makes S (X,J) an S (X)-module when we regard & (X) as a Lie algebra.
Furthermore, for x, y and z € (%) and ve ¥ (X,J), we have the Leibniz rules:

ey, 2] = x[y, 2] + [x, 2,
a(xy)(v) = xa(y)(v) + o (x)(v) y,
a(x)(yv) = [x, y]v + yo(x)(v),
a(x)(vy) = a(x)(v)y + vlx, ).

Let J and J' be two finite subsets of 0% satisfying JNJ' = 0. We have
a(x)(v X v') = a(x)(v) Kv' + v X a(x)(v')
for xe (%), ve F(X,J) and v' e ¥ (Z,J').
3.3. Filtrations and completions. We introduce filtrations of Kauffman
bracket skein modules and define completed Kauffman bracket skein modules.

We define an augmentation map ¢: #(E) — Q by A+— —1 and [L] — (=2)'
for L e 7 (%) where |L| is the number of components of L.

ProposITION 3.10.  The augmentation map ¢ is well-defined.
Proof. Let Ty, Ty, and Ty be three elements of 7 (%) such that (7, T, To)
is a Kauffman triple. There are three cases,
|Th| — 1 =|Tx| = |Tol,
[Th| =T | =1 =[Tol,
ITh| = |To| = [To| = 1.

In each case, we have &([Ty] — A[T,,] — A7'[Ty]) =0. For T e 7 (), we have
e([T X ]+ (4% + A72)[T]) = 0. This proves the proposition. O

LemMa 3.11. We have ¥ (), ¥ (2)] C ker &

Proof. Since the algebra ¥(X) is generated by the set of elements repre-
sented by knots, it suffices to show that [[T7], [T"]] € ker ¢ for any two elements T’
and T’ of 7 (X) satisfying |T| =1 and |T'| = 1. Using equation (2), we obtain

_ zm:([T(l,i)] = [T(=1,1)]),

=1
where T(l i) and T(—1,i) are some knots for ie {1,...,m}. Then, we have
e(— Y ([T(1,i)] — [T(—1,i)])) = 0. This proves the proposition. O

Let J be a finite subset of 0X. We define a filtration of ¥(X) by F".¥ (%) =
(ker ¢)" and a filtration of ¥ (X,J) by F'¥(Z,J) = (F"¥(2)¥(Z,J).
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THEOREM 3.12. (1) Let J be a finite subset of 0X. We have
F'S(E)F"S (L) C F"" 9 (X),
F'YE)F"Y(Z,J) C F"™P(Z,J),
F'S(E,J)F"F(Z) C F™"7(2,J),
for n and m e Z,.
(2) We have [F' (), F/.9(2)] ¢ F™>+-Li) (%) and o(F'S(2))(F/ (2,
J)) € Fmaxi=Li=Li) op($ J) for i and j € Zy.
Proof. In order to show, for i and je Z-,,
F'YX)F/ 9 (,J) Cc FY7(2,J),
FIENF' 72 Cc FY7E,),
it suffices to prove
(ker )7 (2,J) = L (Z,J)(ker ¢),
which is obvious by Proposition 3.7. This proves (1).

Using the Leibniz rule and Lemma 3.11, we obtain, for i and jeZ > 0,
[FLP (%), Fl.7(2)] ¢ Fraxit-Li) g (),
o(FISX)FIL(Z,J)) c Fraxi-Li=L) g (g J).

This proves (2). U

Let J be a finite subset of JX. We define an action of .#(X) on ¥(Z,J) by
E[T) = [ET] for (e #(X) and T e 7 (X,J). By definition, we have

HFS(3)) = F' (D),
SF"S(XJ))=F"S(ZE,J)
for (e #(Z) and n e Zsy.

Remark 3.13. We have dimq(F"¥(%,J)/F""\¥(2,J)) < co. The proof
will appear in [10].

Let J be a finite subset of dX. We consider the topology on ¥ (X) induced
by the filtration {F"%(X)},.,. By Theorem 3.12, the product and the bracket
of #(X) are continuous in the topology. We denote its completion by ¥ (%) =
lim; .., (Z)/F'S(Z). We call #(Z) the completed skein algebra. We also
consider the topology on .#(X,J) induced by the filtration {F"¥(Z,J)},,-
By Theorem 3.12, the right action, the left action and the Lie action ¢ of
F(X) on ¥ (X,J) are continuous in the topology. We denote its completion

by L(Z,J) def. lim; .., (Z,J)/F'%(Z,J). We call S (Z,J) the completed skein
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moc}ule. The completed skein algebra Z(Z) has a filtration ¥ (Z) = FO.9(Z) D
F'9(2) > F2#(Z) D --- such that F(2)/F"F(2) ~ ¥( )[F"S(Z) for n€ZLsy.
The completed skein module F(Z,J) also has a filtration #(,J) = FO.#(2,J) D
F'9(Z,J) D F2#(Z,J) D --- such that (X, J)/F"S(Z,J) ~ ¥ (Z, )/F” (z,J)
for ne Z~,. We remark that the completed skein algebraAV ( ) is an associative
Q|[A4 + 1]]-algebra and that the completed skein module &(X,J) is a Q[[4 + 1]]-
module. The set {(¥(Z,J),{F"¥(X,J)},50)|J C0Z,#J < o} is denoted by
0(x).

We denote by .#(X) C .4(%) the subset consisting of all elements ¢ satisfy-
ing that, for any finite subset J of 0X, any non-negative integer m and any
element v e F"9(Z,J), there exists a non-negative integer N such that j > N =
(id — &)/ (v) e F"™ P (X, ).

For ¢ e . /(X) and a finite subset J of 0%, a Q[[4 + 1]]-module homomor-

phism log(¢) : #(2,J) — F(2,J) is defined by log(&)(v) = 377, — (1d &) (v).
For ¢e d(2), xe #(Z) and ze F(X,J), since &(xz) —é(x)é(z) and &(zx) =
E(z)E(x), log(&) satisfies the Leibniz rule

log(&)(xz) = log(&)(x)z + x log(&)(2),

log(&)(zx) = log(&)(z)x + z log(&)(x).

DEFINITION 3.14. For ¢ e M(Z), an element x: € #(Z) is a skein represen-
tative of ¢ by (((2),{F"¥(£)},20),0(%)) if we have

log(&) = a(xs) : L(2,J) — L(Z,J),
in other words
&() = exp(a(xe)) : S(E,J) — L(2,J),

for any finite subset J of JX.

4. Dehn twists

In this section, we show the following.

THEOREM 4.1. Let X be a compact connected oriented surface and ¢ a
simple closed curve. We also denote by c¢ an element of ¥ (X) represented by
a knot presented by the simple closed curve c¢. Then we have t.€ M (X), and

—A+ A7 . ;

Tloa(—A 10;—( D (arccosh(—g)) € S (X) is a skein representative of t.e M(E) by
- —A+ A1

(L(EZ)AF"7(2)},50),OF)) in the sense of Definition 3.14. Here Tloa—4) 10;(_14) is

st @+ 1 and (ssosh(-5) = S (1)
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Using the following lemma, we prove Theorem 4.1. The following lemma
will be proved later.

LeMMA 4.2. We denote by S' the quotient R/Z, by ¢, a simple closed curve
St x {3} in ST x I, by t the Dehn twist along ¢; and by I an element of S (S' x I)
represented by the knot presented by ¢;. Fix a positive integer m.  Choose points
1 i
P1 —zm,...,pl —2m .
L (S < I{(p;,0), (pi,1)}) represented by the tangle presented by {p;} x I.
Then we have the following.
* (1) We have (t —id)*™" (VR AR ---Kr0)e FPo(S" x I,{p1,..., pm} X
{0,1})
* (2) We have

log() (MW XX ---Kr)

—A+A47! NY
= g<m (arccosh(— 5)) )(r1 XK X)),

Proof of Theorem 4.1. We fix an embedding 7:S' x I — X such that
i(¢/) = c¢. In order to prove the theorem, it is sufficient to consider two cases:
the simple closed curve is separating or not.

We assume that 1(S' x I) is separating ¥ into two surfaces X! and . For

. 1
a finite set J' = {% 2an } c S', we consider the trilinear map

..,pmzzﬂ in S'. We denote by r’ an element of
m

wp s LEL (I NEY U x {1}) x L(S! x I,J’ x {0,1})
x L(X2(JNoZH)UuiJ x {0}) —» L(Z,J

defined by wy ([T1], [T2],[T3]) = [T\ T»T5] for Ty € 7 = (Jﬂ&Z YuuJ' x {1})),
Tre 7 (S' xI,J' x{0,1}) and Tse 7 (X% (JNZ*)Ui(J' x{0})). Here we
denote by 717,75 the tangle presented by d; Ui(dr) Uds, where di, d, and d;
present T, T, and T3, respectively. We remark that d) Ui(dr) Ud; must be
smoothed out in the neighborhood of 1(S! x {0,1}). By Theorem 3.3, the set

wa SNz ui(J x {1}) x {id,}

x L (22 (JNoZH) UiJ’ x {0})))

generates #(%,J) as a Q[4,4~]-module, where we set id, & HXAX-- X

0. In order to show the theorem, we use the following.

" The map w,s preserves the filtrations, in other words,
wi(LEL TN U x {1}) x F*2(S! x I,J' x {0,1})
x L(Z2(J Nz uiJ’ x {0})) Cc FL(Z,J).
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+ We have t,0wy =wy o(id,t,id) and o(i(x)) o wy = wy o (id, o(x), id)
for xe #(S' x I).
By Lemma 4.2, for any xe X', (JNaZYuiJ' x{1})) and ye L(Z?
(JNox?) U(J' x {0})), we obtain

(1o —id) "™ (w i (x,idy, ¥)) = @ (x, (1 — id) "7 (id, ), y) € F".L(Z,J),
o(L(c))(wy(x,idyr, ) = @y (x, a(L(c;))(idyr), ¥)
= wy(x,log(¢)(idy), y) = log(tc) (s (x,1dy, ¥)),

def. —A+ A7 AY
where L(c) = Tlog(—A) (arccosh (— 5)) for any simple closed curve ¢. This

proves the theorem in the case that ¢ is a separating simple closed curve.
We assume that X\:(S' x (0,1)) is a connected surface £!. For a finite set

2m’ " 2m

wy LELTUT % {0,1}) x L(S' x I,J' x {0,1}) = L(Z,])

defined by w;/([T1],[T2]) = [T1T») for Tye 7 (X', JUi(J' x{0,1})) and T, e
T (S'x I,J' x{0,1}). Here we denote by 7,7, the tangle presented by
dyUi(dy), where d; and d, present Ty and T, respectively. We remark that

dy U1(dy) must be smoothed out in the neighborhood of i(S! x {0,1}). By
Theorem 3.3, the set

wr(LEL T U x {0,1})) x {id;})
def.

generates ¥ (X,J) as a Q[4,4']-module, where we set id; = ) KX - X
. In order to show the theorem, we use the following.
+ The map w,  preserves the filtrations, in other words,

w(LELT U x{0,1}) x F".7(S! x I,J' x {0,1})) C F".(Z,J).

* We have f.ow; =wyo(id,f) and o(i(x))owy = wy o (id,o(x)) for
xe L (S x1I).
By Lemma 4.2, for any xe (X', JU1(J’ x {0,1})), we obtain

(1. —id) ™ (e (x,idy)) = @y (x, (1 — id) 7 (id, ) € F".9(2, J),
o(L(e))(wy(x,idy)) = oy (x, o(L(cr)) (ids))
= wy(x,log(t)(id, ) = log(tc)(wy (x,1d;)),

1
J = {— m } c S!, we consider the bilinear map

A+ 47! \ Y . :
where L(c) f. m <arccosh ( %)) for any simple closed curve ¢. This
proves the theorem in the case that ¢ is not a separating simple closed curve.

This proves the theorem. O

In order to prove Lemma 4.2, we need a Q[d4,A4 ']-bilinear map
() : LS x 1T x {0,1}) x L(S' x I,J x {0,1}) — L (S' x I,J x {0,1}) de-
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fined by [T}][T»] = [T\ T»] for any finite subset J C S'. Here we denote by 77>
the tangle presented by w,(D1) U 4, (D,) where we choose tangle diagrams D; and
D, presenting 7) and T,, respectively, and define embedding maps g

and u, : S' x I — S' x I by u,(0,t) = (0,t+21> and u,(0,1) = (0,;). We re-

mark that u;(D;)U u,(D;) must be smoothed out in the neighborhood of ¢;.
By this bilinear map, we define the product of #(S! x I,J x {0,1}). By defini-
tion we have (FF7(S' x I,J x {0,1}))(F'9(S" x I,J x {0,1})) C F**.7(S' x I,
J x{0,1}) for k and / € Z,.

At first, we prove the part (1) of Lemma 4.2.

Proof of Lemma 4.2(1). For z_fl ,m, we set x; & WX X0 X
() R BB, and by X1 r1® gr, (R0 )&ml&--m

. We simply denote id < 10 [ rg X .- Xrd. We remark that xix l=id.
We have

2n+m
(1= 1) (d) = (xpxg - - - Xy — 1d) T = (lexz X1 ( id)) .

=

Since (Z(r?)—ro) [+ 2t + A+ D)+ A+ D) e Flo(St x T

pi x {0,1}), we have (z— 1)2"+m(1d) e F"(S' x I.{p1,...,pm} x{0,1}). This
proves the part (1) of the lemma. ]

To prove Lemma 4.2 (2), we need the following lemma.

LemMmA 4.3. We have LA_I arccosh ! ’ (r") = log(¢)(r?) for
i=1,....m T\ alog(—a) 2 TR

For n=0,1,..., we define the Chebyshev polynomial T,(X)e Z[X] by

setting To(X) =2, T1(X)=X and T, (X)=XT,(X)—-T,-1(X). We set
!

(T+1),(X) - S n T T:(X). It is obvious that (T+1),(¢+¢q ') =

il(n —i)!
(g+1)"+(¢g7'+1)". Since

(T+1),(x) = (\/x+2)"<<”+2_

2 2

VX — 2>n n (x/x—&- 24+ vVx— 2>n>

we have the following proposition.

ProrosITION 4.4. We have

(T +1)y,(x) € (x +2)"Z[x],
(T + 1), (x) € (x +2)"Z[x].
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We define a sequence {a,},-, by (log(—x))* = 37, a,(x + 1)" € Q[[x + 1]].
Since

S alTDygta ) =3 allg+ )"+ (g + 1))
n=2 n=2

(log(—¢))” + (log(—¢™"))* = 2(log(—q))’

—g—a-"\\
:2(arccosh<%>>,

2
we obtain 2<arccosh (— %)) = (log(~T))*(X) def- S an(T+1),(X)e
QX +2].

By Theorem 3.3, we have Z(S!x I, p;x{0,1})=0Q[4*,rF] as a
commutative algebra, where 1% 0 and " 7(;9) for any neZ. Since
A+1)r= 1Y c FHg (S x I, pi x {0,1}), we have F(S' x I, p; x {0,1})
=Q[4+1,r—1].

Proof of Lemma 4.3. We have

—A+ 47" Y
a(m (arccosh (— 5)) )(r,o)
. ~1
- o(% (og(~T))*(1 ) o)
o ((og(=T))* (1)) = (7)) (log(~T))*(1)).

i (ax(T + 1) (Dr) — ar)(T + 1),(1)).

Since, for any n € Z,,

1" = (Ar + A7 D" 0 = (A7 A"

we have
— T+1).(1
8log gzak (T + 1), (Hr’ — (T + )i (D)
1 - k 1 k
:7§ Ar' +1 |
Slog(— ) g #AT D Fadd D

— (A7 D — (4 + D5,
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((log(—4r))* + (log(—4~'r™"))?

~ 8log(—A)
~ (log(~4"17))* - (log(~4r ™))"
~ g (loe(—An)” = oz(=4r ™))
1

= Fogi—; (10(~) +108(1))” = (~log(~) + log(r))’)

4log(—4)
= log(r) = log(1)(r}).

This proves the lemma. ]

Proof of Lemma 4.2(2). We have

—A+47" NY'Y, 0o o 0
a(m<arccosh(—§>>>(rlZ|r2@~--®rm)

U —A4+47" NY
_E 0pg ... X 70 T e — 0
= 3 XX ZI0<4 fog(—A) (arccosh( 2)) )(rl)

X X R0
Using Lemma 4.3, we obtain

VOB 0 —A+4” YW\ m m R
;rl XX X a<4 og(—A) arccosh 5 )R, R R
= ZV? XX Rlog()(r!) X rd K- K0 = Zlog(x,-).

i=1

Since x;x; = x;x;, we obtain

Zlog x;) = log(x1x2 - - - xpy) = log(#)(id).
This proves the lemma. O

Remark 4.5. Let ¥ be a compact connected oriented surface with non-
empty connected boundary and let #(X) C .#(X) be the Torelli group of X.
Then we have

(1) #(2) Cc AZ). )

(2) For any ¢ e #(Z), there exists xz € S (X) satisfying that x: is a skein
representative of ¢ e #(2) C A (Z) by (L (X),{F"F(2)},0),O)) in
the sense of Definition 3.14. -

The proof will appear in [11].
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5. Filtrations

5.1. The filtrations depend only on the underlying 3-manifold. In this
subsection, we prove the following theorem. The proof of the theorem is
analogous to that of [2] Proposition 6.10.

THEOREM 5.1. Let T and X' be two compact connected oriented surfaces,
J a finite subset of 0X and J' a finite subset of 0X' such that there exists a
diffeomorphism &: (Ex I,J xI) — (' x I,J" xI). Then we have &(F"9(X,J))
=F'9(X',J') for n>0.

To prove it, we need new filtrations of the Kauffman bracket skein modules.

Let Q[4,47')7 (Z,J) be the free module with basis 7 (X,J) over Q[4, 47
and (- the natural surjection Q[4,47 17 (X,J) — L (X,J). For a tangle T €
J(X,J) and closed components L, Ls,...,L, of T, we define

m m j

def. m—j -1 g

(T,U L,—) =3 > 21U L, €Q[4, 4717 (2,))
i=1 j=0 {i],iz,...,i/}c{l,z ..... m} h=1

where T'=T\U", L. We set FO%(%,J) def. S(X,J) and denote by

F*9(X,J) the Q[4,4"] submodule generated by (4+ 1)F*""D.¥(X J) and
the subset of ¥ (X,J) consisting of all elements {(7,|J., K;)» € #(X,J) for T €
7 (%,J) and closed components K;,K,,...,K, of T for n> 1. Similarly, the
filtration {F*'#(2',J")},>, is defined as {F*"¥(Z,J)},--

LEMMA 52. Let E;:D'xIUDXI—XxI and E,:D' xIUDXxXI —
X x I be elements of &(X,J) satisfying the following, where D' and D =
LI™,(SY), are 1-dimensional manifolds with #(0D') = #J.

* The embeddings E\ and E, are generic, which means satisfying the conditions
in Definition 2.2.

*+ The images E\(D' x IUD x I) and Ey(D' x IUD x I) are identical except
for A x I, where they differ as shown in Figure 11 and Figure 12, respec-
tively. Here, A is a closed disk in X.

Then, we have

CED, CEpxr >y = {LE2), {Eapuryy € (A+ "V g(5, ).
Proof. There exists two cases.

(1) For some j#k, AxINE((S"), xI),AxINE((S"), xI)CTAxIN
Ei(D' x IUD x 1) C E((S"); x [U(S"), xI).

Yo A 9L FH

FiGure 11. E; FIGure 12. E, FIGURE 13. E FIiGure 14. E_
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(2) For some j, AxINE(D'xIuDxI)CE(D U((S"),) xI).

(1) Let Eg: D' x IUDyxI —3Xx1I and E, : D' xIUD,, xI —Xx1I be

two elements of &(X,J) satisfying the following.

* Eoprxr = Ewip'xi = Evprxr = Exprxi-

c Ey(D' xIUDyx1I) and Ey, (D' xIUD, x1I) equal E;(D'xIUDXxI)
except A x I, where they are shown in Figure 13 and Figure 14, respec-
tively.

Using Lemma 3.6, we obtain

KED KENpx1y) — KE2, {Eypui )
= (A4 — AN (KE0), {Eopyx1 > = <LE0 >, {Ecop, w1 ))-
Since #mny(Dy) = #no(Dy) =n — 1, we have

KED CEper») = LE2) {Eaypsry) € (A + ) F VS (2,]).
(2) We denote D\(S'); by D". Let Ey:DjxIUD"—XxI and
E, D, xIUD" —ZxI be two elements of §(X,J) satisfying the following.

* Eoiprxi = Exprx1 = Enprxr = Exprxr-

* Eo(Dj x IUD" xI) and E, (D), xIUD" x1I) equal E;(D'xIUD xI)
except A x I, where they are shown in Figure 13 and Figure 14, respec-
tively.

Using Lemma 3.6, we obtain

KEWD KENpx1y) — KE2, {Eypxi )
= (A4 — A7) (KB, {Eqpreryy — {LEx 2, {Eoiprxs »)-
Since #ny(D") =n— 1, we have
KEY, Eyperyy — <KE2), {Eapurdy € (A + N F V(3 )).

This proves the lemma. O

Lemma 5.3. Let £ be a compact connected oriented surface, and J a finite
subset of 0X. We have F"¥(X,J) = F*"%(X,J) for any non-negative integer n.
Furthermore, we have

> (D= L e (ker )"

for any link L in X x 1 having components more than n, where the sum is
over all sublinks L' C L including the empty link and we denote by |L| the
number of components of L. In other words, for any link L in Xx1I,
(fl)lL/l(fZ)f‘L,‘[L’} mod(ker ¢)" is a finite type invariant of order n+1 in the
sense of Le [5] (3.2).

Proof. We prove the lemma by induction on n. If n=0, we have
FRO7(EJ)=F'9(X,J) = #(X,J). We assume that n >0 and F" '.¥(Z,J) =
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F*r=-D9(% J). For any tangle T e .7 (X,J) and knots Ki,K>,...,K, € 7 (T),
we have

(K1) +2)(KK2) +2) -+ (K> + 2T
(KRR - RK,RT,KRK K- KK,)D.

Hence we have F*'¥(X,J) D F"¥(X,J). Using Lemma 5.2 repeatedly, for any
tangle 7 and closed components K, K5, ..., K, of T, we have

<(K1&Kz&---&Kn&T’,KI&KQ&W&KH))—<<T,UK,»>>
i=1

e(A—AYWFUDPE ) =(A4d—-A YW 7EJ)Cc F 7 (Z,J).

Here we set T' < T\(J", K;). Since (KjRK,X---KK,XT" K XK,
K- XK,)>=(KK)+2)KKy>+2) - (K> +2){T"> e F"¥(X,J), we have
AT, UL, Ki)y e F'.s(2,J). If J =0, by definition, we have

ST (=)l (=2 WL e Fro(S) = F19(Z) = (kere)".
L'CL

This proves the theorem.

O

Proof of Theorem 5.1. By definition, we have E(F*™Z(Z,J]))
F*9 (%' J"). Using Lemma 5.3, we have E(F"¥(X,J)) =CE(F*"¥(2,J))
F9 & J)=F'%(2' J"). This proves the theorem.

O

In this paper, we define the Kauffman bracket " : {unoriented framed links
in $3} - Q[4,47'] by (Ly=H(L){0>e LI x1I) for Le{links in S3} =
T (I x I). For an unoriented framed link L in S and components Ki, K>, ...,
Ky of L, we define (L, Ki) < erio 2 it i iyc{1,2,...,m} 2mIA (LU
Ui, Ki,). Here we set L’ < \U”, K.

Using Lemma 5.3, we have the following corollary.

COROLLARY 5.4. For an unoriented framed link L in S and some compo-
nents Ky, K, ..., Ky of L, we have A (L,J", K;) € (4+1)"Q[A4,47"].

Proof. Since kere= (A+1)"Q[A4, 470>, we have F"¥(IxI)=
(A+1)"Q[4,47']<0>. By Lemma 5.3, we have (44 1)"Q[4,47'<0> =
Frg(Ix1)=F"%(I xI). We obtain <{(L,J~, Ki)y= (LU, K;)<0>.
This proves the corollary. O

5.2. Filtrations are Hausdorff. In this subsection, we prove the following.
THEOREM 5.5. Let X be a compact connected oriented surface with non-empty

boundary and J a finite subset of 0Z. We have (\,_; F"¥(X,J) ={0}. In other
words, the natural homomorphism & (X,J) — F(X,J) is injective.
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b+c—a

FIGURE 15. (a,b,c) eV

We denote by V the subset of Z.y x Zxg X Zso consisting of all triples
(a,b,c) eZ30 satisfying a +b+c€2Z-¢ and |b—c| <a<b+c. For (a,b,c) e
V, we denote the right figure in Figure 15 by the left figure in Figure 15.

Let % 411 be the surface D*\ [[/, d; where we denote by D* = {(x, y) € §2|

x* 4 ( y+1- #> <
1 2 g+1
(m> } for 1 <i<g. We denote by V(g) the set consisting of all

(i1,02,...,i35-3) which satisfies

x2 4+ y2 <1} and by d; the open disk < (x,y)eR?

(i3j-3, 132, 83j-1), (i3-1, 83j, 13741) € V
for j=1,...,9—1. Here we define i def. i and i34 def. i3—3. We denote by
(g,0)(i1, 12, ...,i39—3) the element of 7 (Xy,41) presented by Figure 16 for
(il,iz, e l'3g,3) € V(g)

Fix an orientation preserving embedding e;: D?> x I — S3 and a diffeo-
morphism ey : Xg 411 X I — S3\e3(Zg 441 x I) where we denote the closure of
S3N\e3(Zo,g11 x I) by SN\e3(Zo g1 X I) Then we define a bilinear map
(1) : L (Zo.g1) X L(Zog1) = Q4,47 by ((L1),{L2)) = A (e3(L1) Ues(L2))
for Ly and L, e J (¥ 441). Here we 51mply denote 83 = ez, q+1><1 The
bilinear map induces ( ;) C® S (2 gi1) X C® F (2o g41) — C[4,471]. Here
we denote by C[4, A7!] the ring of Laurent polynomials over C. For a primitive
2r-th root of unity p, the bilinear map induces (-,-) : S (Zo g41) X L7 (Zo,4+1)
— C where we set S7(Zo g+1) o L(Z0,911)/(A—=7)C® F(Zo,g+1). The
bilinear map induces the linear map V¥ : ¥(Xo 441) — Homgp 4 1)(S(Z0,g+1)s
Q[4,47")) by v (u+r (v,u)). It induces the linear maps

Y C® ¥ (L,g41) — Homepy 4-1(C® ¥ (Z0,941),ClA, A7),
¥ S (Zo,g11) — Home (S (Zo,g11), ).
We denote by [,_, the quotient map C® S (Zo,g+1) = L7 (Zo,g+1)-
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FIGURE 16. /L(g7 0)([1, Byeee, l’3;,,3)

For a surface X and any finite subset J C 0X, we recall that we denote by
Jo(2,J) the set of isotopy classes of 1-dimensional submanifolds of X with
boundary J and no inessential components and that ¥ (X,J) is freely generated
by Z0(2,J) as a Q[4, A~ ']-module.

THEOREM 5.6 (Lickorish [6], P.347, Theorem). (1) The map A(g,0) : V(g) —
T0(Zo,g4+1) s bijective.

(2) For a primitive 4r-th root of unity y, &7 (Xo,441)/ker ¥ is a free C-module
with basis

{4(9,0)(irs - o -y i3g-3) | (37-3, B3j-2, B3j-1), (3j-1.13j, B3j41) €V,
2r —4 >3 3tz Fiy1,2r =4 >y iy iz}
We remark that Lickorish gave another basis in [6]. Using Theorem in [6],

we have A(g,0) is injective. It is proved in a similar way to the proof of Lemma
5.10 in this paper that A(g,0) is surjective.
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LemMA 5.7. (1) The C[A, A~']-module homomorphism  : C ® ¥ (o g+1) —
Homey 4-11(C® & (Zo,411), C[A, A7) is injective.
(2) The Q[A, A~ -module homomorphism

Y2 S (Z0.g41) — Homqy 4-1(F(Z0,4:1),Q[4, A7)
is injective.

Proof. Let x be an element of C® (X 4+1)\{0}. Using Theorem 5.6,
we have (x[,_,) # 0 for some primitive 4r-th root of unity . In other words,
we have (x[,_,,») #0 for some ye S"(Zg,4+1). We regard y as an element
of CO®F(Foym) by #'(S0m) = CTo(Z0 1) = ClA, A T(Z0401) = C®
S (Zo,4+1).  Since (x, )4, = (x[4_,,») #0, we have (x,y) #0. This proves
(1).

Let x be an element of (X 441)\{0}. We regard x as an element of
C® S (Zo4+1).- By (1), we have (x, Z/ril(aj+bj\/:)Cj) # 0 for some a; and
bjeR and ¢j € 7p(Zo4+1). Let k be an integer satisfying that the coefficient
of A*¥ in (x,zi'il(aj—&—bj\/—_l)cj) is not 0. We denote by w(ui,...,uy,) the
coefficient of 4% in (x, >ty ujc;) for ujeR. Then, @ :R™ — R, (ur,... uy) —
o(uy, ..., uy,) is a linear map. Since w is linear, w is continuous. By defini-
tion, we have w(ay,...,a,) #0 or w(by,...,b,) #0. Using the density of Q
in R, we have w(qi,...,qn) #0 for some ¢i,...,q, € Q. Hence we obtain
(x, 2521 gj¢;) # 0. This proves (2). O

To prove Theorem 5.5 in the case J = (), we need the following lemma.

LemMMA 5.8. Let X be a compact connected oriented surface with non-empty
boundary. We have
WFFS(8) = WEFS(5)) € (4 +1)* Homgy 4 (#(2), Q4. 47))
for k € Z,.

Proof. By Theorem 5.1, it is sufficient to prove the lemma in the case
X =%)4+1. Let L and L' be links in %y 4 x I and K{,. .., K; components of L.
By Corollary 5.4, we have # (es(L)Ues(L'), U~ es(K)) € (4+1)FQ[4,471).
This proves the lemma. O

LemMA 5.9 (A special case of Theorem 5.5). Let X be a compact connected
oriented surface with non-empty boundary. We have (\,_, F"¥(Z) = {0}.

Proof. By Theorem 5.1, it is sufficient to prove the lemma in the case
X =2y 4+1. By Lemma 5.8, we have

0

w( g FW@W)) € (A +1)" Homgy 4 4(#(2),Q[4,47')) = {0}.

=0 n=0
Since y is injective, we have (-, F"(2) = {0}. This proves the lemma. [J
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FIGURE 17. /l(g,m)(il,iz7...7i2,,7,1,j1,j27.4.7_1'3‘,,2)

For g > 1 and m > 1, we denote by V(g,m) the set consisting of all (i1, i, ...,
bm—1, j1s J2, -+, J3g—2) which satisfy  (ix_1,i,1) eV for k=1,....2m—1,
(J3k—2 J3k—15 J3k)s (J3k, Jaks1, j3kr2) €V for k=1,...,9 =1 and (iyn_1,j1,/2) €V,
where we denote i 1 and 3g—1 def. i3g—2. Let J be a finite subset of oD? c
0Xo g1 satistying #J =2m. Let A(g,m)(i1, 12, ..., fun—1, J1, j2; - - -, J3g—2) be the
element of 7y(X 4+1,J) represented by a submanifold of Xy 441 presented by the
diagram as in Figure 17 for any (i1, i, ..., 0m—1, /1, j2,- -, J3g—2) € V(g,m).

Lemma 5.10. For g=1 and m=>=1, Alg,m):V(g,m) — To(Zo,g4+1,J) is
surjective.

Proof. We use the following proposition. For any L e 94(Zo,¢41,/), there
exists L representing L and satisfying the following conditions for some n in
Proposition 5.11. This proves the lemma. O

Let It,...,Ipu—1,d1,...,J3,-2 be one-dimensional submanifolds of Xy ;1 as
in Figure 18. We set L (U;Zfl L)UUX?*J).
We prove the following proposition by induction on n.

PrOPOSITION 5.11 (n). Let L be a one-dimensional submanifold of o 441
satisfying the following. B

s There is no_closed disk d in o 4y1 such that od C L.

* We have 0L =J.

* The intersections L NL consist of transverse double points.
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FiGure 18. L

We denote by o(L) the set consisting of all P e LNL satisfying
e({(x,y) e dD*|x > 0}) C L, e({(x, y) € 0D* | x < 0}) C L,e(0.1) = P.

for some embedding e:D*— X ,1. Then we have #(a(L))<n=-Le
Mg, m)(V(g,m)) where we denote by L the isotopy class of L.

Proof. By definition, we have Proposition 5.11 (0). We assume n >0
and Proposition 5.11 (n—1). Let L be a one-dimensional submanifold of
20,441 satisfying the above conditions and #o(L) =n. Since #a(L) >0, there
exists an embedding e:D* — Xy, such that e({(x,y)edD?|x>0}) CL,
e({(x,y) €dD?|x <0}) C L\L as in Figure 19. Choose L’ a one-dimensional
submanifold of Xy ;. which is L except for the neighborhood of e(D), where it
looks as shown in Figure 19.

FIGURE 19. L'
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Since L~ L' and #(a(L')) <n, we have L e A(g,m)(V(g,m)) where we
denote by L the isotopy class of L. This proves Proposition 5.11 (n) for any
n>0. ]

We define an injective map

i(g,m) : V(g,m) — V(g +m)
(ity iy e ey om—t1y J15 25 -+ 5 J3g—2)
— (L, L, is, 1, domes, L b2, fam—1, J1, J2s - - - 5 J3g—2)
for m>1 and g>1. Let J be a finite subset of 0D* C 0%, satisfying

#J =2m. We define the Q[4, 4~ ']-module homomorphism i(g,m) : ¥ (Lo g41,J)

— L (Zo,g+mr1) by <A(g,m)(v)) — {A(g +m,0)(i(g,m)(v))). Using Theorem
5.6(1), we have the following proposition.

PROPOSITION ~ 5.12. The Q[A, A~ '-module  homomorphism  i(g,m) :
L (Z0,g+1,J) = L (Zo,g4m+1) is well-defined and injective.

COROLLARY 5.13. The map i(g,m) : V(g,m) — Fo(Zo, 4+1,J) is bijective.

Let ¥ be a compact connected oriented surface with non-empty boundary,
J a finite subset of 0X and P; and P, two points of J. We choose two
orientation preserving embeddings d1,8, : 1 — dX such that §;(1)NJ =6,(3)
= Py and that 6,(I)NJ =6,(1) = P,. We define a surface X(P;, P>) by gluing
Y and I x1I by (0,1 —¢)=0(r) and (1,7) =0,(¢). We introduce i'(Py, P,):
To(Z,J) — To(E(P1, P2),J\{P1, P2}) such that i'(Py, P2)(L) is the isotopy class
of LU{( el xI|tel} where L represents L. The map i'(Py, Py) induces a
Q[4, A~ ']-module homomorphism i(Py, Py) : #(X,J) — L ((Py, Py), J\{P1, P2}).

LemMmA 5.14. Let X be a compact connected oriented surface with non- empty
boundary and J = {P\,Py,...,Pyy_1, Py} a ﬁmte subset of 0X. We set 77 =
i(Pan—1,Pom) 0 ---0i(P3,Ps) 0 i(Py, Ps) and =< Z(P17P2)(P37P4) (Pam—1, Pom).
Then »n is in]ectzve Since n is injective, i'(Py, P2): T0(%,J) — To(Z(Py, Pa),
J\{P1, P2}) and i(P\, P>) : (£,J) — y(Z(Pl,Pz), J\{P1, P2}) are injective.

Proof. For some integer g and some finite subset J' C 0D* C 0% 441, We
choose a diffeomorphism y : (X x I,J x I) — (2o 411 x [,J" x I) and y' : Z x I —
20, g+m+1 X I satisfying (;(*)_1 oi(g,m) oy, =n. Here we denote by y, : ¥ (Z,J)
— P (Z0,4+1,d") and . : F(Z) — L (Z0,g+mr1) the Q[4, 4 ']-module isomor-
phisms induced by y and y’, respectively. Since i(g,m) is injective, # is also
injective. Hence i(P;, P;) is injective. This proves the lemma. O

Proof of Theorem 55 in general cases. We suppose J ;é(b Let J be
{Pl,.. sz} We set 77 = l(sz 1,P2m) Ol(P],Pz) and Z = E(Pl,Pz)
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(Pam—1, Pam). By definition, we have n(F"¥(X,J)) C F"9(X) for any n € Zx,.

Using Lemma 5.9, we have (-, F"¥(X,J)) C N,y F"¥(X) = {0}. Here,
by Lemma 5.14,  is injective. Hence, we have (-, F"¥(X,J) = {0}. This

proves the theorem. O
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