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HERZ-TYPE BESOV SPACES OF VARIABLE SMOOTHNESS AND
INTEGRABILITY
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Abstract

In this paper, Herz-type Besov spaces with variable smoothness and integrability
are introduced. Our scale contains variable Besov spaces as special cases. We prove
several basic properties, especially the Sobolev-type embeddings.

1. Introduction

The Herz spaces initially appeared in the paper of Herz [15] to study the
absolute convergence of Fourier transforms. The theory of these spaces had a
remarkable development in part due to its usefulness in applications to other
fields of applied mathematics. For instance, they appear in the characterization
of multipliers on Hardy spaces [3], in the summability of Fourier transforms
[11] and in regularity theory for elliptic equations in divergence form [26] and
[27]. We refer the monograph [25] for further details and references on recent
developments on Herz spaces.

Function spaces with variable exponents have been intensively studied in the
recent years by a significant number of authors. The motivation to study such
function spaces comes from applications to other fields of applied mathematics,
such that fluid dynamics and image processing, see [4] and [28].

Herz spaces K and K"/ with variable exponent ¢ but fixed x€R and
p € (0,00] were recently studied by Izuki [16, 17]. These spaces with variable
exponents a(-) and ¢(-) were studied in [2], where they gave the boundedness
results for a wide class of classical operators on these function spaces. The
spaces KZ(())p O(R") and K;é))p O(R"), were first introduced by Izuki and Noi in
[18]. In [7] the authors gave a new equivalent norms of these function spaces.
See [29] where new variable Herz spaces are given.
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C. Shi and J. Xu [31] and [30] studied Herz-type Besov spaces K;(’)Bs with
variable ¢, but fixed o, p, s and B, where the characterization of these functlon
spaces by so-called Peetre maximal functions are obtained. B. Dong and J. Xu
[10] also considered K O-7Bs with variables g and o. These function spaces
(with fixed exponents) are introduced earlier in the papers of J. Xu and D. Yang
[36], [37] and [38]. The interest in these spaces comes not only from the
theoretical reasons but also from their applications to several classical problems
in analysis. In [24], Lu and Yang introduced the Herz-type Sobolev and Bessel
potential spaces. They gave some applications to partial differential equations.
We refer the reader to the recent paper [5] for further results for these function
spaces.

Based on Besov spaces with variable smoothness and integrability B;‘((:;ﬁq('),
we introduce Herz-type Besov spaces with variable smoothness and integrability,
which covers Herz-type Besov spaces with fixed exponents. We will give several
properties of these new family of function spaces.

Let us now present the contents of this paper. Section 2 collects funda-
mental notation and concepts. Some necessary tools are given in Section 3. In
particular we generalize the classwal Plancherel-Polya-Nikolskij inequality on
K*)PY spaces instead of L?() spaces. For making the presentation clearer,

q() .
we give their proofs later in Section 6. In Section 4 we define Herz-type Besov
spaces with variable smoothness and integrability and present a few aspects of
their properties. Finally, in Section 5 we present some embeddings properties.
In particular we will prove the Sobolev embedding theorem for these function
spaces and present some consequences.

2. Preliminaries

As usual, we denote by R” the n-dimensional real Euclidean space, and by
N the collection of all natural numbers. We write Ny := NU {0}. The symbol
Z stands for the set of all integer numbers. For any u >0, keZ we set
C(u) :=={xeR":u/2 < |x| <u} and C; := C(2¥). We use ¢ for various positive
constant, i.e. a constant whose value may change from appearance to appearance.
The expression [ < ¢ means that f < ¢g for some independent constant ¢ (and
non-negative functions f and g), and f~¢g means f <g < f.

The notation X — Y stands for continuous embeddings from X to Y, where
X and Y are quasi-normed spaces. If £ C R"” is a measurable set, then |E|
stands for the (Lebesgue) measure of E and yj denotes its characteristic function.
By supp f we denote the support of the function f.

By /9, q € (0, 0], we denote the discrete Lebesgue space equipped with the
usual quasi-norm. Mostly we will deal with sequences defined either on N or Z.

The variable exponents that we consider are always measurable functions
on R" with range in (¢,00) for some ¢>0. We denote the set of such
functions by 2,(R"). The subset of variable exponents with range [l,c0) is
denoted by 2(R"). For p e 2,(R"), we use the notation p* = esssup, g+ p(x)
and p~ =essinf, g p(x).
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By #(R") we denote the Schwartz space of all complex-valued, infinitely
differentiable and rapidly decreasing functions on R”. The topology in the
complete locally convex space #(R") is generated by

pn(p) == sup (1 +[x)¥ Y ID*p(x)|, N=1,2,3,....
xeR” ‘3{|<N

By &’(R") the dual space of all tempered distributions on R”. We define the
Fourier transform of a function f € #(R") by Z (f)(&) = (21) ™ [gne ™ f(x) dx

Its inverse is denoted by # ~!f. Both % and ' are extended to the dual
Schwartz space ¢'(R") in the usual way.

The variable exponent Lebesgue space Ll’ >(R”) is the class of all measurable
functions f on R” such that the modular g, = [pr IS (x P g, is finite. If
p(-) := p is constant, then L70)(R") = LP(R") is the clas51cal Lebesgue space.

A useful property is that g,.)(f) <1 if and only if [f]| <1 (unit ball
property). This property is clear for constant exponents due to the obvious
relation between the norm and the modular in that case. For variable expo-
nents, Holder’s inequality takes the form

1/allsc) < 2010 19l

1 1 1
where s is defined pointwise by — := ——+——. Often we use the particular

s(x) - px)  q(x)
case s(x):=1 corresponding to the situation when ¢ = p
exponent of p.
We say that a function g : R" — R is locally log-Holder continuous, abbre-
viated to g € C o if there exists ciog(g) > 0 such that

(2.1) 900 =9l < 1557 +cllo/g|x — )

" is the conjugate

for all x,yeR". If

Clo,
l9(x) = 9(0)] < m

for all x e R", then we say that g is log-Hélder continuous at the origin (or has a
log decay at the origin). 1If, for some g, € R and cjog > 0,

Clog

— Si
905) =91 < gt s T

for all x € R", then we say that g is log-Holder continuous at infinity (or has a log
decay at infinity). We note that all functions g are log-Hdlder continuous at
infinity always belong to L*.

The notation 2'°¢(R") is used for all those exponents p € Z(R") which are
locally log-Holder continuous and have a log decay at infinity, with p, :=
lim,_,, p(x). The class ZYE(R") is defined analogously.
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Let p,q € Z9(R"). The mixed Lebesgue-sequence space ¢ ‘1<')(L1’(')) is defined
on sequences of L”)-functions by the modular

. Jo
Qﬂ(')(Lp(’))((fb‘)v) = Z lnf{iv >0: () (}1/‘]() <l

The (quasi)-norm is defined from this as usual:

) . 1
(22) 1)l = mf{ﬂ >0 gpurgpoy (; (fu)v> < 1}-

If ¢* < oo, then we can replace (2.2) by the simpler expression g, (L,,(.))(( So)y)

>l |fv\‘1('>\|p(4)/q(,>. Furthermore, if p and ¢ are constants, then /¢")(Lr()) =
1

/9(LP). Tt is known, cf. [1] and [20], that /790)(L?0)) is a norm if ¢(-) =1 is
.1 1
constant almost everywhere (a.e.) on R” and p(:) > 1, or if —+—— <1 a.e.
P a0

on R”, orif 1 < ¢(x) <p(x) < oo a.e. on R”. If p e 2'°¢(R"), then convolution
with a radially decreasing L'-function is bounded on L?0):

(23) o [l < cllolli L/ Nl
Recall that 7, ,,(x) :=2"(1 +2°|x|) ™™, for any x e R", v € Ny and m > 0. Note
that 7, ,, € L' when m >n and that |5, |, = ¢ is independent of ov.

3. Basic tools

In this section we present some results which are useful for us. The
following lemma is from [8, Lemma 6.1], see also [19, Lemma 19].

; L(Elel\SIAf&l. Le/t1 oe Cll(?f and let M = ciog(2), where ciog(at) is the constant
rom (2.1) for o. Then

2v“(x)77v,m+M(x —y) < sz(y)nl’ﬁm(x =)

with ¢ > 0 independent of x,y e R" and v,m e Nj.

The previous lemma allows us to treat the variable smoothness in many
cases as if it were not variable at all, namely we can move the term inside the
convolution as follows:

2500 ag S (%) < €y (2701 ().

The next Lemma tells us that in most circumstances two convolutions are
as good as one, is from [8, Lemma A.3].

LemMma 3.2. For jo and j1 =0 and m > n, we have

Mjo,m * Mji,m = Mmin( jo, j1),m

with the constant depending only on m and n.
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The next lemma often allows us to deal with exponents which are smaller
than 1, see [§, Lemma A.7].

LemMA 3.3. Let r>0, jeNo and m >n. Then there exists ¢ = c(r,m,n)
> 0 such that for all ge &' (R") with supp Fg C {EeR": |&] <2/}, we have

l9(x)| < (. * lg]"(x)) ", xR

Very often we have to deal with the norm of the characteristic functions on
balls (or cubes) when studying the behavior of various operators in Harmonic
Analysis. In classical L? spaces the norm of such functions is easily calculated,
but this is not the case when we consider variable exponents. Nevertheless, it
is known that for p e 2(R") be locally log Hoélder continuous and has a log
decay at infinity there holds ||y, ~ |B| r¥) " x e B for small balls B C R”, and
xall,) = Bl U= for large balls, w1th constants only depending on the log-Hoélder
constant of p, see, for example, [9, Section 4.5].

For characteristic functions defined on (dyadic) annulus we have similar
norm estimates, without requiring the log-Holder continuity at every point.

The following Lemma plays an important role in the proof of the main
results of this work, see [2].

LemMa 3.4. Let pe P(R") be log-Hélder continuous at infinity, and R =
B(O,r)\B(O,f)‘ If |R| > 27", then

1 X 1/p..
il = |RI"PY ~ |R|'P=

with the implicit constants independent of r and x € R".
The left-hand side equivalence remains true for every |R| >0 if we assume,
additionally, p is log-Hdlder continuous, both at the origin and at infinity.

For convenience, we set
By == B(0,2%), Ri:=B\Bi_1 and y =y, keZ

DEerFINITION 3.5, Let p,q € Zy(R") and o : R" — R. The homogeneous Herz
space Kg((;" O(R") is defined as the set of all /e LIV (R"\{0}) such that

oc

(3.6) Il = NS ezl o < -
"
If « and p, ¢ are constant, then K‘l(:)’p <')(R") is the classical Herz space
K “P(R™). A detailed discussion of the properties of these spaces my be found
in' [13], [14], [22], [23], [25], and references therein. Let us denote

1/p 1/p
1@l 2 (L0 : (ank”p ) and  [[(9)l2(o0) (Z llglly. )

k=—c0
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for sequences {g},., of measurable functions (with the usual modification when
g= ). Let ae L*[R"), p,qe Zy(R"). Recently, the authors in [7] proved
that if o and ¢ are log-Hoélder continuous, both at the origin and at infinity, then

1 ity % 102000 0, + 1S 20 e
Let p,q,0 € Zy(R") and o : R” — R be log-Hélder continuous, both at the origin
and at infinity. If (p —6)” >0, then

(), 0() o), p()
(3.7) Kq(_) s Kq(') ,

is a simple consequence of the embedding //0)(L90)) — £P0)(L90)).
Let T be a sublinear operators satisfying the size condition

(338) 1< | 2 e sup s

for integrable and compactly supported functions f. Condition (3.8) is satisfied
by several classical operators in Harmonic Analysis, such as Calderon-Zygmund
operators, the Carleson maximal operator and the Hardy-Littlewood maxi-
mal operator (see [21] and [32]). Various important results have been proved
in the space qu,p under some assumptions on «, p and ¢. The conditions

—E<oc<n I1——), 1<g< o and 0 < p < oo is crucial in the study of the
q q .
boundedness of classical operators in K *” spaces. This fact was first realized by

Li and Yang [21] with the proof of the boundedness of the maximal function.
The proof of the main result of this section is based on the following result,
see [7].

THEOREM 3.9. Let p e Zy(R"), g€ P(R") with 1 < q~ < qt < o0, and let a,
p and q be log-Holder continuous, both at the origin and at infinity such that

1
~ L cu < oc+<n<1——>.
q* q-
Then every sublinear operator T satisfying (3.8) which is bounded on L1")(R") can
also be extended to a linear operator bounded on K“((; "’ <)(R”).

q
Let p,q,f € Z,(R") and o : R" — R with /)’+ < c. The space /(K " )> 0y

is defined to be the set of all sequences of K ('> (R”) -functions by the modular

Ok 1’< Z | |f/ ||K >/f ()/BC)

The quasi-norm is defined from this as usual:

. 1
||(fj)j||,/r<»)(1-<:((_-)).p<->) = lnf{ﬂ >0: Q//«»)(K(;(_-))-m-)) < (fj);) < 1}.
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LemMA 3.10. Let q,f e Z5R"). Let pe Zy(R") and o : R" — R be log-
Hélder continuous, both at the origin and at infinity such that o~ —|—q% >0. Let

= ciog(1/), where cio5(1/p) is the constant from (2.1) for For m > n, there
exzsts ¢ >0 such that

r1/r
(3.11) e * LYo, < el Yoo,

for any 0 <r < min <q,+> whenever the quasi-norm on the right hand
side is finite. ot +n/q

Proof. By the scaling argument, it suffices to consider the case
I1(f )||/ﬁ(> #r() :1 and show that the modular of (7; s * |/l )! /" on the
1()

left-hand side is bounded. In particular, we will show that
© .

(3.12) Z Il 1€ mar |f}'|r)ﬁ('>/’HKI(«))//;((»).FO/M) <1
- OB

for some constant ¢ > 0. Our estimate (3.12), clearly follows from the inequality
(3-13) e myar * |J§'|r)ﬁ<‘)/r||K«<)/f(~>;p<<>//f(~) < |J§.|ﬁ(')||Ka(4),,(>,,,<,)//;<,) +27 =:0.
4()/B0) 4O/BC)
This claim can be reformulated as showing that
||05_l(’7j,m+M 4l ) /’H A omo < 1.

Since f is log-Holder continuous and d € 27,1 + 2], we can move 6~ /") inside
the convolution by Lemma 3.1:

||C(571(77/',171+M * |f;‘|r)/f(A)/"||K«<‘>tf<->,p<->//f<-> < ||(77,',m * 57"/'8(')\fj\r)ﬂm/r||K%<->/f<->~p<>>//f<>>-
' n (/B0 ' a0)/B0)
Let us prove that
5(-)
(1, %8P0 f]PC /’HK omsom S 1,

which is equivalent to

o0

> 15 PO gy S 1

k=—o0

Again this is equivalent to ||(1; , *6~"/"|£;|" )1/'|| 0.1) < 1. Observe that

ryl/r
J

e 2()rp()/r)
K q()/r

0 6~ PO gt = i % s

thanks to Theorem 3.9, under the assumption 0 < r < min (q ,#) the

right-hand side is bounded by c|jo~1/#¢ f 1% (000 < 1, which follows immediately
from the definition of 6. This finishes the’ proof O



38 DOUADI DRIHEM AND RABAH HERAIZ

Remark 3.14. Let ge Z°%(R"). Let pe#,(R") and «:R" — R be log-
Holder continuous, both at the origin and at infinity such that o~ +q£+ > 0.
Observe that #; , * |fj|", j € No, satisfying the size condition (3.8). Using The-
orem 3.9, one can find a constant ¢ > 0 such that

1
SUp (|7 161 | g < € sup |1l g0
j=0 a() j=0 a)

for any m > n and any 0 < r < min (q‘,%) whenever the quasi-norm
on the right hand side is finite. ot +n/q

The classical Plancherel-Polya-Nikolskij inequality (cf. [33, 1.3.2/5, Rem.
1.4.1/4]), says that | f]|, can be estimated by

cR”<]/1’_1/‘1)||f||
P

for any 0 < p<g< o0, R>0 and any f e L?(R")N ¥’ (R") with supp Zf C
B(0,R). The constant ¢ >0 is independent of R. This inequality plays an
important role in theory of function spaces and PDE’s. Our aim is to extend
this result to the variable Herz spaces. Let us start with the following lemma.

Lemma 3.15. Let 0,fe G, pe Zy(R"), o:R" — R and R > max(1,H).
Let g be log-Hdlder continuous, both at the origin and at infinity. Then there
exists a constant ¢ > 0 independent of R and H such that

R n/d

(316)  sup  AVEW R £(x)] < C() 12180 pn/at)+5) gatg|
xeB(0,1/H) H

for all fe K‘%'))’p(') NS’ (R")  with supp Zf C B(O,R), any 0<d<

min(q—,n/(x+n/q)") and any 2e[R™', 14+ R

2(0).00)
K

If o, p, 0, p and ¢ are constants, this result is [5, Lemma 3.3].

The following Lemma is the I'(;((f))’p (')(R")-Version of the Plancherel-Polya-
Nikolskij inequality.

LeMMA 3.17. Let R= 1, p,re Zy(R") with pT,r™ < o0, q,1,s,r € ?}(])Og(R”),
Be Cfg’f and oy, 0, € Cllgcg such that (o —oq)” >0 or a1(-) = wa(-). We suppose

that q(-) <t(-) and (o +n/t)” > 0. Then there exist a positive constant ¢ > 0
independent of R such that
1

(3.18) |R‘Y(A>f|ﬂ(')||1'<11<'W'>-"('Wf('j < ‘Rn/q(A)_n/r(‘H@(A)_al(A)+S(A)f|ﬁ(‘)Hkxzt)/f(»).oc)//fc) +5
(/8C) 40)/BC) R

for all feKj(z_g')’p<') N.S'(R") with supp Zf C B(0,R) such that the norm on the
right hand side is at most one, where
o) = {r(-) if 1) = ()
p() i (=) >0.
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We would like to mention that this lemma improves the Plancherel-Polya-
Nikolskij inequality of [1, Lemma 6.3] by taking ax(-) =oi(:) =0, r(-) = #(-),
Kt(z)';/;(//;() =L'/F) and by using the embedding LI0/A0) = K;(‘%(/'f() —
RO

q(-)/B()

LemMA 3.19. Let R> 1, p,re Zy(R") with p™,r" < o0, q,t,5,1€ ﬂ(l)og(R"),
BeClE and oy 00 € C%F such that ay(-) +n/q(-) = o1 (-) + n/t(-) or (a2 +n/q—
o —n/t)” >0. We suppose that t(-) < q(-) and (g +n/t)” >0. Then there
exist a_ positive constant ¢ >0 independent of R such that for all f e
K;(%g‘)"p(') N (R") with supp Zf C B(0,R), we have (3.18), such that the norm
on the right hand side is at most one, where

o) = {r(') if () +n/q() = o () +n/t()
p() if (;a+n/g—oy—n/t)” >0

The proof of Lemmas 3.15, 3.17 and 3.19 is postponed to the Appendix.

4. Variable Herz-type Besov spaces

In this section we present the Fourier analytical definition of Herz type
Besov spaces of variable smoothness and integrability and we prove the basic
properties in analogy to the Herz type Besov spaces with constant exponents.
We first need the concept of a smooth dyadic resolution of unity. Let W
be a function in Z(R") satisfying ¥(x) =1 for |x|<1 and W(x)=0 for
|x| =2. We define ¢, and ¢; by Fgy(x) =¥ (x), Fo¢,(x)=¥(x) —¥2x)
and

Fo(x) = Fo,(27x) for j=2,3,....

Then {F¢;},.N, is a smooth dyadic resolution of unity, Z “o 7 ¢;(x) =1 for all
x e R”". Thus we obtain the Littlewood-Paley decomposmon f= Z/ 0% * f of
all fe%'(R") (convergence in &'(R")).

Now, we introduce the Herz-type Besov spaces of variable smoothness and
integrability.

DeFINITION 4.1. Let {# ¢}, be a resolution of unity, o,s:R" — R and
2,4, € Z,(R"). The Herz-type Besov space K <()> UB;((:)) is the collection of all
distributions f € &’(R") such that

(4.2) ||f||Kz(<-)>~n<->Bﬁs:-; =27V, * 1), ll 500 K200y < 00
00 gt

Herz-type Besov spaces I'(:((f))’p ('>B/§('_>) with variable exponents p and o but

fixed s, ¢ and f were recently studied in [31], [30] and [10]. While the first time

we introduce the spaces K;‘(())p <')B;<(1)) with the quasi-norm (4.2). When, f:= o
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the Herz-type Besov space KX () Bfé') consist of all distributions f € .%'(R")
such that

sup ||2US(‘>% * f||,~<«<>.p<»> < 0.

v=0 qC)
One recognizes immediately that if o, s, p, ¢ and B are constants, then the spaces
K;’PB;), are just the usual Herz-type Besov spaces were first introduced by J. Xu
and D. Yang [36] and [37]. See [5] and [40] for further results.

We state the definition of the spaces B E; () which introduced and

investigated in [1].

DeFINITION 4.3. Let {#¢;}”, be a resolution of unity, s:R" — R and

p,q € ?y(R"). The Besov space B;E:;-q() consists of all distributions f € .¥'(R")
such that '

Hf”BSEj; o = H(st(‘)(”j *f)j”/‘/(')(Lp(-)) < 0.

Taking s € R and ¢ € (0, 0] as constants we derive the spaces B;“ g studied
by Xu in [39]. We refer the reader to the recent papers [20], [19] and [6]
for further details, hlstorlcal remarks and more references on these function
spaces. For any p,q e 2, Og(R”) and s € Cloc, the space B E> does not depend
on the chosen smooth dyadic resolution of unity {/goj}]GN (in the sense of
equivalent quasi-norms) and

s() 17
SR") — Bp(%q(') — Z'(R").

Moreover, if p, ¢, s are constants, we re-obtain the usual Besov spaces B,

stu(()lied in detail by H. Triebel in [33], [34] and [35]. Clearly, K ‘)> 70 8

B .

2().50) . "
Now, we are ready to show that the definition of the spaces Kq“((f))"p (')B;f(; is

independent of the chosen resolution of unity {# goj}jeNO. This justifies our
omission of the subscript ¢ in the sequel.

THEOREM 4.4. Let {/(p]} "o AFY;}2y be two resolutions of unity,
D, 4q, ﬁej’log(R”) and s € C . Let a:R" — R be log-Hélder continuous, both

at the origin and at znﬁmty such that o~ +—>0 Then || f)° K00 o R
q*

I/ || K™ Bay
‘;()) " B/;(-)

Proof. Tt is iuﬁicient to show that for all fe%'(R") we have
W2 ||1?<x<'>~/’“3/§(')> <d|f ”K“((’))"’(')B;E'; with ¢ > 0. Interchanging the roles of y and ¢
{. 3 0 .

we obtain the desired result. Putting y_; =0 we see F ¢, = F ¢, Zk ATV
for all v e Ny. By the properties of the Fourier transform

k=1
¢v*f: Z (ﬂu*‘//u+k*f-

k=—1
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Fix 0<r< min(l ) and m > n + 2c1o4(S) + clog(1/p) large. Since

n
9y < ny oy, With ¢ >0 independent of v, we obtain

. e\ 1/r
|(pv * lpv+k * fl s ”u,m/r * |l//v+k * f| s 771.\,m/r * (ﬂv+k.n1 * |lpv+k * f| ) / )

where in the second inequality we used Lemma 3.3. By Minkowski’s integral
inequality the left-hand side is bounded by

1/r r1/r
(e * M) Wrorx 117
= Czn(v+k (l/r_l)((r/v,m/r * ’70+k7m/r)r * |lpv+k * f|)) l/r.

By Lemma 3.2 we have #, ), * M,k m/r X Nopk,myr- 1hen the last expression is
bounded by (7, * [Vyir * f I"YV/". This, together with Lemma 3.1, gives

12V, f)v>()||//f(-)(j<1(')-ﬁ(’))

1
1@y 5 A1 Yzl 3t g,
4( )

k=1

1
Z || 2” r771;+k m |lpv+k * f| )1,>0H/£(r/, g 20 p()/ry
k=—1 4/()/'

A

A

k) 1
Z ” 771)+k m—Clog(s) *2 vHR)sOr |lpt+k *f‘ >L>0||///f(’)/r y()/' )/r)-
k=-1

By the change of variable v + k =i, this expression is bounded by

1
S CTE <25 L)l gt

k=—1

1
<w@“|w*ﬂxwm%ﬁﬁwm < 31 Mg
q)/ 4) B)

where in the first inequality we have used Lemma 3.10. |

Remark 4.5. Let p,qge 2 %(R") and se C%. Let o:R" — R be log-

loc *

Holder continuous, both at the origin and at infinity such that o~ +n/q* > 0.
As in the last proof and by Remark 3.14 we can prove that the definition

of the spaces K <)) p( >B ) s independent of the chosen resolution of unity
{/(pj}jeNo

5. Embeddings
The following Theorem gives basic embeddings of the spaces ch((;p (‘)B;Ei;.
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THEOREM 5.1.  Let p,q,f, B, P1, P2 € g’log(R”) and s,s1,8) € Clloog. Let o be
log-Holder continuous, both at the origin and at infinity such that o~ —|—i > 0.
q*

@) 1f pi() <ﬁ2( ), then
sa().p() (-
KBy
(ii) If pi(-) < p2(-), then
S )i ) . ol pa() ps()
Kooy By = Ky By
(iii) If (s1 —s2)” > 0, then

50
= Ky "By

o100 1) o o)) ()
Koy ™ By = Koy " By -

Proof. (i) is a simple consequence of the embedding //31(-)(1'(;((:)),17()) —
/ﬂl(')(K;((f))’p (‘>). (i) can be deduced from the embeddings properties of the
Herz-type spaces, see (3.7). Notice that K(() r0 g ;,]1(_)%1{“(() 20) ﬂ1(> and
K;(;p ('>B/‘§if') <—>K;(())p ('>B/‘;§<(i;. Therefore, it suffices to prove (iii) for constant

exponents 8, and ;. We have

1220, * Dosoll # gy < € sup 12510, 5 | g0
() q()

v=0

<2 *Fosoll 5z (R0

with ¢ = (ZU>0 9 (s1=52) " vpy )1/["2 . ]

THEOREM 5.2. Let p,q,f € P 1Og(R”) and s e lef Let a:R" — R be log-
Holder continuous, both at the origin and at infinity such that o~ + % >0. Then
q

Proof. Our proof use partially some decomposition techniques already
used in [5] where the constant exponent case was studied. Also, in more
general spaces given by abstract definitions, see Hedberg and Netrusov [12].
By Theorem 5.1 we need only to prove (5.3) with f:= oo.

Step 1. Let f e #(R") and {#¢;}”, is a resolution of unity. If L, M and
N are sufficiently large natural numbers then

Hf”K )-p(: ) = Sup”2/Y )¢j *f”K

1

< sup 2791+ [x[%) 9, % fl. |57
750 S (N
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Take L sufficiently large such that (« —4L+n/q)" <0, we then have
r()

I ||| 20
s\ )~ | e
q()/p(-)
First we remark that
gt [PV l(a—4L Jo
3oL Xk < QML "D7|| [ ~knfaO) PO
(I+1[-1%)
q()/p()
S 2k(oc74L+n/q)+p’
for any k>0 and
()
ka() P .
— = | 4 < pk(atn/q)
(-
q()/p()
for any k < 0. Therefore,
+00 2 ka(-) »() Ko/ KAl infa)*
= 2 2o<+nqp+ 2a +nqp<1
e | (T k;@ Z
a()/p()
Hence
g < sup 25|71+ (<)1) F 7] |,
j=0 :
< sup 2771+ (=& F 0,7 1),
j=0
<A+ XM+ (-2)"7 1],
< py(FS).

Step 2. We prove the right-hand side of (5.3). Let {Fg;}; N, be the

smooth dyadic resolutlon of unlty We put w; = Z:j]fll Fo;if j=1,2,... (with

Fo_,=0). If feK 7B and y e #(R"), then f() denotes the value of
the functional f of ? (R”) for the test function . We obtain

Z‘(ﬂj*f/ w]*‘//)l

IM*f(f”%*wm

s 1s ;

1
(=1

oy % 1+ (F oy ) [ o
1
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Recalling the definition of Klo’l spaces, the last sum can be rewritten as

o0

DD Mo £ (F eyl

Jj=0 k=—0

0

< s g S )l

=0 k=—oo ¥€B(0,2%)

We divide the last sum into two parts Z;’ioz*j?l SRR DD Y ST

k=—o

Lemma 3.15, gives for any 0 < d < min(q~,n/(ax+n/q)")

o —j—1

SN sup g SE e )l

=0 k=—op X€ B(0,27)

Z Z HZ (n/q(-)+o(-

(T ey 5 )illy

17(

Jj=0 k=—o0
o —j-=1

S g wog Yy, 201 IN(F e )l
Jj=0 k=—o0

||f||K’(>1’ )B )HW” ln /q+o—s)

Using again Lemma 3.15, we have for any 0 < d < min(¢~,n/(x+n/q)")

o0 0

SIS sup gy S oy vl

j=0 k=—j x€B(0,2¥)

o0 o0
<> Z |27/ 42l a0~ g * Sl oo I(F Loy« )l
J=0 k=—j

< S

K;({-)>vn<->3g->(||‘ﬁ|| Rd-nla=n* 1 glajd—s ‘HWH (nfd=njg=5)~ Bfn/d—x>+)~

Consequently

W) < cull /]

K200 g0
where
p = max(||y|| Bff’{‘f“‘”" Il Kln/d—m/qm*.l Bf”/"*”’ [l Kplalas ™1 B](rl/d—s)* ).
By our assumption on d we have
S(R") < Kn/u’ (n/q+ac)+.1B§n/d7s)+
and
F(R") Kn/d (n/q+oz)’,lB§n/dfs)+.
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_ o\t .
From this and the embedding (R") — B{"/“™/47)" " we obtain
lf()] < CpN(lp)||f||1'("(('))-f’('>3;(')'
B

This proves that K;())” OB is continuously embedded in #’'(R"). This
completes the proof. O

Applying Lemmas 3.17 and 3.19, we obtain the following Sobolev type
embeddings.

THEOREM 5.4. Let p,re Po(R") with p*,r™ < o0, q1,q2,B,7 € %l)og(R”) and

S1,8 € Cllgf. Let ap,00 € Cllgcg be such that (a1 +n/q1)” >0 and (0 +n/q2)”
> 0. Assume that
(5.5) s1) = n/qu () —ou () < s2(-) = n/qa() — ().
Let o(-) = oaa(-) +n/qa(-) — o1 (-) —=n/qi(-). The embedding
o02(+),0() psa(’) o1 (),r(1) psi(c)
(5.6) Kooy Byy = Koy By
holds if qx(-) < qi(-) with o2(-) =a1(-) or (w2 —a1)” >0 or q1(-) < qa2(-) with
(5.7 o()=0 or o >0,
where

00)=r() #f o()=0, a1()<q@) or u()=o0n() ¢@()<al)

0C)=p¢) if o >0, q(-)<q) or (a—a1) >0, q()<q()

THEOREM 5.8. Let pe Py(R") with pt < oo, qi,q,f¢€ ,@éog(R”) and
51,8 € Cllscg. Let o € Cllc()’f be such that (oa; +n/q)” > 0. Assume that

si(-) = n/q1(-) < 20) = n/q2() — o).
Let o() =o2(:) +n/q2(-) —n/qi(-). The embedding
K "B = B
holds if qx(-) < qi(:) with ax(-) =0 or ay >0 or ¢i(-) < qa2(-) with
o(-)=0 or o >0,
where

00)=aqi() i o) =0, a1() <) or u()=0, @) <q()

0C)=pC) if o >0, q(-)<q) or a >0, @) <q().
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To prove this embeddings it suffices to take r(-) =¢(-) and o;(-) =0 in
Theorem 5.4.
Using this result, we have the following useful consequence.

COROLLARY 5.9. Let ql,qz,ﬁeWéOg(R”) and s1,$, € Cll(‘:cg, such that s,(-) —
n/qi() <) —n/qa(-) and qa(-) < qi(-). Then

$2(+) >0,q1() psa(*) s1(-)
(5.10) B s = Koty Bty = B0y

To prove (5.10) it suffices to take in Theorem 5.8, 0(-) = ¢1(-) and a»(-) = 0.
However the desired embeddings follow immediately from the fact that

$2(+) _ 5 0,02() ps2(-) >0,q1(-) psa(-)
B8 = Koty Baey = Konty By -
1
Let us define o, ::n<.7— 1> and ¢() := max(1,¢(")).
q() mm(l,q(-)) ( ) ( ( ))

ProposiTioN 5.11. Let p,q,ﬁeg’(l)og(R") and s e Cllgcg. Let o€ Cllgcg such
that o= > 0. If (s—a,—a) >0, then
a(-).p() ps() q()
Ryey™ By = L7
To prove this proposition it suffices to use the embedding
eo(-),p() ps() s()—a() i()
Kooy ™ By = Byypy = LT
where the first embedding is follows from Theorem 5.8, and the second
embedding is given in [1, Proposition 6.9].
Let C, be the space of all bounded uniformly continuous functions on R”

equipped with the sup norm. Concerning embeddings into C,, we have the
following result.

COROLLARY 5.12. Let pﬂ&@éog(R”) with p™ < oo and o € Cllscg such that
o >0 or a(-)=0. Then

where
00) = {;O(-) Z: ZS)>:0?
Proof. 1t follows from Theorem 5.8 that
K200 grOsat) <y grieQ) ., o

Hence the result follows by the embedding BY, | — C,, see [33]. O
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The following statement holds by Theorem 5.4 and the fact that

20,4() psa() o2l
Ky Byy =By p0)-

THEOREM 5.14. Let pe Zy(R") with p* < wo,q1,q,p € ﬁé"g(R") and
S1,8 € Cl¢  Let o € C°¢ be such that (g +n/q1)” >0. Assume that

loc * loc
si(-) =n/q1(-) — () < 82() —n/q().
Let o) =n/q:(-) —ou(-) = n/qi(-). The embedding
52(-) o1 (), 00) psi()
(5.15) Boit) = Kty By s

holds if g2(-) < qi(-) with oa1(-) =0 or af <0 or qi(-) < ga2(-) with o(-) =0 or
o~ >0, where

0()=q() if o()=0, @) <q() or u()=0, q@()<aq()

and
0()=p() if e >0, q()<q() or of <0, @) <q()
Using this result, we obtain:

COROLLARY 5.16. Let qhqz,ﬂeg’é(’g(R") and s1,s; € Cllgcg,
s1(-) =n/q1(-) < s2() =n/qa() and qo(-) < qi(-).  Then

$2(+) >0,q2(-) ps1(°) s1(+)
(5.17) B s = Kty Bty = B o

such that

To prove this it suffices to take in Theorem 5.14, 6(-) = ¢»(-) and «;(-) = 0.
Then the desired embedding is an immediate consequence of the fact that

>0,q2(-) psi(-) >0,q1(-) psi() _ psi(t)
Kooy "By = Koy Beey = By0)80)

6. Appendix

Here we present the more technical proofs of the Lemmas 3.15, 3.17 and
3.19. Our proofs use partially some decomposition techniques already used in
[5] where the constant exponent case was studied.

Proof of Lemma 3.15. By Lemma 3.3 we have for d,R > 0, N > n and any
xe B(0,1/H)

/< C(J ‘f(y)|d77R,N+M(x =) dy>0/d

R"

o/d o/d
<<[ <~->dy> +<j <--~>dy> ,
B(0,22/H) R"\B(0,2%/H)



48 DOUADI DRIHEM AND RABAH HERAIZ
where ¢ :=min(l,d) and M = ciog(0) + ciog(1/f) With ciog(a), ciog(1/f) are the
1
constants from (2.1) for ¢ and 5
N v i) = R'(1+ R [) 7N
Using the following decomposition

respectively. Here

©
P S T
L(o,zZ/H)( ) ]Zo: C(ZH/H)( )
o0
Y dy — J ) d
JR"\B(O,ZZ/H 4 ]Zo: 2/+3/H 4

and the well-known inequality

(6'1) (Z |aj> Z |aj|T7 {aj}j cCre [07 1]
-0 =0

we obtain that |f(x)|® can be estimated by

(6.2) CZ jRH R,H(X))7
j=0
where
(6.3) Vj}Rﬂ(X) = (77R,N+M * |ch(2H/H)|d(X))0/d7 V/%R,H(x) = V—lj—l,R,H(x)'

Here N is chosen large enough such that N > max(n,n/d — (n/q+a)~). Let us
give the estimation of the first term in (6.2). Lemma 3.1, a simple change of

. . . o1 1 1 1 .
variables, the Holder inequality (with — = —+4———) and Lemma 3.4, yield

d q() d q()
for any d,R >0 and any x e B(0,1/H)

© 2—[log, H]
;RU(X)%*M(X) Vj}R,H(x) < Rreld ]Z ||/171/'8(')RU(‘)ch"k||Xc~k||r(~)||§(‘)
J= k=—o0
2—[log, H]
< Rne/d Z ||/1—1//f(~)Ra(<)2kn(1/d71/q(‘))f;{é ||@(>
~ k q )0

k=—c0

1 1 1 ~
where 0 =d" 70 Cr:={xeR":2*2 < |x| < 2¥} and [q] is the integer part

of the real number a. This term is bounded by

R no/d 2—[log, H] X (n/d—(n/q+ )*) 1/B()~k C
n/d—(n/q+o 07— . o ’ YRV

k=—o0
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Using the fact that n/d > (n/q+ )", 2¥3H < 1 and the embedding K70 —
K;((,';’OC we obtain that the right-hand side of the last expression is bounded by

RY TR i)
(64) c(gg) 1A IOEIOSOR O ST

4q() k=—0
R no/d 180
< <H> I /a0 +al) gal) f||§'<j§?""“

where the implicit positive constant not depending on R and H.

Now we estimate the second term in (6.2). Notice that for any ye
C(23/H) and any xe B(0,1/H), we have |x— y| > 2//H, so for any d > 0,
N eN and j € Ny,

2/R

-N
) <27NR™
H

’7R,N(X -y < Rn(

Hence by Lemma 3.1, a simple change of variables, the Holder inequality (with
1 1 1

—=——+————) and Lemma 3.4, we obtain
i~q0 a0

o0
Z RoXe ) —e/B(x) V/‘?R,H(x)
j=0
< R/ Z H;jl/ﬂ(')(zkH)*NRU(-)fXC., 5
k=2—[log, H] !

SRS IO Y RO e e o I

k=2—[log, H]
R no/d © _
<(= Z (zkH)(ﬂ/df("/qH) *N)y||/1*1//3(-)Hn/q('>+a(‘)2ka(‘)Rﬂ(‘>fxc~k e
H q(-)
k=2—[log, H]

where the implicit positive constant does not depend on R. Using again the

embedding K;((f))‘p(') — K‘;())OC, and since N > n/d — (n/q+ o)~ and 2*H > 1, for

any k > 2 — [log, H], the right-hand side of the last expression is bounded by

R\ 1 0
65 ¢ (ﬁ) ( sup [|27VB IOk ROy (»)
k>2—[log, H|

H FEOTOR

R no/d
< c(_) 14180 pafaty+5) gat) e
q()

Finally, we obtain the desired estimate from (6.4) and (6.5) taking into account
the decomposition (6.2). This finishes the proof.
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Proof of Lemma 3.17. Our estimate (3.18), clearly follows from the
inequality

0
Z H |2k11(')/171/ﬂ('>RS<‘)f|r(A)Xk”[(»)/r(J <1,

k=—0

where

J = || | R0/ 0)=m ()+s() | AC) [

1
o (BO00/B) T = -
K60 R

Note that the assumption on the norm implies that Ae[R™!, R™! +1]. We
divide the sum )/ - into two parts,

—0o0

(6.6) D)+ D ()= Ir+ k.

26<2/R 26>2/R

ESTIMATE OF Ix. By Lemma 3.15 we get

(67) sup  (RYW 00 10| £ ()
xeB(0,2/R)

< ||Rn/q(-)—n/f(~)+uz(~> o ()+s() ) ~1/B( fH
f1(

where the implicit positive constant not depending on R. The norm on the right
hand side is bounded by 1. To show this, we investigate the corresponding
modular:

ooy (2520 RO 20201050, =1BO

)
Z 2koc2 Rn/q )=n/1(-)+ea()—ou () +s 1/ﬁ f‘ Xk”

4= . Nen/t(- Doy () +s(- )100)/B(-
_ Z 1114 1|2ka2()Rn/q() n/t1()+a () al()+s()f‘ﬂ<)| ()/m)(k”q(.)/a()

k=—0

This term is bounded by 1 if and only if
||/1_1|Rn/q —n/t(-)+oa(-)—o (-)+s(- f| |

graosoo0m < 1
K (ys0)

which follows immediately from the definition of A. Therefore,

Ix < z (2k )’ “(u+n/t)” 12~ nk/1(-) | XkH S Z (2k )r (on+n/1)” <1,
2k<2/R 2k<2/R

/1) | Xk|| <L

To show this, we investigate the corresponding modular: ;. (2~ ”k’ / ’<)) =
fc, 27" dx = ¢ < co. In the last inequality we use the fact that (ocl +n/t)” > 0.

where the second inequality follows by the fact that |||2~
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ESTIMATION OF IIg. By Lemma 3.3 we have for R >0, N > n/t and any
X € Ck

(68) 1~ l/ﬁ(‘c)Rs(\ —oy (x)—n/t(x) ‘f( )|

1/t
< ([ 1 RO ) gyt - ) )

’ C(J () dy>l/r
R"\B(0,2/+2)

= Via®) + Vi () + Vi (%),

Here Ci:= {x e R": 2F2 < |x[ < 2K}, 0 < < ¢~ and & := ciog(02) + ciog () +
Clog (}]) We choose N such that

(6.9) N > max(n/d +n/t+ (o +n/t)",
nfd +n/t— (o +n/q)” + (a1 +n/0)"),
where d is chosen as in Lemma 3.15. It is easy to verify that if x € C; and

y € B(0,2%72), then |x — y| > 252, This estimate and Lemma 3.15 yield for any
xe C, and any ke Z such that 2FR > 2

(6.10) 2Ky (x)

< o kot (x) sup M—l/ﬁ(y)RS(y)fm<y)*n/t(y)f(y)|
yeB(0,2+-2)

1/t
X (J MR Nt +5(Z‘) df)
2k2<|p|<2ktl

S(sz)n/dJrn/rszkaq ||2 k(oa(-)+n/q()) )= 1/BC) Rs() oq(A)—n/f(')fHK%(,)A(;(.).

Observe that 2¥R > 2. Hence

2OVE ()

< (2k Ry Atn/e=latn/a) =N ko (x) ||;;1//3(-)Rn/q(~)—n/f(-)+fxz<‘)—f11(‘)+-r(~)f||Ky2() 0

< (sz) n/d+n/rf(xz+n/q)77N2kc<1(x).
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Therefore,
SRR ORIV O
2k>2/R
< 3 @tR)weesnla) Castn/ =N)r™) [ —kn/ () 7( LAy
< ()
2k>2/R
< (2*R) (nfd-+n/e=(atn/q)"+(-+n/0) "=N)r™ <

2k=>2/R
by our assumption on N. Now we observe that
Vlg,k — (,7R$NT 40 |/‘fl/ﬁ('>Rx<‘)‘“‘(‘)‘”/’<‘)f;(c~k|T)1/7,
Holder’s inequality gives
2F2CORZOVE () (X[
S Mg e # (|28 PO RO 07 COmnlO 7 1) ()

< ||’7R,Nr(x - ')R_m/q(‘)H(q(‘)/f)’

x || |24 7 VPO R0+ OOy )

< ||R7m/q('>771z‘1vf(x — .)H(q(')/r),”Rn/q : ,n/[(.HM(.),al<4)+S(.);L_1//;(,)f| ,Tgr(z;-w-)a
%

_ k(awn), ifk=0

here ka, := « )

whete fo {erz(O) if k<0

bounded by 1 due to the choice of A, see the estimation of Irx. To show that
the first norm is also bounded, we investigate the corresponding modular:

The second norm on the right hand side is

0y /2) (1R, N (X — QR0 = RHJ (1+ R|x— |)_N a0/ T dy < 0.
R”

Let us prove that
(6.11) HER)=OROVE 1 oy S 1
for any ke Z. We have
|(2FR) 0 R Vé,k<x>|’<>‘)
= |2 RV ()| I 2K R) I RNV ()] 1

S QR ZIRVIOVE ()],
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for any x € Ci, where the implicit positive constant does not depend on R and k.
Therefore,

JR |@ER) IRV ()] dx
k
sj (25 R) = RN YR | (x)| ) dx

~

< JRn (e (2554710 RIS 1220001 19 ()00 g

This term is bounded by 1 if and only if
(|2]\O{7 71//f’()Rn/q()+s()+12) op(-)—n/t(- fXC,C

||’7R,Nz )|| )/t <

Since convolution is bounded in L”() when p € 2'°%(R"), see (2.3), we obtain that
the left-hand side is bounded by

l|2K52 5.7 VBO) Ru/at)+C+oa ()= ()-n/ "')fxc lac
o)

< ||RMO) =/t ko) =0 ()+s() 4 ~1/AC) fH

) 00) <

Hence
> REORBOOVE O

2k>2/R

< D0 @FRTET AR 2ORYOVE 1 0l
2k=2/R

F

< Y @R <
26>2/R

)

if (0p —oy)” > 0. Let us treat the case o(-) = () more carefully. Let recall
that for oy(-) = ax(-) we have 6(-) =r(-). Hence it suffices to prove that

1RO R OVE 1" 2l

<l |2k“1/171/ﬂ(')Rn/q(‘)ﬂ(‘)_n/t(')f)(ék|r(')){k\|q(‘)/,~(‘) + ﬁ =1,
which is equivalent to
(6.12) I~ @R PORTOVE el S 1
We have

ﬂfl/r(X) — ,71/r(y)*l/"(«f)n*l/r(y)

< (ZkR)‘1/r<X)7l/r(y>"771/r<y)7 X € Cka AS é/c«
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We use the log-Holder continuity of r to get the equivalence
2k(1/r(x)=1/r(3) & |
and
RVr)=1/r00) < (1+ R|x — y‘)mog(w
for any xe Cr and any ye Cy. Therefore,
p V2 W (X) < (Mg e * |77_l/’(‘)i’l/ﬂ('>RS<‘)‘“‘(‘)‘”/’<‘)f)(c~k|T)1/7.

Now (6.12) can be obtained by repeating the same arguments used in the proof

of (6.11).
We see that [pu pge2)(--) dy can be rewritten as 377 [, <) dy.
Then, using (6.2), we get for any x e Ci

-r+‘4

o0
(6.13) (VR X)) <c¢ Z (MR ye+0* Mfl/ﬂ(‘)Rs(')fm('>7n/t('>f/"(c,(+,-+3 ‘T(x))g/f7
i=0

with ¢ :=min(1,7). Since |x — y| > 3-25* for any x € C; and any y e Cryiv3,
the right-hand side of (6.13) is bounded by

.
cRe/T=N) Z 2*g(k+Z)N||,1—l/ﬁ(‘)RS(-) () =n/i(- fXC/HM 1|
=0

< ¢RUMTN) Z’ 20N || 1 1BO) RSO O/ £y 12
LGl
=k 13

By Lemma 3.15 we get

sup M 1/p(x Rs(x) oy (x)—n/t(x )f(x)|
xeB(0,2/)

(21R)"/d||2—1(n/q +oa () = 1/BC) gs() = (-)—n/u(: f” 00

<(2jR)n/d(2jR) (oatn/q)” ”/1 1/B(-) Rn/q()+s()+yv( —ay () —n/t(- f|

*2

< (2/‘R>n/d7(1z+n/q)’

since 2R > 2 we estimate (V3,)¢ by
cRg(n/‘r-ﬁ—n/d—N—(ocz-&-n/q)7) f: pejn/d+n/t—N—(0+n/q)") < (2kR>g(n/dJrn/rfo(otern/q)*)

j=k+3

Hence
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Z I |2km(‘)Rm1(‘)+n/t(~) Vlg,lc|r('>xk‘|t(<)/r(')

2k>2/R
n/d+n)t—N—(ay+n/q)” +(oq+n/t) )~ Zln/t( )1 (-
< Y0 @ER) NS 0 OO
2k=2/R
< 3 (@ER)ON el Hain) ) <
2k>2/R

This finishes the proof.

Proof of Lemma 3.19. We employ the notations Iz and IIx from (6.6).
The estimate of I follows easily from the previous proof. We only need to
estimate the part ITgx with (0p — oy +n/q —n/t)” > 0. Holder’s inequality gives

1125402 EOROL O ey < 25O 27 EO RO L1 1 o Nt

1 1 1
where — :=——+—. By Lemma 3.4 we get ||jll;.,,., & 2%/ 1¥=1/a00)r(x)
1) q()  h() kllAG)/r()

for any x € R;. Therefore,

Hr < sup || |4~ 1/F02k00) RulaCi—n/) )= (140770, |
sup 4()/r()

% Z (2kR)7(a271|+n/q7n/t)7r’
2k>2/R

< sup|| |i’Vﬂ(')2"“2(‘)R”/‘1<‘)’”/’('H“Z(‘)’“‘(‘)+“'<'>f|’(‘)xk||q<,)/,,<‘)-
keZ

The last norm is bounded by 1 if and only if
||/1—1//f(-)|Q_kaz()Rﬂ/q(‘)*n/t(')ﬂz(‘)fal<<)+S(-)f|%k||q(.) <1, kel

which follows immediately from (6.7). The proof is completed.
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