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NILPOTENT ADMISSIBLE INDIGENOUS BUNDLES VIA

CARTIER OPERATORS IN CHARACTERISTIC THREE
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Abstract

In the present paper, we study the p-adic Teichmüller theory in the case where

p ¼ 3. In particular, we discuss nilpotent admissible/ordinary indigenous bundles over a

projective smooth curve in characteristic three. The main result of the present paper

is a characterization of the supersingular divisors of nilpotent admissible/ordinary

indigenous bundles in characteristic three by means of various Cartier operators. By

means of this characterization, we prove that, for every nilpotent ordinary indigenous

bundle over a projective smooth curve in characteristic three, there exists a connected

finite étale covering of the curve on which the indigenous bundle is not ordinary. We

also prove that every projective smooth curve of genus two in characteristic three is

hyperbolically ordinary. These two applications yield negative, partial positive answers

to basic questions in the p-adic Teichmüller theory, respectively.
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Introduction

In the present paper, we study the p-adic Teichmüller theory established by
S. Mochizuki [cf. [6], [7]] in the case where p ¼ 3. In particular, we discuss
nilpotent admissible/ordinary indigenous bundles over a projective smooth curve
in characteristic three. In the Introduction, let p be an odd prime number, gb 2
an integer, S a connected noetherian scheme of characteristic p [i.e., over Fp�,
and f : X ! S a projective smooth curve [i.e., a morphism which is projective,
smooth, geometrically connected, and of relative dimension one] of genus g over
S. Write f F : X F ! S for the projective smooth curve over S obtained by base-
changing X ! S via the absolute Frobenius morphism of S and F : X ! X F for
the relative Frobenius morphism over S. We use the notation ‘‘o’’ (respectively,
‘‘t’’) to denote the relative cotangent (respectively, tangent) sheaf.

First, let us recall the notion of an indigenous bundle and some properties
on an indigenous bundle. We shall say that a pair

ðp : P! X ;‘PÞ

consisting of a P1-bundle p : P! X over X and a connection ‘P on P relative to
X=S is an indigenous bundle over X=S if there exists a [uniquely determined—cf.
[6], Chapter I, Proposition 2.4, p. 1004] section [i.e., the Hodge section] s : X ! P
of p : P! X such that the Kodaira-Spencer homomorphism s�oP=X ! oX=S at
s relative to ‘P [i.e., the homomorphism obtained by di¤erentiating s by means
of ‘P� is an isomorphism [cf. [6], Chapter I, Definition 2.2, pp. 1002–1003]. The
notion of an indigenous bundle was introduced and studied by R. C. Gunning
[cf. [2], §2] and enables one to understand the theory of uniformization of
[algebraic] Riemann surfaces in a somewhat more algebraic setting.

Let ðp : P! X ;‘PÞ be an indigenous bundle over X=S. Then the con-
nection ‘P on P determines a horizontal homomorphism [i.e., the p-curvature]

P : F�tX F =S !AdðPÞ ¼def p�tP=X :

We shall say that the indigenous bundle ðp : P! X ;‘PÞ is nilpotent (respectively,
admissible; dormant) if the square of P is zero (respectively, the zero locus of P
is empty; P ¼ 0) [cf. [6], Chapter II, Definition 2.4, p. 1030 (respectively, [6],
Chapter II, Definition 2.4, p. 1030; [7], Chapter II, Definition 1.1, p. 127)].
Moreover, we shall refer to the composite of the p-curvature P and the surjec-
tion AdðPÞ !! tX=S determined by the Hodge section of ðp : P! X ;‘PÞ as the
square Hasse invariant of ðp : P! X ;‘PÞ [cf. [6], Chapter II, Proposition 2.6, (1),
p. 1032]. Then, by means of this square Hasse invariant, one may define the

Frobenius on R1f�tX=S induced by ðp : P! X ;‘PÞ [cf. the discussion following
[6], Chapter II, Lemma 2.11, pp. 1036–1037]. We shall say that the indigenous
bundle ðp : P! X ;‘PÞ is ordinary if the Frobenius on R1f�tX=S induced by
ðp : P! X ;‘PÞ is an isomorphism [cf. [6], Chapter II, Definition 3.1, p. 1044].
A nilpotent admissible/ordinary indigenous bundle plays a central role in the
‘‘classical ’’ p-adic Teichmüller theory, i.e., the p-adic Teichmüller theory discussed
in [not [7] but] [6].
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First, we verify the following uniqueness of a dormant indigenous bundle in
characteristic three [cf. Theorem 2.1, Corollary 2.4]:

Theorem A. In the notation introduced at the beginning of the Introduction,
suppose that p ¼ 3. Then there exists a unique dormant indigenous bundle over
X=S. In particular, there exists a natural bijection between

� H 0ðS; f�on2
X=SÞ ¼ H 0ðX ;on2

X=SÞ and
� the set of isomorphism classes of indigenous bundles over X=S

such that, for y A H 0ðS; f�on2
X=SÞ, the dormant locus in S of the indigenous bundle

over X=S corresponding to y coincides with the zero locus in S of y.

If an indigenous bundle ðp : P! X ;‘PÞ over X=S is nilpotent admissible,
then there exist an invertible sheaf H on X and a global section w of H such that
Hn2 GHomOX

ðF�tX F =S; tX=SÞ, and, moreover, the square of w coincides with the
square Hasse invariant of ðp : P! X ;‘PÞ [cf. [6], Chapter II, Proposition 2.6,
(3), p. 1032]. We shall refer to w as the Hasse invariant of ðp : P! X ;‘PÞ
[cf. [6], Chapter II, Proposition 2.6, (3), p. 1032] and to the zero locus of the
Hasse invariant as the supersingular divisor of ðp : P! X ;‘PÞ [cf. [6], Chapter II,
Proposition 2.6, (3), p. 1032]. The supersingular divisor is an important invariant
of a nilpotent admissible indigenous bundle; for instance, if S is reduced, then
the isomorphism class of a nilpotent admissible indigenous bundle over X=S is
completely determined by the supersingular divisor [cf. [6], Chapter II, Proposition
2.6, (4), p. 1032]. The main result of the present paper is a characterization of
the supersingular divisors of nilpotent admissible/ordinary indigenous bundles in
characteristic three by means of various Cartier operators.

In order to present the main result of the present paper, let us recall some
notions related to the Cartier operator. Let ðL;YÞ be a square-trivialized
invertible sheaf on X , i.e., a pair consisting of an invertible sheaf L on X
and a trivialization Y of the square of L [cf. Definition A.3]. Then the [usual]
Cartier operator F�oX=S ! oX F =S, together with the trivialization Y, determines
a homomorphism of OS-modules

CðL;YÞ : f�ðLnOX
oX=SÞ ! f F

� ðLF nO
X F

oX F =SÞ

—where we write LF for the invertible sheaf on X F obtained by pulling back L
via the morphism X F ! X induced by the absolute Frobenius morphism of S.
We shall refer to this homomorphism as the Cartier operator associated to ðL;YÞ
[cf. Definition A.4]. On the other hand, the morphism X F ! X induced by the
absolute Frobenius morphism of S determines a Frobenius-semi-linear homo-
morphism

f�ðLnOX
oX=SÞ ! f F

� ðLF nOX F
oX F =SÞ:

For a global section u of LnOX
oX=S, we shall write uF for the global section

of LF nO
X F

oX F =S obtained by forming the image of u via this Frobenius-semi-
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linear homomorphism. We shall say that a global section u of LnOX
oX=S is a

normalized Cartier eigenform associated to ðL;YÞ if u defines a relative e¤ective
Cartier divisor of X=S, and, moreover, CðL;YÞðuÞ ¼ �uF [cf. Definition A.8, (i)].

A part of the main result of the present paper is as follows [cf. Theorem 5.2,
(ii)]:

Theorem B. In the notation introduced at the beginning of the Introduction,
suppose that p ¼ 3. Let D be a relative e¤ective Cartier divisor of X=S. Then
it holds that D is the supersingular divisor of a nilpotent admissible (respectively,
nilpotent ordinary) indigenous bundle over X=S if and only if D is of CE-type
(respectively, of CEO-type) [cf. Definition 5.1, ðiiiÞ�, i.e., there exist an invertible
sheaf L on X , a trivialization Y of the square of L, and a global section w of
LnOX

oX=S such that the following two (respectively, three) conditions (1), (2)
(respectively, ð1Þ, ð2Þ, ð3ÞÞ are satisfied:

(1) The divisor D is étale over S and coincides with the zero locus of
w A GðX ;LnOX

oX=SÞ.
(2) The global section w A GðX ;LnOX

oX=SÞ is a normalized Cartier eigen-
form associated to ðL;YÞ.

(3) The invertible sheaf L is parabolically ordinary [cf. Definition A.7], i.e.,
the Cartier operator associated to ðL;YÞ is injective at every point of S, or,
equivalently [cf. Proposition A.6], one of the following two conditions is satisfied:

� L is of relative order one [cf. Definition A.2], and, moreover, X is
parabolically ordinary [cf. Definition A.5, (i)].

� L is of relative order two [cf. Definition A.2], and, moreover, the
connected finite étale double covering of X which trivializes L [determined by Y] is
parabolically new-ordinary [cf. Definition A.5, (ii)].

Here, let us recall the following two basic questions in the p-adic Teichmüller
theory discussed in [7], Introduction, §2.1 [cf. [7], Introduction, §2.1, (1), (2), p. 72]:

(1) Is every pointed stable curve [of type ðg; rÞ, where 2g� 2þ r > 0� hyper-
bolically ordinary? That is to say, does every pointed stable curve [of type ðg; rÞ,
where 2g� 2þ r > 0� over S admit, étale locally on S, a nilpotent ordinary
indigenous bundle?

(2) Let P be a nilpotent ordinary indigenous bundle over a pointed stable
curve X [of type ðg; rÞ, where 2g� 2þ r > 0� and Y ! X a connected finite [log]
étale covering of X . Then is the pull-back of P to Y still ordinary?

As a corollary of Theorem B, we obtain the following theorem, which yields
a negative answer to the above basic question (2) [cf. Corollary 5.4]:

Theorem C. Let X be a projective smooth curve of genusb 2 over an
algebraically closed field k of characteristic 3. Then, for every nilpotent ordinary
indigenous bundle P over X=k, there exists a connected finite étale covering Y ! X
of X such that the [necessarily nilpotent admissible] indigenous bundle ðY ! X Þ�P
over Y=k is not ordinary.
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In §6, we give, by applying the results obtained in the present paper, a
complete list of nilpotent/nilpotent admissible/nilpotent ordinary indigenous bun-
dles over a projective smooth curve of genus two over an algebraically closed
field of characteristic three [cf. Theorem 6.1]. Moreover, we prove the following
theorem, which yields a partial positive answer to the above basic question (1)
[cf. Corollary 6.6, Remark 6.6.1]:

Theorem D. Every projective smooth curve of genus two over a connected
noetherian scheme of characteristic three is hyperbolically ordinary [cf. [6], Chapter
II, Definition 3.3, p. 1044].

1. Construction of a dormant indigenous bundle

In the present §1, we construct a dormant indigenous bundle over a projective
smooth curve of genusb 2 of characteristic 3 [cf. Proposition 1:1 below]. In the
present §1, let gb 2 be an integer, S a connected noetherian scheme of charac-
teristic 3 [i.e., over F3�, and f : X ! S a projective smooth curve [i.e., a morphism
which is projective, smooth, geometrically connected, and of relative dimension
one] of genus g over S. Write f F : X F ! S for the projective smooth curve
over S obtained by base-changing X ! S via the absolute Frobenius morphism
of S, F : X ! X F for the relative Frobenius morphism over S, IJOX�SX for
the ideal of OX�SX which defines the diagonal morphism with respect to X=S, and
XðnÞJX �S X for the closed subscheme of X �S X defined by the ideal Inþ1 J
OX�SX [where n is a nonnegative integer]. In particular, it follows that I=I2 ¼
oX=S (respectively, HomOX

ðI=I2;OX Þ ¼ tX=S), where we use the notation ‘‘o’’
(respectively, ‘‘t’’) to denote the relative cotangent (respectively, tangent) sheaf.

We shall write

B� ¼
def

CokerðOX F ! F�OX Þ
for the OX F -module obtained by forming the cokernel of the natural homo-
morphism OX F ! F�OX and

E� ¼def F�B�:

Since the homomorphism OX F ! F�OX admits a natural splitting after pulling
back via F, which thus determines a natural isomorphism of OX -modules

F�F�OX !@ OX lE�;

and F is finite flat of degree 3, it follows that B�, hence also E�, is locally free of
rank 2. We shall write

p� : P� ¼
def

PðE�Þ ! X

for the P1-bundle over X associated to E�.
Next, let us observe that one verifies immediately that the natural morphism

X �X F X ! X �S X
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determines an isomorphism

X �X F X !@ Xð2Þ:

In particular, the closed immersion Xð1Þ ,! X �S X determines a closed immer-
sion Xð1Þ ,! X �X F X . Thus, it follows that the OX -module E�, hence also the
P1-bundle P�, on X admits a natural connection relative to X=S. We shall write

‘E� ; ‘P�

for the respective natural connections on E�, P�. [So one verifies immediately
that the connection ‘E� coincides with the connection on E� ¼ F�B� determined
by the exterior di¤erentiation operator OX ! oX=S.] Moreover, the above iso-
morphism X �X F X !@ Xð2Þ, together with the cartesian diagram

X �X F X ���!pr2
X

pr1

???y
???yF

X ���!
F

X F ;

determines isomorphisms of OX -modules

F�F�OX !@ pr1�OX�X F X  
@

pr1�OXð2Þ ;

which are compatible with the respective natural surjections onto OX [arising from
the diagonal morphism with respect to X=X F � from each of these three modules.
In particular, by forming the kernels of the respective natural surjections onto OX ,
we obtain isomorphisms of OX -modules

E� !@ Kerðpr1�OX�X F X !! OX Þ  @ pr1�ðI=I3Þ:
We shall write

s� : X ! P�

for the section of p� : P� ! X determined by the composite E� !! oX=S of the
above isomorphism E� !@ pr1�ðI=I3Þ and the natural surjection pr1�ðI=I3Þ !!
I=I2 ¼ oX=S. Then one verifies easily that the Kodaira-Spencer homomorphism
s��oP�=X ! oX=S at s� relative to ‘P� [i.e., the homomorphism obtained by di¤er-
entiating s� by means of ‘P� � is an isomorphism. Thus, it follows immediately
from our construction that the following proposition holds:

Proposition 1.1. The pair ðp� : P� ! X ;‘P� Þ is an indigenous bundle [cf.
Introduction] over X=S whose Hodge section [cf. [6], Chapter I, Proposition 2.4,
p. 1004] is given by s�. Moreover, the indigenous bundle ðp� : P� ! X ;‘P� Þ is
dormant [cf. Introduction].

Proof. The fact that the pair ðp� : P� ! X ;‘P� Þ is an indigenous bundle
over X=S has already been verified. The fact that the indigenous bundle
ðp� : P� ! X ;‘P� Þ is dormant follows immediately from the definition of the

695nilpotent admissible indigenous bundles in characteristic three



connection ‘P� [i.e., the construction of ‘P� via the relative Frobenius morphism
F�. This completes the proof of Proposition 1:1. r

In the remainder of the present §1, let us consider the invertible sheaves

detðE�Þ; detðB�Þ; detðF�oX=SÞ:
Write M ¼def HomOX F

ðdetðB�Þ;oX F =SÞ. First, let us observe that since the OX -

module pr1�ðI=I3ÞGE� ¼ F�B� fits into an exact sequence of OX -modules

0! on2
X=S ! pr1�ðI=I3Þ ! oX=S ! 0;

it follows that

detðE�ÞGon3
X=S;

hence also

F�MGOX :

Next, let us recall from the discussion preceding [9], Théorème 4.1.1, that the
map

F�OX �F�OX ! oX F =S

ð f ; gÞ 7! cð f �F�dðgÞÞ

—where we write d : OX ! oX=S for the exterior di¤erentiation operator and
c : F�oX=S ! oX F =S for the Cartier operator—determines an isomorphism of
OX F -modules

B� !@ HomO
X F
ðB�;oX F =SÞ;

which thus implies that

Mn2 GOX F :

Thus, we obtain:

Lemma 1.2. It holds that

detðE�ÞGon3
X=S; detðB�ÞGoX F =S; detðF�oX=SÞGon2

X F =S
:

Proof. The first ‘‘G’’ has already been verified. Since the homomorphism
between the relative Jacobian varieties of X F=S, X=S induced by F is finite
flat of degree 3g, it follows from the fact that F�MGOX , M

n2 GOX F verified
above that M lies in ð f F Þ� PicðSÞ. Thus, again by the fact that F�MGOX , the
second ‘‘G’’ follows. The third ‘‘G’’ follows from the second ‘‘G’’, together with
the well-known exact sequence of OX F -modules

0 �! OX F �! F�OX �!
F�d

F�oX=S �!
c

oX F =S �! 0

[cf., e.g., [4], Theorem 7.2]. r
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2. The dormant trivialization of the Schwarz torsor

In the present §2, we maintain the notation of the preceding §1. In
particular, we have a projective smooth curve f : X ! S and a dormant indig-
enous bundle ðp� : P� ! X ;‘P� Þ over X=S [cf. Proposition 1:1]. We shall write

Mg

for the moduli stack of projective smooth curves of genus g of characteristic 3
and

Ng½y�

for the moduli stack of projective smooth curves of genus g of characteristic 3
equipped with dormant indigenous bundles. The starting point of the present §2
is the following theorem:

Theorem 2.1. Every dormant indigenous bundle over X=S is isomorphic to
the dormant indigenous bundle ðp� : P� ! X ;‘P� Þ of Proposition 1.1.

Proof. To verify Theorem 2.1, let us first recall some facts on the p-adic
Teichmüller theory [cf. [6], [7]]. The natural (1-)morphism

Ng½y� !Mg

is finite and faithfully flat; moreover, there exists a dense open substack of Mg

on which this (1-)morphism is étale [cf. the final portion of [7], Chapter II,
Theorem 2.8, p. 153]. Thus, to complete the verification of Theorem 2.1, it
su‰ces to verify Theorem 2.1 for a ‘‘su‰ciently general ’’ [i.e., in Mg� projective
smooth curve of genus g over an algebraically closed field of characteristic three.

Next, let us observe that it follows from [11], Corollary 5.4, together with [5],
Theorem 2.1, that, for every odd prime number p and an integer gb 2, the
number of isomorphism classes of dormant indigenous bundles over a ‘‘su‰ciently
general ’’ projective smooth curve of genus g over an algebraically closed field of
characteristic p is equal to

pg�1

22g�1
�
Xp�1
i¼1

1

sin2g�2 p � i
p

� � ¼ ð�pÞg�1
2

�
X

z p¼1; z01

zg�1

ðz� 1Þ2g�2
:

On the other hand, one verifies easily that the above quantity in the case where
p ¼ 3 is always equal to 1. This completes the proof of Theorem 2.1. r

Remark 2.1.1. Let us observe that Theorem 2.1 also follows from the theory
of molecules given in [7] [or the theory of Ehrhart quasi-polynomials discussed in
[5]—cf. [5], Theorem 3.9] as follows: By considering dormant indigenous bundles
over not only smooth curves but also stable curves, we have a natural exten-
sion of the (1-)morphism Ng½y� !Mg whose codomain is the moduli stack of
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stable curves of genus g of characteristic 3 [i.e., ‘‘Mg’’]. Then it follows from
[7], Chapter II, Theorem 2.8, p. 153, together with a similar argument to the
argument applied in the first paragraph of the proof of Theorem 2.1, that, to
complete the verification of Theorem 2.1, it su‰ces to verify that

a structure of dormant molecule [cf. [7], Chapter V, §0, p. 229] on a fixed
[nonpointed] totally degenerate stable curve of characteristic 3 is unique.

On the other hand, this follows immediately from [7], Introduction, Theorem 1.3,
pp. 41–42, together with the fact that aððF3=fG1gÞnf0gÞ ¼ 1.

Remark 2.1.2. One may also replace the second paragraph of the proof of
Theorem 2.1 by the local computation of the p-curvature given in the discussion
preceding Proposition 3.1 below [cf. Remark 3.1.1 below].

It follows from Theorem 2.1 [together with the discussion given in the first
paragraph of proof of Theorem 2.1] that the natural (1-)morphism

Ng½y� !Mg

is an isomorphism, hence also étale. Thus, by the final portion of [11], Theorem
3.3, we obtain:

Corollary 2.2. Every dormant indigenous bundle over X=S is dormant
ordinary [cf. [11], Definition 3.2].

We shall write

Cg !Mg

for the universal curve over Mg and

Sg !Mg

for the Schwarz torsor over Mg [cf. [7], Introduction, §0.4, pp. 7–9], i.e., the
torsor over the locally free coherent OMg

-module of rank 3g� 3

ðCg !MgÞ�o
n2
Cg=Mg

obtained by forming the moduli stack of projective smooth curves of genus g
of characteristic 3 equipped with indigenous bundles [cf. also [6], Chapter I,
Corollary 2.9, p. 1007]. By considering the composite of the above natural
isomorphism Mg  @ Ng½y� and the natural closed immersion Ng½y� ,!Sg of
stacks, we obtain a trivialization

Mg !Sg

of the Schwarz torsor.
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Definition 2.3. We shall refer to this trivialization Mg !Sg of the Schwarz
torsor as the dormant trivialization.

By the dormant trivialization of Definition 2:3, we obtain an isomorphism of
Sg with the geometric vector bundle over Mg associated to ðCg !MgÞ�o

n2
Cg=Mg

.
Thus:

Corollary 2.4. There exists a natural bijection between the following two
sets:

� GðS; f�on2
X=SÞ ¼ GðX ;on2

X=SÞ.
� The set of isomorphism classes of indigenous bundles over X=S.

For y A GðS; f�on2
X=SÞ ¼ GðX ;on2

X=SÞ, the indigenous bundle over X=S corresponding

to y is given as follows: Let us recall the pair ðE�;‘E� Þ and the exact sequence of
OX -modules

0! on2
X=S ! E� ! oX=S ! 0

discussed in §1. Write fy : E� ! E�nOX
oX=S for the homomorphism of OX -

modules obtained by forming the composite

E� !! oX=S !
y
on3

X=S ¼ on2
X=S nOX

oX=S ,! E�nOX
oX=S:

We shall write

‘y
P�

for the connection on P� determined by the connection

‘y
E�
¼def ‘E� þ fy

on E�. Then the indigenous bundle over X=S corresponding to y is given by

Py ¼
def ðp� : P� ! X ;‘y

P�
Þ:

Moreover, for y A GðS; f�on2
X=SÞ ¼ GðX ;on2

X=SÞ, the dormant locus in S of Py

[i.e., the maximal closed subscheme F JS of S such that the restriction of Py to
X �S F is dormant] coincides with the zero locus in S of y [i.e., the maximal closed
subscheme F JS of S such that the restriction of y to X �S F is identically zero].

Remark 2.4.1. We note that since detðE�ÞGon3
X=S ZOX [cf. Lemma 1:2],

the pair ðE�;‘E� Þ, as well as the pair ðE�;‘y
E�
Þ [cf. Corollary 2.4], is not an

indigenous vector bundle [cf. [6], Chapter I, Definition 2.2, pp. 1002–1003; also the
discussion preceding [6], Chapter I, Definition 2.2, p. 1002]. One verifies easily
from the fact that detðB�ÞGoX F =S [cf. Lemma 1:2] that if L is an invertible

sheaf on X F such that Ln2 G tX F =S [note that since 2 is invertible on S, such an
invertible sheaf always exists after étale localizing S�, then an indigenous vector
bundle whose projectivization is isomorphic to ðp� : P� ! X ;‘P� Þ is given by
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tensoring ðE�;‘E� Þ with the invertible sheaf F�L equipped with the connection
determined by the exterior di¤erentiation operator OX ! oX=S. On the other
hand, one also verifies easily that the operation of taking tensor product with
a dormant invertible sheaf [i.e., an invertible sheaf equipped with a connection
whose p-curvature is identically zero] does not a¤ect the local computation of the
p-curvature as given in the discussion preceding Proposition 3.1 below.

3. Local criteria

In the present §3, we prove local criteria for some properties on indigenous
bundles [cf. Proposition 3.1; Proposition 3.8, (ii), below]. We maintain the no-
tation introduced at the beginning of §1.

Let

y A GðX ;on2
X=SÞ

be a global section of on2
X=S. Thus, it follows from Corollary 2.4 that we obtain

a connection

‘y
P�

on the P1-bundle P� such that the pair

Py ¼
def ðp� : P� ! X ;‘y

P�
Þ

forms an indigenous bundle over X=S.
Let x A X be a point of X and tx ¼ t A OX a local parameter of X=S at x.

Write fx ¼ f A OX for the local function on X at x which fits into the equality

y ¼ f � dtn dt:

Then one verifies immediately that the local sections

e1 ¼def 1n t� tn 1; e2 ¼def e21 A pr1� OX�
X F X  

@
F�F�OX

[cf. the discussion preceding Proposition 1:1] are contained in the submodules

Kerðpr1� OX�
X F X !! OX Þ  @ E�;

and that, in the natural exact sequence of OX -modules

0! on2
X=S ! E� ! oX=S ! 0;

the local section e2 determines a local trivialization of the invertible sheaf on2
X=S,

and the local section e1 determines a local splitting of the surjection E� !! oX=S;
in particular, fe1; e2g forms a local basis of E�.

Next, let us observe that it follows immediately from the definition of ‘E�

that

‘E� ðe1; e2Þ ¼ ðe1; e2Þ �
0 1

0 0

� �
n dt:
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Thus, one verifies immediately from the definition of ‘y
E�

[cf. Corollary 2.4] that

‘y
E�
ðe1; e2Þ ¼ ðe1; e2Þ �

0 1

f 0

� �
n dt:

In particular, it follows that the p-curvature Py of the connection ‘y
E�

[cf., e.g.,
the discussion preceding [4], Theorem 5.1] is given by

Py : F�tX F =S !AdOX
ðE�Þ

F�1dtF 7! ðe1; e2Þ 7! ðe1; e2Þ �
�f 0 f

f2 þ f 00 f 0

� �� �

—where we write tF A OX F for the local parameter of X F=S determined by the
local parameter t A OX , dtF (respectively, dt) for the local trivialization of tX F =S

(respectively, tX=S) which maps dtF (respectively, dt) to 1, qt for the local
derivation corresponding to dt, ‘‘ð�Þ0’’ for ‘‘qtð�Þ’’ [i.e., ‘‘ð�Þ0’’ is the ‘‘derivative
of ð�Þ with respect to t’’], and

AdOX
ðE�ÞJEndOX

ðE�Þ
for the submodule of EndOX

ðE�Þ consisting of trace zero endomorphisms of locally
free coherent OX -module E�. This local computation [cf. Remark 2:4:1] leads us
to the following local criteria for some properties on indigenous bundles:

Proposition 3.1. The following hold:
(i) The indigenous bundle Py is nilpotent [cf. Introduction] if and only if, for

every point x A X , the equality

ðf 0xÞ
2 þ fx � f 00x þ f3

x ¼ 0

holds.
(ii) Suppose that S is the spectrum of an algebraically closed field [of charac-

teristic 3]. Then the indigenous bundle Py is admissible [cf. Introduction] if and
only if, for every closed point x A X , it holds that

ordxðfxÞa 2:

Proof. Assertion (i) follows from the definition, together with the above
local computation. To verify assertion (ii), let us observe that

0 1

0 0

� �
;

1 0

0 �1

� �
;

0 0

1 0

� �� �

forms a local basis of the locally free coherent OX -module AdOX
ðE�Þ. Thus,

assertion (ii) follows immediately from the definition, together with the above
local computation. r

Remark 3.1.1. If Py ¼ 0, then it follows from the above local computation
that f ¼ 0, hence also y ¼ 0. By means of this observation, one can give an
alternative proof of Theorem 2.1 [cf. Remark 2.1.2].
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Next, let us observe that the natural exact sequence of OX -modules

0! on2
X=S ! E� ! oX=S ! 0

determines a homomorphism of OX -modules

AdOX
ðE�Þ ,! EndOX

ðE�Þ !HomOX
ðon2

X=S;oX=SÞG tX F =S;

moreover, the square Hasse invariant [cf. Introduction] of the indigenous bundle

Py is defined as the composite of the p-curvature Py and this homomorphism.
Thus, by the above local computation, we obtain:

Proposition 3.2. The square Hasse invariant of the indigenous bundle Py is,
up to multiplication by a global section of O�S , given by

y A GðX ;on2
X=SÞGGðX ;HomOX

ðF�tX F =S; tX=SÞÞ:

In particular, if, moreover, the indigenous bundle Py is admissible, then the double
supersingular divisor [cf. Introduction] of Py coincides with the zero locus of y.

In particular, we obtain the following two corollaries:

Corollary 3.3. Suppose that the indigenous bundle Py is nilpotent and
admissible. Then the supersingular divisor [cf. Introduction] of Py is finite étale
over S.

Proof. Since [it follows from the definition that] the supersingular divisor of
Py is finite flat over S [cf. also [6], Chapter II, Proposition 2.6, (2), p. 1032], to
complete the verification of Corollary 3.3, it su‰ces to verify the unramifiedness.
Thus, we may assume without loss of generality that S is the spectrum of an
algebraically closed field [of characteristic 3]. Then the unramifiedness follows
from Proposition 3.1, (ii); Proposition 3.2, together with the definition of the
supersingular divisor. r

Corollary 3.4. Suppose that S is reduced. Then the isomorphism class of
nilpotent indigenous bundle over X=S is completely determined by the zero locus of
the square Hasse invariant.

Proof. First, let us observe that since S is reduced, it follows from [7],
Chapter I, Proposition 1.5, p. 91, that, to verify Corollary 3.4, we may assume
without loss of generality that S is the spectrum of an algebraically closed field
k [of characteristic 3�. Next, let us observe that one verifies easily that if f is
nonzero and satisfies the equality ‘‘ðf 0Þ2 þ f � f 00 þ f3 ¼ 0’’ of Proposition 3.1, (i),

then, for every c A knf0; 1g, c � f does not satisfy the equality ‘‘ðf 0Þ2 þ f � f 00 þ f3

¼ 0’’ of Proposition 3.1, (i). Thus, Corollary 3.4 follows from Proposition 3.1,
(i); Proposition 3.2, together with Corollary 2.4. r
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Remark 3.4.1. Observe that Corollary 3.4 is a generalization of [6], Chapter
II, Proposition 2.6, (4), p. 1032, in the case where p ¼ 3.

Next, let us observe that it follows from the equality of Proposition 3.1, (i),
that the following lemma holds:

Lemma 3.5. Suppose that S is the spectrum of an algebraically closed field
[of characteristic 3], and that the indigenous bundle Py is nilpotent. Then, for
every closed point x A X , it holds that ordxðfxÞ B 3Zþ 1.

Proof. Assume that n ¼def ordxðfxÞ A 3Zþ 1 for some closed point x A X .
Write

fx ¼
Xy
i¼0

ait
i
x

by regarding fx as an element of the completion O5
X ;x. Then, by considering the

coe‰cient of the ‘‘t2n�2x ’’ of the left-hand side of the equality ‘‘ðf 0Þ2 þ f � f 00 þ f3

¼ 0’’ of Proposition 3.1, (i), we obtain that an ¼ 0. Thus, we obtain a contra-
diction. r

By Lemma 3.5, we obtain:

Corollary 3.6. Suppose that g ¼ 2. If a nilpotent indigenous bundle over
X=S is active [cf. [7], Chapter II, Definition 1.1, p. 127], then it is admissible.

Proof. Let us first observe that it follows from the definition of admissibility
that, to verify Corollary 3.6, we may assume without loss of generality that S is
the spectrum of an algebraically closed field k [of characteristic 3]. On the other
hand, in this case, since degðon2

X=SÞ ¼ 4, it follows immediately from Proposition
3.1, (ii), together with Lemma 3.5, that every nilpotent and active indigenous
bundle over X=S is admissible. r

We shall write

Ng

for the moduli stack of smooth nilcurves [cf. the discussion preceding [7], Intro-
duction, Theorem 0.1, p. 24] of genus g of characteristic 3, i.e., the moduli stack
of projective smooth curves of genus g of characteristic 3 equipped with nilpotent
indigenous bundles. Note that it follows from [6], Chapter II, Theorem 2.3,
p. 1029 [cf. also the discussion following [6], Chapter II, Definition 2.4, p. 1030],
that the natural (1-)morphism

Ng !Mg

is finite flat of degree 33g�3.
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Corollary 3.7. Suppose that g ¼ 2. Then the open substack of N2

N2nN2½y�
is smooth over F3.

Proof. This follows from Corollary 3.6, together with [6], Chapter II,
Corollary 2.16, p. 1043. r

Proposition 3.8. Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3], and that the indigenous bundle Py is nilpotent. Then
the following hold:

(i) We shall write

Ty

for the relative tangent space of Ng=Mg at the k-valued point of Ng corresponding
to Py. Then Ty is naturally isomorphic to the subspace of GðX ;on2

X=SÞ consisting
of global sections h of on2

X=S such that if, for some closed point x A X , we write

h ¼ cx � dtx n dtx;

then it holds that

ðfx � cxÞ
00 ¼ 0:

(ii) It holds that the indigenous bundle Py is ordinary [cf. Introduction] if and
only if the following condition is satisfied: For every nonzero global section h of

on2
X=S, if, for some closed point x A X , we write

h ¼ cx � dtx n dtx;

then it holds that

ðfx � cxÞ
000 0:

Proof. Assertion (ii) follows immediately from assertion (i). Thus, to com-
plete the verification of Proposition 3.8, it su‰ces to verify assertion (i). Write
A ¼def k½e�=ðe2Þ, where e is an indeterminate. Then it follows from Proposition
3.1, (i), that Ty is naturally isomorphic to the subspace of GðX ;on2

X=SÞ consisting
of global sections h of on2

X=S such that if, for some closed point x A X , we write

h ¼ cx � dtx n dtx;

then the equality

ððfþ ecÞ0Þ2 þ ðfþ ecÞ � ðfþ ecÞ00 þ ðfþ ecÞ3 ¼ 0

—where write c ¼def cx—in Ank GðX ;on2
X=SÞ ¼ GðX ;on2

X=SÞl e � GðX ;on2
X=SÞ holds.

On the other hand, again by Proposition 3.1, (i), one verifies easily that it holds
that this equality holds if and only if the equality

f 00 � cþ f � c 00 � f 0 � c 0ð¼ ðf � cÞ00Þ ¼ 0

holds. This completes the proof of assertion (i). r
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Remark 3.8.1. Proposition 3.8, (ii), also follows immediately from Propo-
sition 3.2; Lemma A.9, (i) [in the case where we take the pair ‘‘ðL;YÞ’’ of
Lemma A.9, (i), to be the pair consisting of OX and the natural identification
OX nOX

OX ¼ OX—cf. Remark A.4.1], together with [6], Chapter II, Proposition
2.12, p. 1037.

Thus, we obtain:

Corollary 3.9. Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3], and that the indigenous bundle Py is nilpotent. Then
the following conditions are equivalent:

(1) The indigenous bundle Py is dormant.
(2) The vector space Ty over k of Proposition 3.8, (i), is of dimension 3gC 3.

Proof. If Py is dormant, then y ¼ 0 [cf. Corollary 2.4]. Thus, the impli-
cation (1)) (2) follows from Proposition 3.8, (i). On the other hand, if
condition (2) is satisfied, then it follows from Proposition 3.8, (i) [in the case

where we take the ‘‘h’’ of Proposition 3.8, (i), to be y�, that ðf2Þ00 ¼ 0. Thus,
since 0 ¼ ðf2Þ00 ¼ �ðf 0Þ2 � f � f 00 ¼ f3 [cf. Proposition 3.1, (i)], we conclude that
f ¼ 0, hence also y ¼ 0, i.e., that condition (1) is satisfied [cf. Corollary 2.4].
This completes the proof of Corollary 3:9. r

4. Indigenous bundles arising from squares

In the present §4, we discuss some properties on an indigenous bundle
which arises from the square of a ‘‘twisted ’’ di¤erential form, i.e., the square of
a global section of a ‘‘square root’’ of the square of the relative cotangent sheaf
[cf. Proposition 4.1, Proposition 4.2, Proposition 4.4 below]. In the present §4,
we maintain the notation introduced at the beginning of §1.

Let

L ¼ ðL;Y : Ln2 !@ OX Þ

be a square-trivialized invertible sheaf on X [cf. Definition A.3] and

w A GðX ;LnOX
oX=SÞ

a global section of LnOX
oX=S. Let us recall [cf. the discussion following

Definition A.3] that we have isomorphisms of invertible sheaves

L!@ Ln3 !@ F�LF

Yðln lÞ � l 7! ln ln l 7! F�1l F

—where we write LF for the invertible sheaf on X F obtained by pulling back
L via the morphism X F ! X induced by the absolute Frobenius morphism of
S, l is a local section of L, and l F is the local section of LF determined by l.
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Let x A X be a point of X , tx ¼ t A OX a local parameter of X=S at x, and
lx ¼ l A L a local trivialization of L at x. Then the global trivialization Y
and the local trivialization lx ¼ l determine a local unit

dx ¼ d ¼def Yðln lÞ A O�X

at x. Moreover, the global section w determines a local function fx ¼ f A OX on
X at x which fits into the equality

w ¼ f � ln dt

at x.
Next, let us observe that the trivialization Y determines an isomorphism

Y : GðX ; ðLnOX
oX=SÞn2Þ !@ GðX ;on2

X=SÞ:

Thus, by considering the image via this isomorphism of the square

y ¼def wn w A GðX ; ðLnOX
oX=SÞn2Þ

of w, we obtain a global section

YðyÞ A GðX ;on2
X=SÞ

of on2
X=S. On the other hand, it follows from Corollary 2.4 that this global

section YðyÞ gives rise to an indigenous bundle over X=S

PYðyÞ ¼
def ðp� : P� ! X ;‘

YðyÞ
P�
Þ:

Proposition 4.1. Suppose that w defines a relative e¤ective Cartier divisor of
X=S. Then the following conditions are equivalent:

(1) The indigenous bundle PYðyÞ is nilpotent and active.
(2) The global section w A GðX ;LnOX

oX=SÞ is a normalized Cartier eigen-
form associated to L ¼ ðL;YÞ [cf. Definition A.8, (i)].

Proof. Let us first observe that it follows from the definitions of YðyÞ that
YðyÞ fits into the equality

YðyÞ ¼ f2 � d � dtn dt

at x. Thus, it follows from Proposition 3.1, (i), that it holds that PYðyÞ is
nilpotent if and only if, for every point x A X ,

ððf2 � dÞ0Þ2 þ ðf2 � dÞ � ðf2 � dÞ00 þ ðf2 � dÞ3

¼ f4 � ðd 0Þ2 � f3 � f 0 � d � d 0 � f3 � f 00 � d2 þ f4 � d � d 00 þ f6 � d3

¼ f3 � d3 � ð�ðf � d�1Þ00 þ f3Þ

is equal to zero. In particular, Proposition 4.1 follows from Lemma A.9, (ii),
together with Corollary 2.4. r
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Proposition 4.2. Suppose that the indigenous bundle PYðyÞ is nilpotent and
active. Then the following conditions are equivalent:

(1) The indigenous bundle PYðyÞ is nilpotent and admissible.
(2) The zero locus of the global section w A GðX ;LnOX

oX=SÞ is finite étale
over S.

Proof. Since [one verifies immediately that] the locus [in S� on which
condition (1) (respectively, (2)) is satisfied is open, to complete the verification
of Proposition 4.2, we may assume without loss of generality that S is the
spectrum of an algebraically closed field [of characteristic 3�. Then the equiv-
alence (1), (2) follows from Proposition 3.1, (ii), together with the definition of
YðyÞ. r

Remark 4.2.1.
(i) Note that condition (2) of Proposition 4.1 does not imply condition (2) of

Proposition 4.2. Such a counter-example is as follows: Let k be an algebrai-
cally closed field of characteristic 3. Let us consider the following polynomial:

f ðtÞ ¼ t12 þ t10 þ 1 A k½t�:

Then one verifies easily that f ðtÞ does not have any multiple root, which thus
implies that the equation

s2 ¼ f ðtÞ

determines a hyperelliptic projective smooth curve C of genus five over k.
Write o A GðC;oC=kÞ for the global section of oC=k whose restriction to

the open subscheme of X on which f is invertible is of the form

a � t4
s

dt

—where a A k satisfies that a2 ¼ 2. Then one verifies easily from Lemma A.9,
(ii), that o is a normalized Cartier eigenform associated to OC [equipped with the
natural identification OC nOC

OC ¼ OC �. On the other hand, it is immediate that
if we write c A C for the closed point corresponding to ðt; sÞ ¼ ð0; 1Þ, then
ordcðoÞ ¼ 4.

(ii) It follows from Corollary 3.6 that a nilpotent active indigenous bundle
over a projective smooth curve of genus two in characteristic three is admissible.
On the other hand, it follows from the discussion of (i), together with Proposition
4.1 and Proposition 4.2, that there exists a nilpotent active indigenous bundle over
a projective smooth curve in characteristic three which is not admissible.

Proposition 4.3. Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3], and that the indigenous bundle PYðyÞ is nilpotent and
admissible. Write

TYðyÞ
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for the relative tangent space of Ng=Mg at the k-valued point of Ng corresponding
to PYðyÞ. Thus, it follows from Proposition 3.8, (i), that TYðyÞ may be regarded as
a subspace of GðX ;on2

X=SÞ:

TYðyÞJGðX ;on2
X=SÞ:

Then the map

GðX ;LnOX
oX=SÞnk GðX ;LnOX

oX=SÞ ! GðX ;on2
X=SÞ

an b 7! Yðan bÞ

induces an isomorphism of vector spaces over k

KerðCLÞ !@ TYðyÞ

s 7! Yðsn wÞ

—where we write CL for the Cartier operator associated to L ¼ ðL;YÞ
[cf. Definition A.4].

Proof. Let us first observe that [one verifies easily that] the homomorphism
of vector spaces over k

X : GðX ;LnOX
oX=SÞ ! GðX ;on2

X=SÞ

a 7! Yðan wÞ

is injective. Thus, to verify Proposition 4.3, it su‰ces to verify the following two
assertions:

(a) XðKerðCLÞÞJTYðyÞ.
(b) The resulting [cf. (a)] homomorphism X : KerðCLÞ ! TYðyÞ is surjective.

Next, let us recall from the proof of Proposition 4.1 that YðyÞ fits into the
equality

YðyÞ ¼ f2 � d � dtn dt

at x. Thus, it follows from Proposition 3.8, (i), that the subspace TYðyÞJ
GðX ;on2

X=SÞ consists of global sections h of on2
X=S such that if, for some closed

point x A X , we write

h ¼ c � dtn dt;

then it holds that

ðf2 � d � cÞ00 ¼ 0:

Now we verify the assertion (a). Let s A GðX ;LnOX
oX=SÞ be such that

CLðsÞ ¼ 0. Write

s ¼ m � ln dt
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at x. Since s A KerðCLÞ, it holds that ðm � d�1Þ00 ¼ 0 [cf. Lemma A.9, (i)].
Thus, since

Yðsn wÞ ¼ f � m � d � dtn dt

at x, and

ðf3 � m � d2Þ00 ¼ ðf3 � d3Þ00 � ðm � d�1Þ � ðf3 � d3Þ0 � ðm � d�1Þ0 þ ðf3 � d3Þ � ðm � d�1Þ00 ¼ 0;

we conclude that XðsÞ A TYðyÞ. This completes the proof of the assertion (a).
Next, we verify the assertion (b). Let h be a global section of on2

X=S which
belongs to TYðyÞ. Write

h ¼ c � dtn dt

at x. Then since

0 ¼ ðf2 � d � cÞ00

¼ ð�ðf 0Þ2 � f � f 00Þ � d � cþ f2 � d 00 � cþ f2 � d � c 00

þ f � f 0 � d 0 � c� f2 � d 0 � c 0 þ f � f 0 � d � c 0;

and f is of ordera 1 [at x� by Proposition 4.2, it holds that ordxðfÞb 1 implies
ordxðcÞb 1. Thus, it follows that VðwÞ ¼ VðwÞred JVðhÞred JVðhÞ, where we

write ‘‘Vð�Þ’’ for the zero locus of ‘‘ð�Þ’’, i.e., that h A GðX ;on2
X=Sð�VðwÞÞÞJ

GðX ;on2
X=SÞ. Now let us observe that since ðLnOX

oX=SÞn2 Gon2
X=S, which thus

implies that LnOX
oX=S Gon2

X=Sð�VðwÞÞ, we have an isomorphism

GðX ;LnOX
oX=SÞ !

@
GðX ;on2

X=Sð�VðwÞÞÞ

s 7! Yðsn wÞ:

Thus, we conclude that there exists a global section s of LnOX
oX=S such that

h ¼ Yðsn wÞ. Write

s ¼ m � ln dt

at x, which thus implies that

c ¼ m � f � d
at x. Then since

0 ¼ ðf2 � d � cÞ00 ¼ ðm � f3 � d2Þ00

¼ ðf3 � d3Þ00 � ðm � d�1Þ � ðf3 � d3Þ0 � ðm � d�1Þ0 þ ðf3 � d3Þ � ðm � d�1Þ00

¼ f3 � d3 � ðm � d�1Þ00;

it holds that ðm � d�1Þ00 ¼ 0, i.e., that s A KerðCLÞ [cf. Lemma A.9, (i)]. This
completes the proof of the assertion (b), hence also of Proposition 4.3. r
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Proposition 4.4. Suppose that the indigenous bundle PYðyÞ is nilpotent and
admissible. Then the following conditions are equivalent:

(1) The indigenous bundle PYðyÞ is nilpotent and ordinary.
(2) The invertible sheaf L is parabolically ordinary [cf. Definition A.7].

Proof. Since [one verifies immediately that] the locus [in S] on which con-
dition (1) (respectively, (2)) is satisfied is open, to complete the verification of
Proposition 4.4, we may assume without loss of generality that S is the spectrum
of an algebraically closed field [of characteristic 3]. Then Proposition 4.4 follows
from Proposition 4.3. r

5. Nilpotent admissible indigenous bundles via Cartier operators

In the present §5, we prove the main result of the present paper [cf. Theorem
5.2 below], as well as some corollaries to the main result. In the present §5, we
maintain the notation introduced at the beginning of §1.

Definition 5.1.
(i) We shall say that a pair

ðL; w A GðX ;LnOX
oX=SÞÞ

consisting of an invertible sheaf L on X and a global section w of LnOX
oX=S

is of CE-type [where ‘‘CE’’ stands for ‘‘Cartier Eigenform’’] if
� Ln2 GOX ,
� w A GðX ;LnOX

oX=SÞ is a Cartier eigenform associated to L [cf.
Definition A.8, (ii)], and

� the zero locus of w is étale over S.
(ii) We shall say that a pair ðL; wÞ of CE-type is of CEO-type [where ‘‘CEO’’

stands for ‘‘Cartier Eigenform and Ordinary’’] if L is parabolically ordinary.
(iii) We shall say that a relative e¤ective Cartier divisor D of X=S is of

CE-type (respectively, of CEO-type) if there exists a pair ðL; wÞ of CE-type
(respectively, of CEO-type) such that D coincides with the zero locus of w.

The main result of the present paper is as follows:

Theorem 5.2. Let gb 2 be an integer, S a connected noetherian scheme of
characteristic 3 [i.e., over F3], and f : X ! S a projective smooth curve of genus g.
Write oX=S for the relative cotangent bundle of X=S. Then the following hold:

(i) Let P be a nilpotent admissible indigenous bundle over X=S. Write LP

for the Hasse defect of P [cf. Definition B.2] and wP A GðX ;LP nOX
oX=SÞ for the

Hasse invariant of P [cf. also the final portion of Proposition B.4]. Then the pair

ðLP; wPÞ
is of CE-type [cf. Definition 5.1, (i)]. Moreover, it holds that P is nilpotent
ordinary if and only if the pair ðLP; wPÞ is of CEO-type [cf. Definition 5.1, (ii)].
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(ii) Let D be a relative e¤ective Cartier divisor of X=S. Then it holds that
D is the supersingular divisor of a nilpotent admissible (respectively, nilpotent
ordinary) indigenous bundle over X=S if and only if D is of CE-type (respectively,
of CEO-type) [cf. Definition 5.1, (iii)].

(iii) Suppose that S is reduced. Then, by considering the supersingular
divisors, we have a bijection between the following two sets:

� The set of isomorphism classes of nilpotent admissible (respectively,
nilpotent ordinary) indigenous bundles over X=S.

� The set of relative e¤ective Cartier divisors of X=S of CE-type
(respectively, of CEO-type).

Proof. First, we verify the first assertion of assertion (i). Let us first
observe that it follows from the final portion of Proposition B.3 that Ln2

P GOX .
Moreover, it follows from Corollary 3.3 that the zero locus of wP is finite étale
over S. Thus, to complete the verification of the first assertion of assertion (i), it
su‰ces to verify that there exists a trivialization Y : Ln2

P !@ OX such that wP is a
normalized Cartier eigenform associated to ðLP;YÞ.

Let us write yP A GðX ;on2
X=SÞ for the global section of on2

X=S corresponding,

via the bijection of Corollary 2.4, to the indigenous bundle P. Fix a trivial-

ization Y : Ln2
P !@ OX of Ln2

P and write y for the image via the isomorphism

GðX ; ðLP nOX
oX=SÞn2Þ !@ GðX ;on2

X=SÞ induced by Y of the square wP n wP A
GðX ; ðLP nOX

oX=SÞn2Þ of wP. Then it follows from Proposition 3.2 that there
exists a global unit u A GðS;O�S Þ such that yP ¼ u � y. Thus, we may assume
without loss of generality, by replacing Y by u�1 �Y, that yP ¼ y. In particular,
it follows from Proposition 4.1 that wP is a normalized Cartier eigenform as-
sociated to ðLP;YÞ. This completes the proof of the first assertion of assertion
(i). Moreover, the final assertion of assertion (i) follows from the first asser-
tion of assertion (i), together with Proposition 4.4 [cf. also the equality ‘‘yP ¼ y’’
in the proof of the first assertion of assertion (i)]. This completes the proof of
assertion (i).

Next, we verify assertion (ii). The necessity follows from assertion (i). To
verify the su‰ciency, let D be a relative e¤ective Cartier divisor of X=S of
CE-type (respectively, of CEO-type). Thus, it follows from the definition that
there exists a pair ðL; wÞ of CE-type (respectively, of CEO-type) such that D is
defined by w. Now since ðL; wÞ is of CE-type, the zero locus of w is étale

over S, and there exists a trivialization Y : Ln2 !@ OX of Ln2 such that w is
a normalized Cartier eigenform associated to ðL;YÞ. Thus, it follows from
Proposition 4.1 and Proposition 4.2 that the indigenous bundle P over X=S
corresponding, via the bijection of Corollary 2.4, to the image via the iso-

morphism GðX ; ðLnOX
oX=SÞn2Þ !@ GðX ;on2

X=SÞ induced by Y of the square

wn w A GðX ; ðLnOX
oX=SÞn2Þ of w is nilpotent and admissible. Moreover, it

follows from Proposition 4.4 that if ðL; wÞ is of CEO-type, then the indigenous
bundle P is ordinary. Write wP for the Hasse invariant of P. Then it follows
from Proposition 3.2 that the zero locus of wP, i.e., the supersingular divisor of
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P, coincides with the zero locus of w, i.e., D. This completes the proof of the
su‰ciency, hence also of assertion (ii).

The injectivity of the map of assertion (iii) follows from Corollary 3.4
[cf. also [6], Chapter II, Proposition 2.6, (4), p. 1032]. The surjectivity of the
map of assertion (iii) follows from assertion (ii). This completes the proof of
Theorem 5.2. r

Corollary 5.3. Let X be a projective smooth curve of genus gb 2 over an
algebraically closed field k of characteristic 3 and L an invertible sheaf on X such
that Ln2 GOX . Then the following hold:

(i) Suppose that LGOX (respectively, LZOX ). Then the number of iso-
morphism classes of nilpotent admissible indigenous bundles over X=k whose Hasse
defects are isomorphic to L is

aaPg�1ðF3Þ ¼
3g � 1

3� 1
respectively; aaPg�2ðF3Þ ¼

3g�1 � 1

3� 1

� �
:

(ii) The number of isomorphism classes of nilpotent admissible indigenous
bundles over X=k is

aaPg�1ðF3Þ þ ðaððZ=2ZÞl2gÞ � 1Þ �aPg�2ðF3Þ

¼ 1

2
ðð3g � 1Þ þ ð22g � 1Þð3g�1 � 1ÞÞ:

Proof. First, we verify assertion (i). Fix a trivialization Y : Ln2 !@ OX .
Let us first observe that it follows from Theorem 5.2, (iii) [cf. also Remark A.8.1],
that, to verify assertion (i), it su‰ces to verify that the number of subspaces
of VL ¼def GðX ;LnOX

oX=SÞ of dimension 1 which are preserved and not annihi-
lated by the Cartier operator VL ! GðX F ;LF nO

X F
oX F =SÞÞ  

@
VL associated to

ðL;YÞ is

aaPg�1ðF3Þ ¼
3g � 1

3� 1
respectively; aaPg�2ðF3Þ ¼

3g�1 � 1

3� 1

� �

if LGOX (respectively, LZOX ). To this end, let us observe that one verifies
easily from the Riemann-Roch theorem that the vector space VL over k is of
dimension g (respectively, g� 1) if LGOX (respectively, LZOX ). Thus, as-
sertion (i) follows immediately from elementary linear algebra [cf. also [8], Cor-
ollary, p. 143]. This completes the proof of assertion (i). Assertion (ii) follows
immediately from assertion (i). This completes the proof of Corollary 5.3. r

Corollary 5.4. Let X be a projective smooth curve of genusb 2 over an
algebraically closed field k of characteristic 3. Then, for every nilpotent ordinary
indigenous bundle P over X=k, there exists a connected finite étale covering Y ! X
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of X such that the [necessarily nilpotent admissible] indigenous bundle ðY ! X Þ�P
over Y=k is not ordinary.

Proof. Write LP for the Hasse defect of P and Y1 ! X for the connected
finite étale covering of X which trivializes LP. [So if LP GOX (respectively,
LP ZOX ), then Y1 ! X is of degree 1 (respectively, 2).] Next, let Y2 ! X be
a connected finite étale covering of X such that Y2 is not parabolically ordinary
[cf., e.g., [10], Théorème 2] and Y ! X a connected finite étale covering of X
which dominates Y1 ! X and Y2 ! X .

Now let us observe that since Y ! X factors through Y1 ! X , one verifies
immediately that the Hasse defect of the indigenous bundle ðY ! XÞ�P over
Y=k is trivial. Thus, it follows from the final portion of Theorem 5.2, (i), that
the indigenous bundle ðY ! X Þ�P over Y=k is ordinary if and only if Y is
parabolically ordinary [cf. also Proposition A.6]. On the other hand, since
Y ! X factors through Y2 ! X , and Y2 is not parabolically ordinary, it holds
that Y is not parabolically ordinary [cf., e.g., the discussion entitled ‘‘The p-rank’’
of [8], pp. 146–147 and [8], Corollary 1, p. 174], which thus implies that the
indigenous bundle ðY ! XÞ�P over Y=k is not ordinary. r

Remark 5.4.1. Corollary 5:4 yields a negative answer to the basic question
(2) of [7], Introduction, §2.1, p. 72.

Finally, we discuss the various moduli stacks related to the main result of
the present paper. We shall apply the notational conventions for the various
stacks established in the Appendix C [in the case where we take the ‘‘p’’ of the
Appendix C to be 3]. The following corollary follows immediately from the final
portion of Theorem 5.2, (i) [cf. also Proposition C.5]:

Corollary 5.5. We have a cartesian diagram of stacks

Nord
g ���! Jg½2�

pb-ord???y
???y

Nadm
g ���! Jg½2�

—where the vertical arrows are the natural open immersions of stacks [cf.
Definition C.4], and the lower horizontal arrow is the Hasse defect morphism
[cf. Definition C.1].

Next, for a nonnegative integer r, write

Mg; ½r�

for the moduli stack of hyperbolic curves of type ðg; rÞ of characteristic 3, i.e., the
moduli stack of projective smooth curves of genus g of characteristic 3 equipped
with relative e¤ective étale Cartier divisors of relative degree r.
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Definition 5.6. It follows from Corollary 3.3, together with Proposition
B.3, that the supersingular divisor of the universal nilpotent admissible indigenous
bundle over Cg �Mg

Nadm
g !Nadm

g determines a (1-)morphism over Mg

Nadm
g !Mg; ½2g�2�:

We shall refer to this (1-)morphism as the Hasse morphism.

The following corollary follows immediately from Theorem 5.2, (ii):

Corollary 5.7. Let ðX ;DÞ be a hyperbolic curve of type ðg; 2g� 2Þ over a
connected noetherian scheme S of characteristic 3. Then the following conditions
are equivalent:

(1) The classifying ð1-)morphism S !Mg; ½2g�2� of ðX ;DÞ factors through the
Hasse morphism Nadm

g !Mg; ½2g�2�.
(2) The relative e¤ective Cartier divisor D of X=S is of CE-type.

6. The case of genus two

In the present §6, we give, by applying the results obtained in the present
paper, a complete list of nilpotent/nilpotent admissible/nilpotent ordinary indige-
nous bundles over a projective smooth curve of genus two over an algebraically
closed field of characteristic three [cf. Theorem 6.1 below]. Moreover, we also
prove that every projective smooth curve of genus two over a connected
noetherian scheme of characteristic three is hyperbolically ordinary [cf. Corollary
6.6 below]. In the present §6, we maintain the notation introduced at the
beginning of §1. Suppose, moreover, that g ¼ 2 [i.e., that X is of genus 2], and
that S is the spectrum of an algebraically closed field k [of characteristic 3].

Since X is of genus 2, X admits a uniquely determined hyperelliptic involu-
tion i, which determines a double covering

x : X ! Q

—where we write Q for the [scheme-theoretic] quotient of X by the action of i.
[Thus, Q is isomorphic to the projective line P1

k over k.] We shall write

WPJX

for the ramification locus of x, i.e., the zero locus of the global section of the
invertible sheaf on X [of degree 6]

HomOX
ðx�oQ=S;oX=SÞ

determined by x. [Thus, WPJX is the set of Weierstrass points of X .] Then,
as is well-known, the closed subscheme WPJX is reduced; moreover, we have a
bijection [of finite sets of cardinality 15] between

� the set of subsets of WP of cardinality 2
and

� the set of isomorphism classes of invertible sheaves on X of order 2

714 yuichiro hoshi



given by mapping D ¼ fx1; x2gJWP to LD ¼def OX ðx1 � x2Þ. Finally, for a
subset DJWP of cardinality 2, write

xD : XD ! X

for the connected finite étale double covering which trivializes LD and

ED ð! QÞ

for the elliptic curve over k obtained by considering the double covering of Q
ðGP1

kÞ whose branch locus coincides with xðWPnDÞ. Then one verifies imme-
diately from the definition of ED that we obtain a cartesian diagram

XD ���!xD X???y
???yx

ED ���! Q

which thus implies that the ‘‘new part’’ of xD [i.e., the abelian variety obtained
by forming the quotient of the Jacobian variety of XD by the image—via the
homomorphism induced by xD—of the Jacobian variety of X ] is isogenous to ED.

By this observation, together with the results obtained in the present paper,
we give the following complete list of nilpotent/nilpotent admissible/nilpotent
ordinary indigenous bundles over X=S:

Theorem 6.1. The following hold:
(i) Every nilpotent nondormant indigenous bundle over X=S is admissible.
(ii) Let DJWP be a subset of cardinality 2 and yD A GðX ;on2

X=SÞ a [uniquely

determined, up to multiplication by an element of k�] global section of on2
X=S

such that the zero locus of yD coincides with 2D [if we naturally regard D as a
reduced divisor of degree 2], and, moreover, the elliptic curve ED is ordinary. Then
a [uniquely determined—cf. Proposition 3.2, Corollary 3.4] k�-multiple of yD
corresponds, via the bijection of Corollary 2.4, to a nilpotent [necessarily admis-
sible—cf. (i)] indigenous bundle over X=S.

(iii) Let oCE A GðX ;oX=SÞ be a Cartier eigenform associated to OX . Then a
[uniquely determined—cf. Proposition 3.2, Corollary 3.4] k�-multiple of oCE noCE

A GðX ;on2
X=SÞ corresponds, via the bijection Corollary 2.4, to a nilpotent [necessarily

admissible—cf. (i)] indigenous bundle over X=S.
(iv) Every nilpotent nondormant [i.e., admissible—cf. (i)] indigenous bundle

over X=S is obtained as the result of either (ii) or (iii).
(v) It holds that a nilpotent indigenous bundle over X=S is ordinary if and

only if one of the following two conditions is satisfied:
(1) The indigenous bundle is obtained as the result of (ii).
(2) The indigenous bundle is obtained as the result of (iii), and, moreover,

X is parabolically ordinary.
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Proof. Assertion (i) follows from Corollary 3.6. Next, we verify assertion
(ii). Let DJWP be as in assertion (ii). Then it is immediate that LD nOX

oX=S GOX ðDÞ [if we naturally regard D as a reduced divisor of degree 2]. In
particular, it follows that GðX ;LD nOX

oX=SÞ is of dimension 1, which thus
implies that the zero locus of every nonzero global section of LD nOX

oX=S

coincides with [the reduced closed subscheme of X whose underlying subset is]
D. Moreover, since ED is ordinary, it follows from Proposition A.6 [cf. also
Remark A.8.1] that every nonzero global section of LD nOX

oX=S is a Cartier
eigenform associated to LD. Thus, it follows immediately from Proposition 4.1
that assertion (ii) holds. This completes the proof of assertion (ii).

Assertion (iii) follows from Proposition 4.1. Next, we verify assertion (iv).
Let P be a nilpotent admissible indigenous bundle over X=S. If the Hasse defect
of P is trivial, then it follows from Theorem 5.2, (iii), that P is obtained as the
result of (iii). If the Hasse defect of P is nontrivial, then it follows from Theorem
5.2, (iii), together with Proposition A.6, that P is obtained as the result of (ii)
[cf. also the proof of assertion (ii)]. This completes the proof of assertion (iv).
Assertion (v) follows from the final portion of Theorem 5.2, (i), together with
assertion (iv). This completes the proof of Theorem 6.1. r

Remark 6.1.1. It follows immediately from Proposition 3.2, together with
the various definitions involved, that the Hasse invariants and the supersingular
divisors of nilpotent admissible indigenous bundles over X=S are given as follows:

� Write P for the nilpotent admissible indigenous bundle over X=S obtained
as the result of Theorem 6.1, (ii), with respect to a subset DJWP as in Theorem
6.1, (ii). Then the supersingular divisor of P is [the reduced closed subscheme
of X whose underlying subset is] D. Next, let us observe that OX ðDÞn2 Gon2

X=S,

and, moreover, the vector space GðX ;OX ðDÞÞ over k is of dimension 1. Let s be
a nonzero global section of OX ðDÞ. Then the Hasse invariant of the indigenous
bundle P is a k�-multiple of

s A GðX ;OX ðDÞÞ:
� Write P for the nilpotent admissible indigenous bundle over X=S ob-

tained as the result of Theorem 6.1, (iii), with respect to a global section
oCE A GðX ;oX=SÞ as in Theorem 6.1, (iii). Then the Hasse invariant of P is a
k�-multiple of

oCE A GðX ;oX=SÞ:

The supersingular divisor of this indigenous bundle is the zero locus of oCE.

Remark 6.1.2. One verifies immediately that an indigenous bundle [implic-
itly] discussed in [1], §11, is a nilpotent admissible indigenous bundle obtained as
the result of Theorem 6.1, (iii) [cf. the discussion in Remark 6:1:1 concerning
supersingular divisors; also condition (2) of Theorem 6.1, (v), and the equivalence
(a), (b) of [1], Theorem 2.8, (3)].
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The following corollary follows immediately from Theorem 2.1 and Theorem
6.1 [cf. also Remark 6:1:1], together with elementary linear algebra [cf. also [8],
Corollary, p. 143]:

Corollary 6.2. Write nWP for the number of subsets D of WP of cardinality
2 such that the elliptic curve ED is ordinary. Write, moreover, gX ðA f0; 1; 2gÞ for
the p-rank of the Jacobian variety of X. Then the following hold:

(i) The number of isomorphism classes of nilpotent indigenous bundles over
X=S is given by

1þ nWP þaPgX�1ðF3Þ

—where we write aP�1ðF3Þ ¼
def

0.
(ii) The number of isomorphism classes of nilpotent admissible indigenous

bundles over X=S is given by

nWP þaPgX�1ðF3Þ

—where we write aP�1ðF3Þ ¼
def

0.
(iii) If X is parabolically ordinary (respectively, not parabolically ordinary)

[i.e., gX ¼ 2 (respectively, gX 0 2)], then the number of isomorphism classes of
nilpotent ordinary indigenous bundles over X=S is given by

nWP þ 4 ðrespectively; nWPÞ:

Next, let us recall the following well-known lemma on the p-rank of the
Jacobian variety of a projective smooth curve of genusa 2 over an algebraically
closed field of characteristic three. The following well-known lemma follows
immediately from, for instance, the characterization of the Cartier operator [cf.,
e.g., [4], Theorem 7.2], together with a well-known explicit description of the
global di¤erential forms on a hyperelliptic projective smooth curve:

Lemma 6.3. The following hold:
(i) Suppose that X admits a dense open subscheme which is isomorphic to the

a‰ne scheme over k

Specðk½s; t�=ðs2 � f ðtÞÞÞ

—where s and t are indeterminates, and

f ðtÞ ¼ t5 þ a4t
4 þ a3t

3 þ a2t
2 þ a1tþ a0 A k½t�:

Then it holds that X is parabolically ordinary if and only if a1 0 a2 � a4.
(ii) If an elliptic curve E over k admits a dense open subscheme which is

isomorphic to the a‰ne scheme over k

Specðk½s; t�=ðs2 � f ðtÞÞÞ
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—where s and t are indeterminates, and

f ðtÞ ¼ t4 þ a3t
3 þ a2t

2 þ a1tþ a0 A k½t�
ðrespectively; f ðtÞ ¼ t3 þ a2t

2 þ a1tþ a0 A k½t�Þ
then it holds that E is ordinary if and only if a2 0 0.

The following corollary was already proved in [7] [cf. Remark 6:4:1 below]:

Corollary 6.4. There exists a dense open substack of M2 such that every
projective smooth curve parametrized by a geometric point on this open substack
admits exactly 19 isomorphism classes of nilpotent ordinary indigenous bundles.

Proof. It follows from Theorem 6.1 [cf. also Corollary 6.2, (iii)] that, to
verify Corollary 6.4, it su‰ces to verify the following assertion: There exists a
dense open substack Uord JM2 (respectively, UWP JM2) of M2 such that every
projective smooth curve parametrized by a geometric point on Uord (respectively,
UWP) is parabolically ordinary (respectively, satisfies the condition that, for every
subset DJWP of cardinality 2, the elliptic curve ED is ordinary). On the other
hand, the existence of ‘‘Uord’’ (respectively, ‘‘UWP’’) as above follows immediately
from Lemma 6.3, (i) (respectively, Lemma 6.3, (ii)), together with a straight-
forward calculation. This completes the proof of Corollary 6.4. r

Remark 6.4.1. Let us observe that the number ‘‘19’’ in the statement of
Corollary 6.4 coincides with the result of the formula of [7], Chapter V, Corollary
1.3, (3), pp. 237–238, i.e., the formula

nord
2;0 ¼

p

3
ð2p2 þ 1Þ:

Finally, we prove the existence of a nilpotent ordinary indigenous bundle
over X=S:

Proposition 6.5. The following hold:
(i) There exist at least 12 isomorphism classes of nilpotent ordinary indigenous

bundles whose Hasse defects are nontrivial over X=S.
(ii) There exist at least 13 isomorphism classes of nilpotent ordinary indig-

enous bundles over X=S.

Proof. Let us identify Q with P1
k by an isomorphism over k. Moreover, let

us naturally identify the set of closed points of P1
k ¼ Q with the set k U fyg.

First, I claim that the following assertion holds:

Claim 6.5.A. If the number ‘‘nWP’’ defined in the statement of Corollary
6.2 is a12, then, by considering a suitable automorphism of P1

k ¼ Q, one may
take the subset ‘‘WP’’ of P1

k ¼ Q to be

f0; 1;y;�1; a;�agJ kU fyg
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—where a A k satisfies that a2 ¼ 2—i.e., X admits a dense open subscheme which
is isomorphic to the a‰ne scheme over k

Specðk½s; t�=ðs2 � f ðtÞÞÞ

—where s and t are indeterminates, and

f ðtÞ ¼ xðx� 1Þðxþ 1Þðx� aÞðxþ aÞ ¼ x5 þ 2x A k½t�:

Indeed, suppose that there exist 3 distinct subsets D1;D2;D3 JWP of cardinality
2 such that the elliptic curves ED1

, ED2
, and ED3

are not ordinary.
First, we consider the case where WP ¼ D1 UD2 UD3. Then let us observe

that we may assume without loss of generality, by considering a suitable auto-
morphism of P1

k ¼ Q, that xðD1Þ ¼ f0;yg and 1 A xðD2Þ. Then since ED2
and

ED3
are not ordinary, it follows from Lemma 6.3, (ii), that there exists an element

a A knf0; 1;�1g such that

xðD2Þ ¼ f1;�1g; xðD3Þ ¼ fa;�ag:
On the other hand, since

a � ð�aÞ þ a � 1þ a � ð�1Þ þ ð�aÞ � 1þ ð�aÞ � ð�1Þ þ 1 � ð�1Þ ¼ �a2 � 1;

and ED1
is not ordinary, it follows from Lemma 6.3, (ii), that a2 ¼ 2. Thus, one

may take the subset ‘‘WP’’ to be as in Claim 6.5.A.
Next, we consider the case where WP0D1 UD2 UD3. Then let us observe

that we may assume without loss of generality, by considering a suitable auto-
morphism of P1

k ¼ Q, that y A xðWPnðD1 UD2 UD3ÞÞ, that 0 A xðWPnðD1 UD2ÞÞ,
and that 1 A xðD1nðD1 VD2ÞÞ. Then since ED1

and ED2
are not ordinary, it

follows from Lemma 6.3, (ii), that there exists an element a A knf0; 1;�1g such
that

xðWPnD1Þ ¼ f0;y; a;�ag; xðWPnD2Þ ¼ f0;y; 1;�1g;

which thus implies that

xðWPÞ ¼ f0; 1;�1; a;�a;yg:

Thus, since y B xðD3Þ, one verifies easily from Lemma 6.3, (ii), that ED3
is

ordinary—in contradiction to our assumption that ED3
is not ordinary. This

completes the proof of Claim 6.5.A.
Now we verify assertion (i). Suppose that the number ‘‘nWP’’ defined in the

statement of Corollary 6.2 is a12. Then it follows from Claim 6.5.A that one
may take the subset ‘‘WP’’ to be as in Claim 6.5.A. In particular, it follows
from Lemma 6.3, (ii), together with a straightforward calculation, that the number
‘‘nWP’’ defined in the statement of Corollary 6.2 is equal to 12. Thus, assertion
(i) follows from Theorem 6.1. This completes the proof of assertion (i).

Next, we verify assertion (ii). Assume that the set of isomorphism classes of
nilpotent ordinary indigenous bundles over X=S is of cardinalitya 12. Then it
follows from Corollary 6.2, (iii), that the number ‘‘nWP’’ defined in the statement

719nilpotent admissible indigenous bundles in characteristic three



of Corollary 6.2 is a12. Thus, it follows from Claim 6.5.A that one may take
the subset ‘‘WP’’ to be as in Claim 6.5.A. Then it follows from Lemma 6.3, (ii),
together with a straightforward calculation, that the number ‘‘nWP’’ defined in
the statement of Corollary 6.2 is equal to 12. Moreover, since [it follows from
Lemma 6.3, (i), that] X is parabolically ordinary, it follows from Corollary 6.2,
(iii), that X=S admits exactly 16 ð¼ 12þ 4Þ > 12 isomorphism classes of nilpotent
ordinary indigenous bundles—in contradiction to our assumption that the set
of isomorphism classes of nilpotent ordinary indigenous bundles over X=S is of
cardinalitya 12. This completes the proof of assertion (ii). r

It follows from Proposition 6:5, (ii), together with [6], Chapter II, Propo-
sition 3.4, p. 1044, that the following corollary holds:

Corollary 6.6. Every projective smooth curve of genus 2 over a connected
noetherian scheme of characteristic 3 is hyperbolically ordinary [cf. Introduction].

Remark 6.6.1. Corollary 6.6 yields a partial positive answer to the basic
question (1) of [7], Introduction, §2.1, p. 72. By Corollary 6.6, we conclude that
the image of the natural (1-)morphism discussed in the basic question (1) of [7],
Introduction, §2.1, p. 72, in the case where ðg; r; pÞ ¼ ð2; 0; 3Þ contains the open
substack ðM2;0ÞF3

J ðM2;0ÞF3
.

Remark 6.6.2. Corollary 6.6 also yields an example of a projective smooth
curve of positive characteristic which is not parabolically ordinary but hyperboli-
cally ordinary [cf. also Lemma 6.3, (i)].

Appendix A. Cartier operator associated to a square-trivialized invertible sheaf

In the Appendix A, let us recall the Cartier operator associated to a square-
trivialized invertible sheaf on a projective smooth curve in positive character-
istic. It seems to the author that the content of the Appendix A is well-known;
however, since a suitable literature could not be found, the author has decided to
discuss it in the Appendix A.

In the Appendix A, let p be an odd prime number, gb 2 an integer, S a
connected noetherian scheme of characteristic p [i.e., over Fp], and f : X ! S
a projective smooth curve [i.e., a morphism which is projective, smooth, geomet-
rically connected, and of relative dimension one] of genus g. Write f F : X F ! S
for the projective smooth curve obtained by base-changing f via the absolute
Frobenius morphism of S and F : X ! X F for the relative Frobenius morphism
over S. We shall use the notation ‘‘o’’ (respectively, ‘‘t’’) to denote the relative
cotangent (respectively, tangent) sheaf.

Proposition A.1. Let L be an invertible sheaf on X such that Ln2 GOX .
Then the following conditions are equivalent:
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(1) The restriction of L to every fiber of f is of order two [i.e., is nontrivial].
(2) There exists a point s A S of S such that the restriction of L to the fiber of

f at s is of order two [i.e., is nontrivial].
(3) The invertible sheaf L does not arise from an invertible sheaf on S.
(4) The image of the classifying morphism of L [ from S to the relative

Jacobian variety of X=S] does not intersect the image of the identity section.

Proof. The implications (1)) (2)) (3) and (4)) (1) are immediate. The
implication (3)) (4) follows immediately from our assumption that S is con-
nected, together with the [well-known] fact that the endomorphism of the relative
Jacobian variety of X=S obtained by multiplication by 2 is finite étale. This
completes the proof of Proposition A.1. r

Definition A.2. Let L be an invertible sheaf on X such that Ln2 GOX .
Then we shall say that L is of relative order two (respectively, one) if L satisfies
(respectively, does not satisfy) the four conditions in the statement of Proposition
A.1.

Definition A.3. We shall refer to a pair

ðL;Y : Ln2 !@ OX Þ

consisting of an invertible sheaf L on X and a global trivialization Y of the
square Ln2 of L as a square-trivialized invertible sheaf on X .

Let

L ¼ ðL;Y : Ln2 !@ OX Þ

be a square-trivialized invertible sheaf on X . Thus, the trivialization Y deter-
mines isomorphisms of invertible sheaves on X

L!@ Lnp !@ F�LF

Yðln lÞðp�1Þ=2 � l 7! lnp 7! F�1l F

—where we write LF for the invertible sheaf on X F obtained by pulling back
L via the morphism X F ! X induced by the absolute Frobenius morphism of
S, l is a local section of L, and l F is the local section of LF determined by l.

Let us recall [cf., e.g., [4], Theorem 7.2] that we have an exact sequence of
OX F -modules

0 �! OX F �! F�OX �!
F�d

F�oX=S �!
c

oX F =S �! 0

—where we write d for the exterior di¤erentiation operator OX ! oX=S, and c for
the Cartier operator. We shall write

B� ¼def CokerðOX F ! F�OX Þ ¼ Kerðc : F�oX=S ! oX F =SÞ
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for the locally free coherent OX F -module of rank p� 1 obtained by forming the
cokernel of the natural homomorphism OX F ! F�OX , or, alternatively, the kernel
of the Cartier operator c : F�oX=S ! oX F =S. Then, by tensoring with LF and

applying the above isomorphism L!@ F�LF determined by Y, we obtain an
exact sequence of OX F -modules

0!LF nO
X F

B� ! F�ðLnOX
oX=SÞ !LF nO

X F
oX F =S ! 0;

which thus determines an exact sequence of OS-modules

0! f F
� ðLF nOX F

B�Þ ! f�ðLnOX
oX=SÞ ! f F

� ðLF nOX F
oX F =SÞ:

Definition A.4. We shall write

CL

for the third arrow of the above exact sequence of OS-modules and refer to

CL : f�ðLnOX
oX=SÞ ! f F

� ðLF nO
X F

oX F =SÞ
as the Cartier operator associated to L ¼ ðL;YÞ.

Remark A.4.1. If we take the pair ‘‘ðL;YÞ’’ to be the pair consisting of OX

and the natural identification OX nOX
OX ¼ OX , then the Cartier operator f�oX=S

! f F
� oX F =S associated to ðL;YÞ coincides with the [homomorphism induced by

the] usual Cartier operator.

Remark A.4.2. One verifies easily that since the formation of

0 �! OX F �! F�OX �!
F�d

F�oX=S �!
c

oX F =S �! 0

commutes with arbitrary change of base ‘‘S 0 ! S’’, the formation of

CL : f�ðLnOX
oX=SÞ ! f F

� ðLF nO
X F

oX F =SÞ

commutes with arbitrary change of base ‘‘S 0 ! S’’.

If [the underlying invertible sheaf of ] L is of relative order two, then we shall
write

xL : XL ! X

for the connected finite étale double covering of X over S which trivializes the
invertible sheaf L [determined by Y] and

xF
L : X F

L ! X F

for the connected finite étale covering of X F over S obtained by base-changing
xL via the absolute Frobenius morphism of S. Thus, a trivialization of x�LL
determines respective isomorphisms of OX -, OX F -modules

ðxLÞ�OXL
GOX lL; ðxF

LÞ�OX F
L
GOX F lLF :

722 yuichiro hoshi



Moreover, one verifies immediately that the natural homomorphism of OS-
modules

R1ð f F � xF
LÞ�OX F

L
! R1ð f � xLÞ�OXL

determined by the relative Frobenius morphism XL ! X F
L over S is decomposed

into the direct sum of the natural homomorphisms of OS-modules

R1f F
� OX F ! R1f�OX ; R1f F

� LF ! R1f�F
�LF  @ R1f�L

[cf. the isomorphism given in the discussion following Definition A.3].

Definition A.5.
(i) We shall say that f : X ! S is parabolically ordinary [cf. the discussion

following [6], Chapter II, Definition 3.3, p. 1044] if the Jacobian variety of every
fiber of f is ordinary.

(ii) Let Y ! S be a projective smooth curve over S and x : Y ! X a finite
étale covering over S. Then we shall say that x : Y ! X is parabolically new-
ordinary if, for every point s A S of S, the ‘‘new part’’ of x at s [i.e., the abelian
variety over s obtained by forming the quotient of the Jacobian variety of Y �S s
by the image—via the homomorphism induced by x—of the Jacobian variety of
X �S s] is ordinary.

Thus, we obtain:

Proposition A.6. It holds that the Cartier operator CL : f�ðLnOX
oX=SÞ !

f F
� ðLF nOX F

oX F =SÞ associated to L ¼ ðL;YÞ is injective at every point of S if

and only if one of the following conditions is satisfied:
(1) L is of relative order one, and X=S is parabolically ordinary.
(2) L is of relative order two, and the connected finite étale double covering

xL : XL ! X is parabolically new-ordinary.

Proof. Let us first observe that it follows from Remark A.4.2 that, to verify
Proposition A.6, we may assume without loss of generality that S is the spectrum
of an algebraically closed field. Next, let us recall from the discussion preceding
Definition A.4 that we have an isomorphism of OS-modules

f F
� ðLF nO

X F
B�Þ !@ KerðCLÞ:

In particular, the exact sequence of OX F -modules in the discussion preceding
Definition A.4

0 �! OX F �! F�OX �!
F�d

F�oX=S �!
c

oX F =S �! 0;

together with the isomorphism L!@ F�LF given in the discussion following
Definition A.3, determines an exact sequence of OS-modules

0! KerðCLÞ ! R1f F
� LF ! R1f�L:

723nilpotent admissible indigenous bundles in characteristic three



Thus, it follows from the discussion preceding Definition A.5 that Proposition
A.6 holds. This completes the proof of Proposition A.6. r

Definition A.7. Let M be an invertible sheaf on X such that Mn2 GOX .
Then we shall say that M is parabolically ordinary if, for some [or, equiva-
lently, every] trivialization YM : Mn2 !@ OX , the square-trivialized invertible sheaf
ðM;YMÞ satisfies either (1) or (2) in the statement of Proposition A.6 [i.e., the
Cartier operator associated to ðM;YMÞ is injective at every point of S—cf.
Proposition A.6].

Next, let us observe that the morphism X F ! X induced by the absolute
Frobenius morphism of S determines a Frobenius-semi-linear homomorphism

f�ðLnOX
oX=SÞ ! f F

� ðLF nO
X F

oX F =SÞ:

For a global section u of LnOX
oX=S, we shall write uF for the global section

of LF nO
X F

oX F =S obtained by forming the image of u via this Frobenius-semi-
linear homomorphism.

Definition A.8.
(i) We shall say that a global section u of LnOX

oX=S is a normalized
Cartier eigenform associated to L ¼ ðL;YÞ if u defines a relative e¤ective Cartier
divisor of X=S, and, moreover, CLðuÞ ¼ �uF .

(ii) Let M be an invertible sheaf on X such that Mn2 GOX . Then we shall
say that a global section of MnOX

oX=S is a Cartier eigenform associated to M if
there exists a trivialization YM of the square of M such that the global section
is a normalized Cartier eigenform associated to the square-trivialized invertible
sheaf ðM;YMÞ.

Remark A.8.1. One verifies immediately that if S is the spectrum of an
algebraically closed field k [of characteristic p], then the following two conditions
are equivalent:

� A global section u A GðX ;LnOX
oX=SÞ is a Cartier eigenform associated to

[the underlying invertible sheaf of ] L.
� It holds that u0 0, and, moreover, CLðuÞ is a k�-multiple of uF .

Moreover, in this case, the subset of k� consisting of c A k� such that cu is a
normalized Cartier eigenform associated to L ¼ ðL;YÞ forms an F�p -torsor, which
thus implies that this subset is of cardinality p� 1.

Remark A.8.2. If we take the pair ‘‘ðL;YÞ’’ to be the pair consisting of OX

and the natural identification OX nOX
OX ¼ OX [i.e., if we are in the situation of

Remark A.4.1], then the property of being a [normalized ] Cartier eigenform is
closely related to the property of being locally logarithmic [cf., e.g., [3], Théorème
2.1.17].
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Finally, we consider a local criterion for a normalized Cartier eigenform.
Let x A X be a point of X , tx ¼ t A OX a local parameter of X=S at x, lx ¼ l A L
a local trivialization of L at x, and

w A GðX ;LnOX
oX=SÞ

a global section of LnOX
oX=S. Then the global trivialization Y and the local

trivialization lx ¼ l determine a local unit

dx ¼ d ¼def Yðln lÞ A O�X

at x. Moreover, the global section w determines a local function fx ¼ f A OX on
X at x which fits into the equality

w ¼ f � ln dt

at x. Then it follows immediately from the characterization of the Cartier
operator [cf., e.g., [4], Theorem 7.2; also the discussion given in [3], §2.1—
especially, the equality (2.1.13) in [3], §2.1], together with the explicit description

of the isomorphism L!@ F�LF given in the discussion following Definition A.3,
that the following lemma holds:

Lemma A.9. Write qtx for the local derivation corresponding to the local
trivialization of tX=S which maps dtx to 1 [i.e., ‘‘qtxð�Þ’’ is the ‘‘derivative of ð�Þ
with respect to tx’’]. Then the following hold:

(i) It holds that the global section w of LnOX
oX=S is annihilated by the

Cartier operator CL associated to L ¼ ðL;YÞ if and only if, for every point
x A X , the equality

ðqtx � � � � � qtx
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{p�1

Þðd�ðp�1Þ=2x � fxÞ ¼ 0

holds.
(ii) It holds that the global section w of LnOX

oX=S is a normalized Cartier
eigenform associated to L ¼ ðL;YÞ if and only if, for every point x A X , the local
function fx is not a zero-divisor, and, moreover, the equality

fp
x ¼ ðqtx � � � � � qtx

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{p�1

Þðd�ðp�1Þ=2x � fxÞ
holds.

Appendix B. The Hasse bundle of a nilpotent admissible indigenous bundle

In the Appendix B, we discuss the Hasse bundle of a nilpotent admissible
indigenous bundle. In the Appendix B, let p be an odd prime number, gb 2
an integer, S a connected noetherian scheme of characteristic p [i.e., over Fp],
and f : X ! S a projective smooth curve [i.e., a morphism which is projective,
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smooth, geometrically connected, and of relative dimension one] of genus g.
Write f F : X F ! S for the projective smooth curve obtained by base-changing
f via the absolute Frobenius morphism of S and F : X ! X F for the relative
Frobenius morphism over S. We shall use the notation ‘‘o’’ (respectively, ‘‘t’’)
to denote the relative cotangent (respectively, tangent) sheaf.

Let

P ¼ ðp : P! X ;‘PÞ

be a nilpotent admissible indigenous bundle over X=S. Write

sHdg : X ! P

for the Hodge section of P and

IHdg JOP

for the ideal of OP which defines the section sHdg. Thus, it follows from the
definition of an indigenous bundle that the Kodaira-Spencer homomorphism at
sHdg relative to ‘P [i.e., the homomorphism obtained by di¤erentiating sHdg by
means of ‘P]

s�HdgoP=X ! oX=S

is an isomorphism.

Proposition B.1. There exists a unique section scon : X ! P of p : P! X
which satisfies the following conditions:

(1) The section scon is horizontal with respect to ‘P. In particular, the
connection ‘P induces a connection on the invertible sheaf s�conoP=X on X.

(2) There exists a horizontal isomorphism s�conoP=X GF�tX F =S, where we
regard F�tX F =S as an invertible sheaf equipped with a connection by equipping
F�tX F =S with the connection arising from the exterior di¤erentiation operator
OX ! oX=S.

We shall refer to this section scon as the conjugate section of the indigenous
bundle P.

Proof. This follows from the second paragraph of [the statement of ] [6],
Chapter II, Proposition 2.5, pp. 1030–1031. r

Write

scon : X ! P

for the conjugate section of P and

Icon JOP

for the ideal of OP which defines the section scon.
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Definition B.2. We shall refer to the invertible sheaf on X

s�HdgHomOPðIcon;OPÞ ¼HomOX
ðs�HdgIcon;OX Þ

obtained by pulling back HomOPðIcon;OPÞ via sHdg as the Hasse bundle of P.
We shall refer to the invertible sheaf on X

s�HdgHomOPðIcon;OPÞnOX
t
nðp�1Þ=2
X=S ¼HomOX

ðs�HdgIcon; t
nðp�1Þ=2
X=S Þ

obtained by tensoring the Hasse bundle with t
nðp�1Þ=2
X=S as the Hasse defect of P.

Write

HP ¼def s�HdgHomOPðIcon;OPÞ
for the Hasse bundle of P. Then let us observe that since p : P! X is of genus
zero, and the invertible sheaf on P

HomOPðIcon;IHdgÞ
is of relative degree 0 over X , it follows immediately that the natural homo-
morphisms

p�HomOPðIcon;IHdgÞ ! s�HdgHomOPðIcon;IHdgÞGHP nOX
oX=S;

p�HomOPðIcon;IHdgÞ ! s�conHomOPðIcon;IHdgÞG s�conIHdg nOX
F�oX F =S

[cf. the discussion preceding Proposition B.1; Proposition B.1, (2)] are isomor-
phisms. Thus, by means of the natural identification s�HdgIcon ¼ s�conIHdg, we
obtain:

Proposition B.3. There exist isomorphisms of invertible sheaves on X

Hn2
P GHomOX

ðF�tX F =S; tX=SÞGo
np�1
X=S :

In particular, the square of the Hasse defect is trivial.

Moreover, we obtain:

Proposition B.4. The global section of

HomOX
ðF�tX F =S; tX=SÞ

obtained, relative to the isomorphism of Proposition B.3, by forming the square of
the global section of HP determined by the natural inclusion Icon ,! OP coincides,
up to multiplication by a global section of O�S , with the square Hasse invariant
of P. In particular, the global section of HP determined by the natural inclusion
Icon ,! OP coincides, up to multiplication by a global section of O�S , with the Hasse
invariant of P.

Proof. This follows from the discussion in the proof of [6], Chapter II,
Proposition 2.6, (3), p. 1032. r
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Appendix C. Various moduli stacks

In the Appendix C, we consider various moduli stacks related to the notions
discussed in the present paper. In the Appendix C, let p be an odd prime
number and gb 2 an integer.

We shall write

Mg

for the moduli stack of projective smooth curves of genus g of characteristic p;

Cg !Mg

for the universal curve over Mg;

Jg !Mg

for the relative Jacobian variety of Cg !Mg;

Jg½n�JJg

for the kernel of the endomorphism of Jg over Mg obtained by multiplication by
n [where n is a nonnegative integer]. Moreover, we shall write

Ng

for the moduli stack of smooth nilcurves of genus g of characteristic p, i.e., the
moduli stack of projective smooth curves of genus g of characteristic p equipped
with nilpotent indigenous bundles;

Nadm
g JNg

for the moduli stack of projective smooth curves of genus g of characteristic p
equipped with nilpotent admissible indigenous bundles;

Nord
g JNadm

g

for the moduli stack of projective smooth curves of genus g of characteristic p
equipped with nilpotent ordinary indigenous bundles.

Definition C.1. It follows from the final portion of Proposition B.3 that
the Hasse defect of the universal nilpotent admissible indigenous bundle over
Cg �Mg

Nadm
g !Nadm

g determines a (1-)morphism over Mg

Nadm
g ! Jg½2�:

We shall refer to this (1-)morphism as the Hasse defect morphism.

Proposition C.2. The following three open substacks of Nadm
g coincide:

(1) The open substack Nord
g JNadm

g .

(2) The étale locus of the natural (1-)morphism Nadm
g !Mg.

(3) The étale locus of the Hasse defect morphism Nadm
g ! Jg½2�.
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Proof. The assertion that the open substack given in (1) coincides with the
open substack given in (2) follows from the definition [cf. also the discussion
following [7], Introduction, Theorem 0.1, p. 24]. On the other hand, since the
(1-)morphism Nadm

g !Mg is flat [cf. [6], Chapter II, Theorem 2.3, p. 1029], the
assertion that the open substack given in (2) coincides with the open substack
given in (3) follows from the well-known fact that the natural (1-)morphism
Jg½2� !Mg is a finite étale surjection. r

Now let us observe that since, as is well-known, Jg½2� is finite étale over Mg,
the identity section of Jg !Mg determines an isomorphism of stacks over Mg

Mg t ðJg½2�nJg½1�Þ !
@

Jg½2�:

Thus, by considering the Hasse defect morphism, we obtain:

Proposition C.3. Let U !Nadm
g be a scheme over Nadm

g . Suppose that

there exist two geometric points s1, s2 of U such that the Hasse defect of the
nilpotent admissible indigenous bundle corresponding to s1 (respectively, s2) is of
relative order one (respectively, two). Then U is not connected.

Next, we shall write

Rg

for the moduli stack of ‘‘nontrivial ’’ smooth Prym curves of genus g of char-
acteristic p, i.e., the moduli stack of projective smooth curves of genus g of
characteristic p equipped with square-trivialized invertible sheaves whose under-
lying invertible sheaves are of relative order two;

Rg ¼
def

Jg½2�nJg½1�:

Thus, we have a natural (1-)morphism Rg ! Rg over Mg. For a nonnegative
integer d, write

Ad

for the moduli stack of principally polarized abelian varieties of dimension d of
characteristic p and

Aord
d JAd

for the moduli stack of principally polarized ordinary abelian varieties of dimen-
sion d of characteristic p.

Definition C.4. Since Mg tRg is naturally isomorphic to Jg½2� over Mg,
the inverse image of Aord

g JAg via the Torelli morphism Mg !Ag and the
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image in Rg of the inverse image of Aord
g�1 JAg�1 via the Prym morphism

Rg !Ag�1 determine an open substack of Jg½2�. We shall write

Jg½2�
pb-ord JJg½2�

for this open substack.

Thus, it follows immediately from the various definitions involved that the
following proposition holds:

Proposition C.5. In the notation introduced at the beginning of the Appendix
B, let P be a nilpotent admissible indigenous bundle over X=S. Then the following
conditions are equivalent:

(1) The image of the composite

S !Nadm
g ! Jg½2�

of the classifying ð1-)morphism S !Nadm
g of P and the Hasse defect morphism is

contained in the open substack Jg½2�
pb-ord JJg½2�.

(2) The Hasse defect of P is parabolically ordinary.
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