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Abstract

In the present paper, we study the p-adic Teichmiiller theory in the case where
p =3. In particular, we discuss nilpotent admissible/ordinary indigenous bundles over a
projective smooth curve in characteristic three. The main result of the present paper
is a characterization of the supersingular divisors of nilpotent admissible/ordinary
indigenous bundles in characteristic three by means of various Cartier operators. By
means of this characterization, we prove that, for every nilpotent ordinary indigenous
bundle over a projective smooth curve in characteristic three, there exists a connected
finite étale covering of the curve on which the indigenous bundle is not ordinary. We
also prove that every projective smooth curve of genus two in characteristic three is
hyperbolically ordinary. These two applications yield negative, partial positive answers
to basic questions in the p-adic Teichmiiller theory, respectively.
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Introduction

In the present paper, we study the p-adic Teichmiiller theory established by
S. Mochizuki [cf. [6], [7]] in the case where p =3. In particular, we discuss
nilpotent admissible/ordinary indigenous bundles over a projective smooth curve
in characteristic three. In the Introduction, let p be an odd prime number, g > 2
an integer, S a connected noetherian scheme of characteristic p [i.e., over F,],
and f: X — S a projective smooth curve [i.e., a morphism which is projective,
smooth, geometrically connected, and of relative dimension one] of genus g over
S. Write f¥: X — S for the projective smooth curve over S obtained by base-
changing X — S via the absolute Frobenius morphism of S and @ : X — X for
the relative Frobenius morphism over S. We use the notation “w” (respectively,
“7”) to denote the relative cotangent (respectively, tangent) sheaf.

First, let us recall the notion of an indigenous bundle and some properties
on an indigenous bundle. We shall say that a pair

(m:P— X,Vp)

consisting of a P!-bundle 7 : P — X over X and a connection Vp on P relative to
X /S is an indigenous bundle over X /S if there exists a [uniquely determined—cf.
[6], Chapter I, Proposition 2.4, p. 1004] section [i.e., the Hodge section] ¢ : X — P
of #: P— X such that the Kodaira-Spencer homomorphism ¢*wp/xy — wy/s at
o relative to Vp [i.e., the homomorphism obtained by differentiating ¢ by means
of Vp] is an isomorphism [cf. [6], Chapter I, Definition 2.2, pp. 1002-1003]. The
notion of an indigenous bundle was introduced and studied by R. C. Gunning
[cf. [2], §2] and enables one to understand the theory of uniformization of
[algebraic] Riemann surfaces in a somewhat more algebraic setting.

Let (n: P — X,Vp) be an indigenous bundle over X/S. Then the con-
nection Vp on P determines a horizontal homomorphism [i.e., the p-curvature]

PO tyr)g — Ad(P) &ef T.Tp/x-

We shall say that the indigenous bundle (7 : P — X, Vp) is nilpotent (respectively,
admissible; dormant) if the square of 2 is zero (respectively, the zero locus of 2
is empty; 2 = 0) [cf. [6], Chapter II, Definition 2.4, p. 1030 (respectively, [6],
Chapter II, Definition 2.4, p. 1030; [7], Chapter II, Definition 1.1, p. 127)].
Moreover, we shall refer to the composite of the p-curvature 2 and the surjec-
tion .«/d(P) — tx s determined by the Hodge section of (7 : P — X,Vp) as the
square Hasse invariant of (n: P — X,Vp) [cf. [6], Chapter II, Proposition 2.6, (1),
p- 1032]. Then, by means of this square Hasse invariant, one may define the
Frobenius on le*rX/S induced by (m: P — X,Vp) [cf. the discussion following
[6], Chapter 1I, Lemma 2.11, pp. 1036—-1037]. We shall say that the indigenous
bundle (n: P — X,Vp) is ordinary if the Frobenius on le*rx/s induced by
(m: P— X,Vp) is an isomorphism [cf. [6], Chapter 1I, Definition 3.1, p. 1044].
A nilpotent admissible/ordinary indigenous bundle plays a central role in the
“classical” p-adic Teichmiiller theory, i.e., the p-adic Teichmiiller theory discussed
in [not [7] but] [6].
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First, we verify the following uniqueness of a dormant indigenous bundle in
characteristic three [cf. Theorem 2.1, Corollary 2.4]:

THEOREM A. In the notation introduced at the beginning of the Introduction,
suppose that p =3. Then there exists a unique dormant indigenous bundle over
X /S In pamcular there exists a natural bijection between

< H(S, f*coX/S) H(X, a))(?/zs) and
* the set of lsomorphlsm classes of indigenous bundles over X /S
such that, for 0 e H(S, f.w Y /s) the dormant locus in S of the indigenous bundle

over X /S corresponding to 0 coincides with the zero locus in S of 0.

If an indigenous bundle (n: P — X,Vp) over X/S is nilpotent admissible,
then there exist an invertible sheaf # on X and a global section y of # such that
HP? ~ Homg, (P txr/s,7x/s), and, moreover, the square of y coincides with the
square Hasse invariant of (n: P — X,Vp) [cf. [6], Chapter II, Proposition 2.6,
(3), p. 1032]. We shall refer to y as the Hasse invariant of (nm: P — X,Vp)
[cf. [6], Chapter II, Proposition 2.6, (3), p. 1032] and to the zero locus of the
Hasse invariant as the supersingular divisor of (x: P — X,Vp) [cf. [6], Chapter I,
Proposition 2.6, (3), p. 1032]. The supersingular divisor is an important invariant
of a nilpotent admissible indigenous bundle; for instance, if S is reduced, then
the isomorphism class of a nilpotent admissible indigenous bundle over X/S is
completely determined by the supersingular divisor [cf. [6], Chapter 11, Proposition
2.6, (4), p. 1032]. The main result of the present paper is a characterization of
the supersingular divisors of nilpotent admissible/ordinary indigenous bundles in
characteristic three by means of various Cartier operators.

In order to present the main result of the present paper, let us recall some
notions related to the Cartier operator. Let (¥,0) be a square-trivialized
invertible sheaf on X, i.e., a pair consisting of an invertible sheaf ¥ on X
and a trivialization ® of the square of # [cf. Definition A.3]. Then the [usual]
Cartier operator ®.wy/s — wyr /s, together with the trivialization ©, determines
a homomorphism of @s-modules

Ciz.0) : [i(Z @, wxs) — fF(LF ®q, , Oxr/s)

—where we write #% for the invertible sheaf on X ¥ obtained by pulling back
via the morphism X% — X induced by the absolute Frobenius morphism of S.
We shall refer to this homomorphism as the Cartier operator associated to (&, )
[cf. Definition A.4]. On the other hand, the morphism X — X induced by the
absolute Frobenius morphism of S determines a Frobenius-semi-linear homo-
morphism

S @y wxss) = [F(LT ®c,, @xrs)-

For a global section u of ¥ ®, wy/s, we shall write u® for the global section
of ¥ ®, r OXF/S obtained by formmg the image of u via this Frobenius-semi-
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linear homomorphism. We shall say that a global section u of & ®,, wy/s is a
normalized Cartier eigenform associated to (&, ®) if u defines a relative effective
Cartier divisor of X/S, and, moreover, C(¢ o)(u) = —u” [cf. Definition A.8, (i)].

A part of the main result of the present paper is as follows [cf. Theorem 5.2,

(i1)):

THEOREM B. In the notation introduced at the beginning of the Introduction,
suppose that p=3. Let D be a relative effective Cartier divisor of X/S. Then
it holds that D is the supersingular divisor of a nilpotent admissible (respectively,
nilpotent ordinary) indigenous bundle over X /S if and only if D is of CE-type
(respectively, of CEO-type) [cf. Definition 5.1, (iii)|, i.e., there exist an invertible
sheaf & on X, a trivialization ® of the square of ¥, and a global section y of
L Ry wx/s such that the following two (respectively, three) conditions (1), (2)
(respectively, (1), (2), (3)) are satisfied:

(1) The divisor D is étale over S and coincides with the zero locus of
XE F(X, <z ®@X COX/S).

(2) The global section y € T'(X,¥% ®q, wy/s) is a normalized Cartier eigen-
form associated to (Z,0).

(3) The invertible sheaf & is parabolically ordinary [cf. Definition A.7), i.e.,
the Cartier operator associated to (&,0) is injective at every point of S, or,
equivalently [cf. Proposition A.6], one of the following two conditions is satisfied:

« % is of relative order one [c¢f. Definition A.2), and, moreover, X is
parabolically ordinary [c¢f. Definition A.5, (i)].

* & is of relative order two [cf. Definition A.2], and, moreover, the
connected finite étale double covering of X which trivializes ¥ [determined by ®] is
parabolically new-ordinary [cf. Definition A.5, (ii)].

Here, let us recall the following two basic questions in the p-adic Teichmiiller
theory discussed in [7], Introduction, §2.1 [cf. [7], Introduction, §2.1, (1), (2), p. 72]:

(1) Is every pointed stable curve [of type (g,r), where 2g — 2 +r > 0] hyper-
bolically ordinary? That is to say, does every pointed stable curve [of type (g,r),
where 2g —2+r > 0] over S admit, étale locally on S, a nilpotent ordinary
indigenous bundle?

(2) Let P be a nilpotent ordinary indigenous bundle over a pointed stable
curve X [of type (g,r), where 2g —2 +r > 0] and ¥ — X a connected finite [log]
étale covering of X. Then is the pull-back of P to Y still ordinary?

As a corollary of Theorem B, we obtain the following theorem, which yields
a negative answer to the above basic question (2) [cf. Corollary 5.4]:

THEOREM C. Let X be a projective smooth curve of genus >?2 over an
algebraically closed field k of characteristic 3. Then, for every nilpotent ordinary
indigenous bundle P over X [k, there exists a connected finite étale covering ¥ — X
of X such that the [necessarily nilpotent admissible] indigenous bundle (Y — X)*P
over Y /k is not ordinary.
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In §6, we give, by applying the results obtained in the present paper, a
complete list of nilpotent/nilpotent admissible/nilpotent ordinary indigenous bun-
dles over a projective smooth curve of genus two over an algebraically closed
field of characteristic three [cf. Theorem 6.1]. Moreover, we prove the following
theorem, which yields a partial positive answer to the above basic question (1)
[cf. Corollary 6.6, Remark 6.6.1]:

THEOREM D. Every projective smooth curve of genus two over a connected
noetherian scheme of characteristic three is hyperbolically ordinary [c¢f. [6], Chapter
11, Definition 3.3, p. 1044].

1. Construction of a dormant indigenous bundle

In the present §1, we construct a dormant indigenous bundle over a projective
smooth curve of genus > 2 of characteristic 3 [cf. Proposition 1.1 below]. In the
present §1, let g > 2 be an integer, S a connected noetherian scheme of charac-
teristic 3 [i.e., over F3], and f : X — S a projective smooth curve [i.e., a morphism
which is projective, smooth, geometrically connected, and of relative dimension
one| of genus g over S. Write f¥: X — S for the projective smooth curve
over S obtained by base-changing X — S via the absolute Frobenius morphism
of S, ®: X — X7 for the relative Frobenius morphism over S, .# < Oy y for
the ideal of Oy ,x which defines the diagonal morphism with respect to X/S, and
Xy € X x5 X for the closed subscheme of X xg X defined by the ideal .# o
Oxxsx |Where n is a nonnegative integer]. In particular, it follows that .#/.#2 =
wy/s (respectively, Homg, (f/fz,@x) = 7y/s), where we use the notation “w”
(respectively, “7”’) to denote the relative cotangent (respectively, tangent) sheaf.

We shall write

B, X Coker(Oyr — ®.0y)
for the Oyr-module obtained by forming the cokernel of the natural homo-
morphism Oyr — ®,0x and
& E 0%,
Since the homomorphism Oyr — ®,.0x admits a natural splitting after pulling
back via ®, which thus determines a natural isomorphism of (y-modules

D0y = Oy @ &,

and @ is finite flat of degree 3, it follows that %4,, hence also &, is locally free of
rank 2. We shall write
1 P ¥ P6) > X
for the P'-bundle over X associated to &,.
Next, let us observe that one verifies immediately that the natural morphism

X XyrX — X xg X
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determines an isomorphism
X XyF p X(z).

In particular, the closed immersion X(;) — X x5 X determines a closed immer-
sion X(j) — X xyr X. Thus, it follows that the ¢y-module &, hence also the
P!-bundle P,, on X admits a natural connection relative to X/S. We shall write

Vé”o ) VPo

for the respective natural connections on &, P,. [So one verifies immediately
that the connection Vg, coincides with the connection on &, = ®*%, determined
by the exterior differentiation operator (y — wy,s.] Moreover, the above iso-
morphism X Xyr X = X{3), together with the cartesian diagram

Xxyr X 22, )

S

X —
[0}

)

determines isomorphisms of Oy-modules
* ~ ) ~ )
D0y — prl*@XxXI.—X — prl*@X(zw

which are compatible with the respective natural surjections onto Oy [arising from
the diagonal morphism with respect to X /X ] from each of these three modules.
In particular, by forming the kernels of the respective natural surjections onto Oy,
we obtain isomorphisms of Oy-modules

& = Ker(pr,Oxx ,x — Ox) < pri(J/57).
We shall write
oo : X — P,

for the section of 7, : P, — X determined by the composite & — wy,s of the
above isomorphism &, = pr,,(.#/.#%) and the natural surjection pr,(./.5%) —
I)I? = oy /s Then one verifies easily that the Kodaira-Spencer homomorphism
oiwp, )y — Wy/s at g, relative to Vp, [i.e., the homomorphism obtained by differ-
entiating o, by means of Vp ] is an isomorphism. Thus, it follows immediately
from our construction that the following proposition holds:

ProposITION 1.1.  The pair (n, : P — X,Vp,) is an indigenous bundle [c¢f
Introduction] over X /S whose Hodge section [cf. [6], Chapter 1, Proposition 2.4,
p. 1004] is given by o.. Moreover, the indigenous bundle (n,: P, — X,Vp,) is
dormant [cf. Introduction).

Proof. The fact that the pair (7, : P, — X,Vp ) is an indigenous bundle
over X/S has already been verified. The fact that the indigenous bundle
(7o : Po — X,Vp,) 18 dormant follows immediately from the definition of the
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connection Vp, [i.e., the construction of Vp, via the relative Frobenius morphism
®]. This completes the proof of Proposition 1.1. O
In the remainder of the present §1, let us consider the invertible sheaves
det(&,), det(%,), det(D.wyys).

Write .4 défjfom@ﬁ(det(%’o),wﬂ /s). First, let us observe that since the Oy-
module pry,(.#/.73) =~ & = ®* %A, fits into an exact sequence of (/y-modules

0— wg?fs — pry,(£/I3) — wxs — 0,
it follows that
~ @3
det(&,) =~ Wy /s
hence also
O M = Oy.

Next, let us recall from the discussion preceding [9], Théoreme 4.1.1, that the
map

(D*@X X (D*@X — COXF/S
(f59) = c(f - ®.d(g))

—where we write d: Uy — wy/s for the exterior differentiation operator and
c: Q.wy/s — wyrss for the Cartier operator—determines an isomorphism of
Oy r-modules

B = jfom(fr‘xF ('%oa C0)(”/5’)7
which thus implies that
MO = Oyr.

Thus, we obtain:

LemMA 1.2. It holds that

det(6,) = s, det(B) = wyrss, det(P.oys) = ff g

Proof. The first “~” has already been verified. Since the homomorphism
between the relative Jacobian varieties of X /S, X/S induced by @ is finite
flat of degree 39, it follows from the fact that ®*.#% =~ Oy, #®* =~ Oyr verified
above that .# lies in (/)" Pic(S). Thus, again by the fact that ®*.# =~ Oy, the
second “x~” follows. The third “=” follows from the second “x”, together with
the well-known exact sequence of (/yr-modules

0— (ﬁXF — q)*(ﬁx % (D*COX/S ;> G)XF/S —0

[cf., e.g., [4], Theorem 7.2]. U
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2. The dormant trivialization of the Schwarz torsor

In the present §2, we maintain the notation of the preceding §1. In
particular, we have a projective smooth curve f : X — S and a dormant indig-
enous bundle (n,: P, — X,Vp,) over X/S [cf. Proposition 1.1]. We shall write

My

for the moduli stack of projective smooth curves of genus g of characteristic 3
and

Ngloo]

for the moduli stack of projective smooth curves of genus g of characteristic 3
equipped with dormant indigenous bundles. The starting point of the present §2
is the following theorem:

THEOREM 2.1. Every dormant indigenous bundle over X /S is isomorphic fo
the dormant indigenous bundle (n,: P, — X,Vp,) of Proposition 1.1.

Proof. To verify Theorem 2.1, let us first recall some facts on the p-adic
Teichmiiller theory [cf. [6], [7]]. The natural (1-)morphism

Ny[oo] — A,

is finite and faithfully flat; moreover, there exists a dense open substack of ./,
on which this (1-)morphism is étale [cf. the final portion of [7], Chapter II,
Theorem 2.8, p. 153]. Thus, to complete the verification of Theorem 2.1, it
suffices to verify Theorem 2.1 for a “sufficiently general” [i.e., in .#,] projective
smooth curve of genus g over an algebraically closed field of characteristic three.

Next, let us observe that it follows from [11], Corollary 5.4, together with [5],
Theorem 2.1, that, for every odd prime number p and an integer g > 2, the
number of isomorphism classes of dormant indigenous bundles over a “sufficiently
general” projective smooth curve of genus g over an algebraically closed field of
characteristic p is equal to

pgfl p—1 1 B (_p)g*I Cg—l

291 N ' 29-2°
CA= sin®~2 <E> 2 C":IZ;;H -0~
V4

On the other hand, one verifies easily that the above quantity in the case where
p =3 is always equal to 1. This completes the proof of Theorem 2.1. O

Remark 2.1.1. Let us observe that Theorem 2.1 also follows from the theory
of molecules given in [7] [or the theory of Ehrhart quasi-polynomials discussed in
[5]—cf. [5], Theorem 3.9] as follows: By considering dormant indigenous bundles
over not only smooth curves but also stable curves, we have a natural exten-
sion of the (1-)morphism .Aj[c0] — .#, whose codomain is the moduli stack of
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stable curves of genus g of characteristic 3 [i.e., “.#,”]. Then it follows from
[7], Chapter II, Theorem 2.8, p. 153, together with a similar argument to the
argument applied in the first paragraph of the proof of Theorem 2.1, that, to
complete the verification of Theorem 2.1, it suffices to verify that

a structure of dormant molecule [cf. [7], Chapter V, §0, p. 229] on a fixed
[nonpointed] totally degenerate stable curve of characteristic 3 is unique.

On the other hand, this follows immediately from [7], Introduction, Theorem 1.3,
pp. 41-42, together with the fact that #((Fs/{x£1})\{0}) = 1.

Remark 2.1.2. One may also replace the second paragraph of the proof of
Theorem 2.1 by the local computation of the p-curvature given in the discussion
preceding Proposition 3.1 below [cf. Remark 3.1.1 below].

It follows from Theorem 2.1 [together with the discussion given in the first
paragraph of proof of Theorem 2.1] that the natural (1-)morphism

Ny[oo] — A,

is an isomorphism, hence also étale. Thus, by the final portion of [11], Theorem
3.3, we obtain:

COROLLARY 2.2. Every dormant indigenous bundle over X /S is dormant
ordinary [cf. [11], Definition 3.2].
We shall write
Gy — My

for the universal curve over .#, and
Ly = My

for the Schwarz torsor over .4, [cf. [7], Introduction, §0.4, pp. 7-9], i.e., the
torsor over the locally free coherent ¢ ,,-module of rank 3g —3

®2
(€ — 'ﬂz})*w@] /.M,

obtained by forming the moduli stack of projective smooth curves of genus g
of characteristic 3 equipped with indigenous bundles [cf. also [6], Chapter I,
Corollary 2.9, p. 1007]. By considering the composite of the above natural
isomorphism .#, < AVy[co] and the natural closed immersion .A4y[c0] — %, of
stacks, we obtain a trivialization

Mg — Iy

of the Schwarz torsor.
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DEerINITION 2.3. We shall refer to this trivialization .#, — %, of the Schwarz
torsor as the dormant trivialization.

By the dormant trivialization of Definition 2.3, we obtain an isomorphism of

¥, with the geometric vector bundle over .Z, associated to (6, — My), wf?i E
Thus: |

COROLLARY 2.4. There exists a natural bijection between the following two
sets: 5
(s, wa/s) rx, w,\(?/s)
« The set of zsomorphzsm classes of indigenous bundles over X/S.
For 0eI'(S, wa/S) I'x, a)X/S) the indigenous bundle over X /S corresponding

to 0 is given as follows: Let us recall the pair (6,,Vg,) and the exact sequence of
Ox-modules

0—>w§/23—>é”’0—>a)x/s—>0

discussed in §1. Write ¢ : &, — &, ®qy wx/s for the homomorphism of Ux-
modules obtained by forming the composite

do — wxs i w)(?fs = w;(?/zs ®cy Ox /s — o gy x/s-
We shall write
Vi
for the connection on P, determined by the connection
Va &f Ve + ¢

on &. Then the indigenous bundle over X /S corresponding to 0 is given by

def (

P(] PHXVP)

Moreover, for 0 e T(S, fa)X/S) rex, wX/zs), the dormant locus in S of Py
[ie., the maximal closed subscheme F = S of S such that the restriction of Py to
X Xxg F is dormant] coincides with the zero locus in S of 0 [i.e., the maximal closed
subscheme F = S of S such that the restriction of 0 to X xs F is identically zero).

Remark 2.4.1. We note that since det(,) =~ w?ﬁs # Oy [cf. Lemma 1.2],
the pair (&.,Vs,), as well as the pair (&,V) [cf. Corollary 2.4], is not an
indigenous vector bundle [cf. [6], Chapter I, Definition 2.2, pp. 1002—-1003; also the
discussion preceding [6], Chapter I, Definition 2.2, p. 1002]. One verifies easily
from the fact that det(%,) = wyr,s [cf. Lemma 12] that if % is an invertible
sheaf on X ¥ such that #®% ~ 7y~ /s [note that since 2 is invertible on S, such an
invertible sheaf always exists after étale localizing S], then an indigenous vector
bundle whose projectivization is isomorphic to (7, : P, — X,Vp,) is given by
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tensoring (&5, Ve, ) with the invertible sheaf ®*% equipped with the connection
determined by the exterior differentiation operator Oy — wy;s. On the other
hand, one also verifies easily that the operation of taking tensor product with
a dormant invertible sheaf [i.e., an invertible sheaf equipped with a connection
whose p-curvature is identically zero| does not affect the local computation of the
p-curvature as given in the discussion preceding Proposition 3.1 below.

3. Local criteria

In the present §3, we prove local criteria for some properties on indigenous
bundles [cf. Proposition 3.1; Proposition 3.8, (ii), below]. We maintain the no-
tation introduced at the beginning of §l.

Let

2
0eT(X,0F)

be a global section of w%zs. Thus, it follows from Corollary 2.4 that we obtain

a connection
Vo,
on the P!-bundle P, such that the pair

Py (m,: Py — X, V)

forms an indigenous bundle over X/S.
Let xe€ X be a point of X and ¢, =€ Oy a local parameter of X/S at x.
Write ¢, = ¢ € Oy for the local function on X at x which fits into the equality

0=¢- di® d.

Then one verifies immediately that the local sections
def

e =1®t—-1t®1, ezdéfelzeprl* Oxx,rx SO, Oy
[cf. the discussion preceding Proposition 1.1] are contained in the submodules
Ker(pry, Oxx, ,x — Ox) < &,
and that, in the natural exact sequence of ('y-modules

0—>a)§?/zs—>(§; — wy;s — 0,

the local section e, determines a local trivialization of the invertible sheaf w)C?/ZS,
and the local section e; determines a local splitting of the surjection & — wy/s;
in particular, {e;,e;} forms a local basis of &,.

Next, let us observe that it follows immediately from the definition of Vg,
that

0 1
Ve, (e1,e2) = (e1,€2) - <0 0) ® dt.
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Thus, one verifies immediately from the definition of Vfﬁ [cf. Corollary 2.4] that
0 1
Vg"o(elvez)(elaez)'<¢ 0>®df-

In particular, it follows that the p-curvature 2’ of the connection Vzo [cf., e.g.,
the discussion preceding [4], Theorem 5.1] is given by

PO tyr s — Adp, (6)

!
®7151f' = <(61762) (e, e2) - <¢2 f¢// Z/))
—where we write ¥ € Oyr for the local parameter of X¥ /S determined by the
local parameter t € Oy, d,r (respectively, d,) for the local trivialization of zyr /g
(respectively, ty/s) which maps dr” (respectively, dr) to 1, o, for the local
derivation corresponding to 6;, “(—)"” for “0,(=)” [i.e., “(—=)"” is the “derivative
of (=) with respect to ], and

ﬂd@x (édo) < @@nd@,( (éﬁo)

for the submodule of &ndy, (&) consisting of trace zero endomorphisms of locally
free coherent Oy-module &,. This local computation [cf. Remark 2.4.1] leads us
to the following local criteria for some properties on indigenous bundles:

ProposiTION 3.1.  The following hold:
(i) The indigenous bundle Py is nilpotent [cf. Introduction] if and only if, for
every point x € X, the equality

() + -4 +41=0
holds.
(i) Suppose that S is the spectrum of an algebraically closed field [of charac-
teristic 3.  Then the indigenous bundle Py is admissible [cf. Introduction] if and
only if, for every closed point x € X, it holds that

ord,(¢,.) < 2.

Proof. Assertion (i) follows from the definition, together with the above
local computation. To verify assertion (ii), let us observe that

{60} G %) o)}

forms a local basis of the locally free coherent Oy-module .«/dy,(&,). Thus,
assertion (ii) follows immediately from the definition, together with the above
local computation. Ul

Remark 3.1.1. If 2% =0, then it follows from the above local computation
that ¢ =0, hence also 0 =0. By means of this observation, one can give an
alternative proof of Theorem 2.1 [cf. Remark 2.1.2].
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Next, let us observe that the natural exact sequence of (/y-modules

®2

0—>a)X/S

— & — wy;s — 0
determines a homomorphism of (y-modules
Ado,(6,) — Endp, (6,) — Q}’fom@‘x(w%zs,wx/g) = Ty

moreover, the square Hasse invariant [cf. Introduction] of the indigenous bundle
Py is defined as the composite of the p-curvature 2 and this homomorphism.
Thus, by the above local computation, we obtain:

PrROPOSITION 3.2.  The square Hasse invariant of the indigenous bundle Py is,
up to multiplication by a global section of 0, given by
0eT(X,07) = T(X, Home (O Tyr/s,Tx/s))-
In particular, if, moreover, the indigenous bundle Py is admissible, then the double
supersingular divisor [cf. Introduction] of Py coincides with the zero locus of 0.

In particular, we obtain the following two corollaries:

COROLLARY 3.3. Suppose that the indigenous bundle Py is nilpotent and
admissible. Then the supersingular divisor [cf. Introduction] of Py is finite étale
over S.

Proof. Since [it follows from the definition that] the supersingular divisor of
Py is finite flat over S [cf. also [6], Chapter 11, Proposition 2.6, (2), p. 1032], to
complete the verification of Corollary 3.3, it suffices to verify the unramifiedness.
Thus, we may assume without loss of generality that S is the spectrum of an
algebraically closed field [of characteristic 3]. Then the unramifiedness follows
from Proposition 3.1, (ii); Proposition 3.2, together with the definition of the
supersingular divisor. O

COROLLARY 3.4. Suppose that S is reduced. Then the isomorphism class of
nilpotent indigenous bundle over X /S is completely determined by the zero locus of
the square Hasse invariant.

Proof. First, let us observe that since S is reduced, it follows from (7],
Chapter I, Proposition 1.5, p. 91, that, to verify Corollary 3.4, we may assume
without loss of generality that S is the spectrum of an algebraically closed field
k [of characteristic 3]. Next, let us observe that one verifies easily that if ¢ is
nonzero and satisfies the equality “(¢')* + ¢ - ¢” + ¢> = 07 of Proposition 3.1, (i),
then, for every ¢ € kK\{0,1}, ¢- ¢ does not satisfy the equality “(¢")* + ¢ - ¢" + ¢°
= 0" of Proposition 3.1, (i). Thus, Corollary 3.4 follows from Proposition 3.1,
(i); Proposition 3.2, together with Corollary 2.4. O
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Remark 3.4.1. Observe that Corollary 3.4 is a generalization of [6], Chapter
II, Proposition 2.6, (4), p. 1032, in the case where p = 3.

Next, let us observe that it follows from the equality of Proposition 3.1, (i),
that the following lemma holds:

Lemma 3.5. Suppose that S is the spectrum of an algebraically closed field
lof characteristic 3], and that the indigenous bundle Py is nilpotent. Then, for
every closed point x € X, it holds that ord,(¢,) ¢ 3Z + 1.

Proof. Assume that n &f ord,(¢,) e 3Z + 1 for some closed point x € X.
Write

0
be=D ai,
i=0

by regarding ¢, as an element of the completion ¢y .. Then, by considering the
coefficient of the “/2~2" of the left-hand side of the equality “(4')* + ¢ - ¢” + ¢°
= 0" of Proposition 3.1, (i), we obtain that @, = 0. Thus, we obtain a contra-
diction. O

By Lemma 3.5, we obtain:

COROLLARY 3.6. Suppose that g =2. If a nilpotent indigenous bundle over
X /S is active [¢f. [7], Chapter 11, Definition 1.1, p. 127|, then it is admissible.

Proof. Let us first observe that it follows from the definition of admissibility
that, to verify Corollary 3.6, we may assume without loss of generality that S is
the spectrum of an algebraically closed field &k [of characteristic 3]. On the other
hand, in this case, since deg(w?zs) =4, it follows immediately from Proposition
3.1, (ii), together with Lemma 3.5, that every nilpotent and active indigenous
bundle over X /S is admissible. O

We shall write
Ny

for the moduli stack of smooth nilcurves [cf. the discussion preceding [7], Intro-
duction, Theorem 0.1, p. 24] of genus g of characteristic 3, i.e., the moduli stack
of projective smooth curves of genus g of characteristic 3 equipped with nilpotent
indigenous bundles. Note that it follows from [6], Chapter II, Theorem 2.3,
p. 1029 [cf. also the discussion following [6], Chapter II, Definition 2.4, p. 1030],
that the natural (1-)morphism

is finite flat of degree 3%73.
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COROLLARY 3.7. Suppose that g =2. Then the open substack of N>

N3\ N3 [0]
is smooth over F;.

Proof. This follows from Corollary 3.6, together with [6], Chapter II,
Corollary 2.16, p. 1043. O

ProPOSITION 3.8.  Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3|, and that the indigenous bundle Py is nilpotent. Then
the following hold.

(i) We shall write

Ty
Jor the relative tangent space of N,/ M, at the k-valued point of Ny corresponding
to Py. Then Ty is nalurally isomorphic to the subspace of r'ex, wx/zs) consisting
of global sections n of a)X /s such that if, for some closed point x € X, we write
n= lrbx : dtx ® d[xv
then it holds that
(¢x : lﬁx)// =

(ii) It holds that the indigenous bundle Py is ordinary [cf. Introduction] if and
only if the following condition is satisfied: For every nonzero global section n of
co%zs, if, for some closed point x € X, we write

n= lﬂx : dlx ® dlxv
then it holds that

(¢x ' lva)” #0.

Proof. Assertion (ii) follows immediately from assertion (i). Thus, to com-
plete the verification of Proposmon 3.8, it suffices to verify assertion (i). Write
= k[ ]/(¢2), where ¢ is an 1ndeterm1nate Then it follows from Proposition
3 1, (i), that T} is naturally isomorphic to the subspace of I'(X, wy /s) consisting
of global sections 7 of w% Y /s such that if, for some closed point x € X, we write

n=1, d,® dt,,
then the equality
(p+ep)) +(p+eb) (p+ep) +(p+eap)’ =0

—where write i =y, —in 4 ®, T(X,0%) = [(X,0f)) @& T(X,0F) holds.
On the other hand, again by Proposition 3.1, (i), one verlﬁes easily that it holds
that this equality holds if and only if the equahty

¢ by =9 Y (= (0 Y)") =0
holds. This completes the proof of assertion (i). O
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Remark 3.8.1. Proposition 3.8, (ii), also follows immediately from Propo-
sition 3.2; Lemma A.9, (i) [in the case where we take the pair “(%,0)” of
Lemma A.9, (i), to be the pair consisting of Oy and the natural identification
Ox ®¢, Oy = Ox—cf. Remark A.4.1], together with [6], Chapter II, Proposition
2.12, p. 1037.

Thus, we obtain:

COROLLARY 3.9. Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3|, and that the indigenous bundle Py is nilpotent. Then
the following conditions are equivalent:

(1) The indigenous bundle Py is dormant.

(2) The vector space Ty over k of Proposition 3.8, (i), is of dimension 3g — 3.

Proof. 1f Py is dormant, then 6 =0 [cf. Corollary 2.4]. Thus, the impli-
cation (1) = (2) follows from Proposition 3.8, (i). On the other hand, if
condition (2) is satisfied, then it follows from Proposition 3.8, (i) [in the case
where we take the “7” of Proposition 3.8, (i), to be 0], that (¢*)” =0. Thus,

since 0 = (%) = —(¢")* — ¢ ¢" = ¢* [cf. Proposition 3.1, (i)], we conclude that
¢ =0, hence also 8 =0, ie., that condition (1) is satisfied [cf. Corollary 2.4].
This completes the proof of Corollary 3.9. O

4. Indigenous bundles arising from squares

In the present §4, we discuss some properties on an indigenous bundle
which arises from the square of a “twisted” differential form, i.e., the square of
a global section of a ““square root” of the square of the relative cotangent sheaf
[cf. Proposition 4.1, Proposition 4.2, Proposition 4.4 below]|. In the present §4,
we maintain the notation introduced at the beginning of §1.

Let

P =(L,0: 2% 5 0y)
be a square-trivialized invertible sheaf on X [cf. Definition A.3] and
rel(X, & R0, C0){/5)

a global section of % ®, wy/s. Let us recall [cf. the discussion following
Definition A.3] that we have isomorphisms of invertible sheaves

R A A
OURN I~ IRIRI— D IF

—where we write #¥ for the invertible sheaf on X obtained by pulling back
% via the morphism X — X induced by the absolute Frobenius morphism of
S, 1 is a local section of %, and ¥ is the local section of #% determined by /.
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Let x € X be a point of X, ¢ty =t € Uy a local parameter of X/S at x, and
I, =1€% a local trivialization of & at x. Then the global trivialization ®
and the local trivialization /, =/ determine a local unit

si=0¥oIxleu;

at x. Moreover, the global section y determines a local function ¢, = ¢ € Ox on
X at x which fits into the equality

1=¢-1®dt

at x.
Next, let us observe that the trivialization ® determines an isomorphism

0 :T(X,(Z Qq, wX/S)®2) = (X, w?/zs)
Thus, by considering the image via this isomorphism of the square
0L 1 @1 eT (X, (£ ®c, 0x/5)™)
of y, we obtain a global section

0(0) e T(X,wgs)

of a))C?/zS. On the other hand, it follows from Corollary 2.4 that this global
section O(0) gives rise to an indigenous bundle over X /S
Pow) & (. : Py — X, V).

PROPOSITION 4.1.  Suppose that y defines a relative effective Cartier divisor of
X/S. Then the following conditions are equivalent:

(1) The indigenous bundle Pg) is nilpotent and active.

(2) The global section y e T'(X,¥ ®q, wyx/s) is a normalized Cartier eigen-
form associated to & = (¥%,0) [cf. Definition A.8, (i)].

Proof. Let us first observe that it follows from the definitions of @(6) that
0(0) fits into the equality
00) =¢*-5-dt®dt

at x. Thus, it follows from Proposition 3.1, (i), that it holds that Pgy) is
nilpotent if and only if, for every point x € X,

($*-0)) + (¢ 0) - (67 0)" + (47 - 9)°
:¢4.(5/)2_¢3.¢/_5_5/_¢3.¢//'52+¢4.5_5//+¢6.53
=§> 0 (—(p-07) +4)

is equal to zero. In particular, Proposition 4.1 follows from Lemma A.9, (ii),
together with Corollary 2.4. O
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ProrosITION 4.2.  Suppose that the indigenous bundle Pgg) is nilpotent and
active. Then the following conditions are equivalent:

(1) The indigenous bundle Pg) is nilpotent and admissible.

(2) The zero locus of the global section y e I'(X, % ®., wy/s) is finite étale
over S.

Proof. Since [one verifies immediately that] the locus [in S] on which
condition (1) (respectively, (2)) is satisfied is open, to complete the verification
of Proposition 4.2, we may assume without loss of generality that S is the
spectrum of an algebraically closed field [of characteristic 3]. Then the equiv-
alence (1) < (2) follows from Proposition 3.1, (ii), together with the definition of
0(0). O

Remark 4.2.1.

(i) Note that condition (2) of Proposition 4.1 does not imply condition (2) of
Proposition 4.2. Such a counter-example is as follows: Let k be an algebrai-
cally closed field of characteristic 3. Let us consider the following polynomial:

f(6) =2+ 11 ek

Then one verifies easily that f(¢) does not have any multiple root, which thus
implies that the equation

s> = /(1)

determines a hyperelliptic projective smooth curve C of genus five over k.
Write w € I'(C,wci) for the global section of wc/, whose restriction to
the open subscheme of X on which f is invertible is of the form

—where o € k satisfies that «> = 2. Then one verifies easily from Lemma A.9,
(i), that w is a normalized Cartier eigenform associated to (¢ [equipped with the
natural identification O¢ ®..0Oc = Oc]. On the other hand, it is immediate that
if we write ce C for the closed point corresponding to (z,s) = (0,1), then
ord.(w) = 4.

(i) It follows from Corollary 3.6 that a nilpotent active indigenous bundle
over a projective smooth curve of genus two in characteristic three is admissible.
On the other hand, it follows from the discussion of (i), together with Proposition
4.1 and Proposition 4.2, that there exists a nilpotent active indigenous bundle over
a projective smooth curve in characteristic three which is not admissible.

PrOPOSITION 4.3.  Suppose that S is the spectrum of an algebraically closed
field k [of characteristic 3|, and that the indigenous bundle Pg is nilpotent and
admissible. Write

Te)
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Jor the relative tangent space of N,/ M, at the k-valued point of Ny corresponding

to Pe). Thus, it follows from Proposition 3.8, (i), that Teg) may be regarded as
®2 .

a subspace of T'(X, a)X/S).

T@(g) < F(X, co)@?/zs)
Then the map
rx,« R, CUX/S) @ I'(X, 2 Ry CUX/S) — I'(X, w}(?/zs)
1@ O®p)
induces an isomorphism of vector spaces over k
KCT(C$) :> T@(())
o— O(c®y)

—where we write Cg for the Cartier operator associated to ¥ = (%,0)
[¢f. Definition A.4).

Proof. Let us first observe that [one verifies easily that] the homomorphism
of vector spaces over k

2T (X, % ®, wx/s) — F(X7w)(?/2$)
ar— O ® y)

is injective. Thus, to verify Proposition 4.3, it suffices to verify the following two
assertions:

(a) E(Ker(Cg)) c T@(g).

(b) The resulting [cf. (a)] homomorphism Z : Ker(Cy) — T is surjective.
Next, let us recall from the proof of Proposition 4.1 that ©(0) fits into the
equality

O) =¢*-5-dt@dt

at x. Thus, it follows from Proposition 3.8, (i), that the subspace Tg(y) S
F(X , cu%zs) consists'of global sections # of a)g?/zs such that if, for some closed
point x € X, we write

n=1y- dt® dt,
then it holds that
(97 -6-%)" =0.

Now we verify the assertion (a). Let oeI'(X, % ®¢, wy/s) be such that
Cy(0) =0. Write

c=u-1®dt
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at x. Since o€ Ker(Cy), it holds that (x-67")" =0 [cf. Lemma A.9, (i)
Thus, since

BOo®y)=¢ -u-0-dt®dt
at x, and
(@ p-0?)" =) (w67 = (¢ (w67 + (6% (w67 =0,

we conclude that Z(0) € Tg(y). This completes the proof of the assertion (a).
Next, we verify the assertion (b). Let # be a global section of w%zs which
belongs to Tg(y). Write

n=1y-di® dt
at x. Then since
0=(¢*-0-9)"
= (=) =9 9") 0 U+ 4" oy
T =0 g S

and ¢ is of order < 1 |at x] by Proposition 4.2, it holds that ord,(¢) > 1 implies
ord,(y) = 1. Thus, it follows that V(x) = V())ed E V(#)eqa E V(#), Where we

write “V(—)” for the zero locus of “(—)”, i.e., that nel"(X,w)C?/ZS(—V()())) c

rex, a)%zs). Now let us observe that since (¥ ®, wx /5)®2 =~ wi?/zs, which thus

implies that % ®, wy/s = w%zs(—V()()), we have an isomorphism
[(X, % ®c, 0x/s) > T(X, 0P~V (1))
og— 0o ®y).

Thus, we conclude that there exists a global section ¢ of £ ®(, wy,s such that
n=0(c®y). Write

o=u-lQdt
at x, which thus implies that
y=p-¢-0
at x. Then since
0=(¢>-5-9)" = (u-¢>- 5"
=) (u-07) = (9707 (-7 + (976 (-6
=¢*-8 (u-67")",

it holds that (u-07")" =0, ie., that o e Ker(Cg) [cf. Lemma A.9, (i)]. This
completes the proof of the assertion (b), hence also of Proposition 4.3. O
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ProrosiTiON 4.4, Suppose that the indigenous bundle Pg) is nilpotent and
admissible. Then the following conditions are equivalent:

(1) The indigenous bundle Pg) is nilpotent and ordinary.

(2) The invertible sheaf* & is parabolically ordinary [cf. Definition A.7].

Proof. Since [one verifies immediately that] the locus [in S] on which con-
dition (1) (respectively, (2)) is satisfied is open, to complete the verification of
Proposition 4.4, we may assume without loss of generality that S is the spectrum
of an algebraically closed field [of characteristic 3]. Then Proposition 4.4 follows
from Proposition 4.3. ]

5. Nilpotent admissible indigenous bundles via Cartier operators

In the present §5, we prove the main result of the present paper [cf. Theorem
5.2 below], as well as some corollaries to the main result. In the present §5, we
maintain the notation introduced at the beginning of §1.

DEFINITION 5.1.
(i) We shall say that a pair

(gax € F(Xwg ®(f‘)( wX/S))

consisting of an invertible sheaf ¥ on X and a global section y of ¥ ®, wy/s
is of CE-type [where “CE” stands for “Cartier Eigenform™] if
. $®2 ~ (DX,
*1eT(X, 2 ®, wy/s) is a Cartier eigenform associated to & [cf.
Definition A.8, (ii)], and
* the zero locus of y is étale over S.
(i) We shall say that a pair (&, ) of CE-type is of CEO-type [where “CEO”
stands for “Cartier Eigenform and Ordinary”] if & is parabolically ordinary.
(iii) We shall say that a relative effective Cartier divisor D of X/S is of
CE-type (respectively, of CEO-type) if there exists a pair (%,y) of CE-type
(respectively, of CEO-type) such that D coincides with the zero locus of y.

The main result of the present paper is as follows:

THEOREM 5.2. Let g > 2 be an integer, S a connected noetherian scheme of
characteristic 3 [i.e., over F3], and f : X — S a projective smooth curve of genus g.
Write wy s for the relative cotangent bundle of X /S. Then the following hold.

(i) Let P be a nilpotent admissible indigenous bundle over X/S. Write Lp
for the Hasse defect of P [cf. Definition B.2] and yp e I'(X, %p ®¢, wxs) for the
Hasse invariant of P [c¢f. also the final portion of Proposition B.4]. Then the pair

(gPa XP)

is of CE-type [cf. Definition 5.1, (i) Moreover, it holds that P is nilpotent
ordinary if and only if the pair (%p,yp) is of CEO-type [c¢f. Definition 5.1, (ii)].
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(i) Let D be a relative effective Cartier divisor of X/S. Then it holds that
D is the supersingular divisor of a nilpotent admissible (respectively, nilpotent
ordinary) indigenous bundle over X /S if and only if D is of CE-type (respectively,
of CEO-type) [c¢f- Definition 5.1, (iii)].
(i) Suppose that S is reduced. Then, by considering the supersingular
divisors, we have a bijection between the following two sets:
* The set of isomorphism classes of nilpotent admissible (respectively,
nilpotent ordinary) indigenous bundles over X/S.
* The set of relative effective Cartier divisors of X /S of CE-type
(respectively, of CEO-type).

Proof. First, we verify the first assertion of assertion (i). Let us first
observe that it follows from the final portion of Proposition B.3 that $P®2 ~ (Oy.
Moreover, it follows from Corollary 3.3 that the zero locus of yp is finite étale
over S. Thus, to complete the verification of the first assertion of assertion (i), it
suffices to verify that there exists a trivialization © : 3P®2 = Ox such that yp is a
normalized Cartier eigenform associated to (%p,®).

Let us write 0p € I'(X, a))%zs) for the global section of co)(?/zs corresponding,

via the bijection of Corollary 2.4, to the indigenous bundle P. Fix a trivial-

ization © : 2% = Oy of #2* and write 0 for the image via the isomorphism
C(X, (<% ®q, wX/S)®2) ;F(X,wg?/zs) induced by ® of the square yp ® ype€
I'X, (% ®g, wX/S)®2) of yp. Then it follows from Proposition 3.2 that there
exists a global unit ueI'(S,05) such that 0p =u-0. Thus, we may assume
without loss of generality, by replacing ® by u~! - @, that 0p = 0. In particular,
it follows from Proposition 4.1 that yp is a normalized Cartier eigenform as-
sociated to (%p,®). This completes the proof of the first assertion of assertion
(i). Moreover, the final assertion of assertion (i) follows from the first asser-
tion of assertion (i), together with Proposition 4.4 [cf. also the equality “fp = 6”
in the proof of the first assertion of assertion (i)]. This completes the proof of
assertion (i).

Next, we verify assertion (ii). The necessity follows from assertion (i). To
verify the sufficiency, let D be a relative effective Cartier divisor of X /S of
CE-type (respectively, of CEO-type). Thus, it follows from the definition that
there exists a pair (&, y) of CE-type (respectively, of CEO-type) such that D is
defined by y. Now since (&,y) is of CE-type, the zero locus of y is étale
over S, and there exists a trivialization ©® : £®? 5 Oy of #®? such that y is
a normalized Cartier eigenform associated to (%,0). Thus, it follows from
Proposition 4.1 and Proposition 4.2 that the indigenous bundle P over X /S
corresponding, via the bijection of Corollary 2.4, to the image via the iso-
morphism I'(X, (¥ ®, wX/S)®2) QF(Xm)S?/ZS) induced by ® of the square
1®xel(X,(Z ®g, coX/S)®2) of y is nilpotent and admissible. Moreover, it
follows from Proposition 4.4 that if (&£, y) is of CEO-type, then the indigenous
bundle P is ordinary. Write yp for the Hasse invariant of P. Then it follows
from Proposition 3.2 that the zero locus of yp, i.e., the supersingular divisor of
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P, coincides with the zero locus of y, i.e., D. This completes the proof of the
sufficiency, hence also of assertion (ii).

The injectivity of the map of assertion (iii) follows from Corollary 3.4
[cf. also [6], Chapter II, Proposition 2.6, (4), p. 1032]. The surjectivity of the
map of assertion (iii) follows from assertion (ii). This completes the proof of
Theorem 5.2. ]

COROLLARY 5.3. Let X be a projective smooth curve of genus g > 2 over an
algebraically closed field k of characteristic 3 and & an invertible sheaf on X such
that ¥®? =~ Ox. Then the following hold:

(i) Suppose that & = Oy (respectively, & % Ox). Then the number of iso-
morphism classes of nilpotent admissible indigenous bundles over X /k whose Hasse
defects are isomorphic to £ is

39-1 1
(respectively, < #Py’z(Fg)) = ﬁ>

g _
< #P'(F3) = 33 - 11

(i) The number of isomorphism classes of nilpotent admissible indigenous
bundles over X [k is

< #P9V(F3) + (#((Z)22)%%) — 1) - #PI72(F3)

= 23 =)+ @2 - 1E 1),

Proof. First, we verify assertion (i). Fix a trivialization ® : ¥®* 5 ©y.
Let us first observe that it follows from Theorem 5.2, (iii) [cf. also Remark A.8.1],
that, to verify assertion (i), it suffices to verify that the number of subspaces
of Ve ET(X, % ®q, wy/s) of dimension 1 which are preserved and not annihi-
lated by the Cartier operator Vo — (X, £F ®q, , Wxr;s)) < Ve associated to
(Z£,0) is

9 _ g-1 _
< #P971(F3) = 33—11 (respectively, < #P972(F3) = 33411)

if & =~ Oy (respectively, ¥ % (Ox). To this end, let us observe that one verifies
easily from the Riemann-Roch theorem that the vector space Vg over k is of
dimension g (respectively, g — 1) if ¥ =~ Ox (respectively, ¥ # Ox). Thus, as-
sertion (i) follows immediately from elementary linear algebra [cf. also [8], Cor-
ollary, p. 143]. This completes the proof of assertion (i). Assertion (ii) follows
immediately from assertion (i). This completes the proof of Corollary 5.3. [

COROLLARY 5.4. Let X be a projective smooth curve of genus > 2 over an
algebraically closed field k of characteristic 3. Then, for every nilpotent ordinary
indigenous bundle P over X [k, there exists a connected finite étale covering Y — X
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of X such that the [necessarily nilpotent admissible] indigenous bundle (Y — X)* P
over Y /k is not ordinary.

Proof. Write ¥p for the Hasse defect of P and Y| — X for the connected
finite étale covering of X which trivializes %p. [So if ¥p = Oy (respectively,
Pp # Oy), then Y] — X is of degree 1 (respectively, 2).] Next, let Y, — X be
a connected finite étale covering of X such that Y, is not parabolically ordinary
[cf., e.g., [10], Théoréme 2] and ¥ — X a connected finite étale covering of X
which dominates ¥Y; — X and Y, — X.

Now let us observe that since Y — X factors through Y| — X, one verifies
immediately that the Hasse defect of the indigenous bundle (Y — X)*P over
Y /k is trivial. Thus, it follows from the final portion of Theorem 5.2, (i), that
the indigenous bundle (Y — X)"P over Y/k is ordinary if and only if Y is
parabolically ordinary [cf. also Proposition A.6]. On the other hand, since
Y — X factors through Y, — X, and Y, is not parabolically ordinary, it holds
that Y is not parabolically ordinary [cf., e.g., the discussion entitled “The p-rank”
of [8], pp. 146-147 and [§8], Corollary 1, p. 174], which thus implies that the
indigenous bundle (Y — X)*P over Y/k is not ordinary. O

Remark 5.4.1. Corollary 5.4 yields a negative answer to the basic question
(2) of [7], Introduction, §2.1, p. 72.

Finally, we discuss the various moduli stacks related to the main result of
the present paper. We shall apply the notational conventions for the various
stacks established in the Appendix C [in the case where we take the “p” of the
Appendix C to be 3]. The following corollary follows immediately from the final
portion of Theorem 5.2, (i) [cf. also Proposition C.5]:

COROLLARY 5.5. We have a cartesian diagram of stacks

t%ord jg[Z] pb-ord

l l

{/‘/g'adm - fq[z]

—where the vertical arrows are the natural open immersions of stacks [cf.
Definition C.4|, and the lower horizontal arrow is the Hasse defect morphism
[¢f. Definition C.1].

Next, for a nonnegative integer r, write

My, 1

for the moduli stack of hyperbolic curves of type (g,r) of characteristic 3, i.e., the
moduli stack of projective smooth curves of genus g of characteristic 3 equipped
with relative effective étale Cartier divisors of relative degree r.



714 YUICHIRO HOSHI

DEerINITION 5.6. It follows from Corollary 3.3, together with Proposition
B.3, that the supersingular divisor of the universal nilpotent admissible indigenous
bundle over %, x 4, Jl@adm — L/i/p'/adm determines a (1-)morphism over ./#,

(adm
Ny = My pg-)-

We shall refer to this (I-)morphism as the Hasse morphism.
The following corollary follows immediately from Theorem 5.2, (ii):

COROLLARY 5.7. Let (X, D) be a hyperbolic curve of type (g,2g — 2) over a
connected noetherian scheme S of characteristic 3. Then the following conditions
are equivalent:

(1) The classifying (1-)morphism S — My 1,2 of (X, D) factors through the
Hasse morphism '™ — ./, 15, ».

(2) The relative effective Cartier divisor D of X /S is of CE-type.

6. The case of genus two

In the present §6, we give, by applying the results obtained in the present
paper, a complete list of nilpotent/nilpotent admissible/nilpotent ordinary indige-
nous bundles over a projective smooth curve of genus two over an algebraically
closed field of characteristic three [cf. Theorem 6.1 below]. Moreover, we also
prove that every projective smooth curve of genus two over a connected
noetherian scheme of characteristic three is hyperbolically ordinary [cf. Corollary
6.6 below]. In the present §6, we maintain the notation introduced at the
beginning of §1. Suppose, moreover, that g =2 [i.e., that X is of genus 2|, and
that S is the spectrum of an algebraically closed field k [of characteristic 3].

Since X is of genus 2, X admits a uniquely determined hyperelliptic involu-
tion 1, which determines a double covering

¢:X—0
—where we write Q for the [scheme-theoretic] quotient of X by the action of 1.
[Thus, Q is isomorphic to the projective line P} over k.| We shall write
WPcX

for the ramification locus of &, i.e., the zero locus of the global section of the
invertible sheaf on X [of degree 6]

Homg, (& wgs,wy/s)

determined by &, [Thus, WP = X is the set of Weierstrass points of X.] Then,
as is well-known, the closed subscheme WP < X is reduced; moreover, we have a
bijection [of finite sets of cardinality 15] between

* the set of subsets of WP of cardinality 2
and

+ the set of isomorphism classes of invertible sheaves on X of order 2
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given by mapping D = {x;,x;} S WP to % &f Ox(x; — x). Finally, for a
subset D = WP of cardinality 2, write

é D: X, D — X
for the connected finite étale double covering which trivializes %) and

Ep (— 0)

for the elliptic curve over k obtained by considering the double covering of Q
(= P}) whose branch locus coincides with ¢(WP\D). Then one verifies imme-
diately from the definition of Ep that we obtain a cartesian diagram

X, -2, X

| L

Ep — Q0

which thus implies that the “new part” of &j [i.e., the abelian variety obtained
by forming the quotient of the Jacobian variety of Xp by the image—via the
homomorphism induced by &p—of the Jacobian variety of X] is isogenous to Ep.

By this observation, together with the results obtained in the present paper,
we give the following complete list of nilpotent/nilpotent admissible/nilpotent
ordinary indigenous bundles over X/S:

THEOREM 6.1. The following hold.

(i) Every nilpotent nondormant indigenous bundle over X /S is admissible.

(i) Let D = WP be a subset of cardinality 2 and 0p € I'(X, w)(?/zs) a [uniquely
determined, up to multiplication by an element of k*| global section of a)g?/s
such that the zero locus of 0p coincides with 2D [if we naturally regard D as a
reduced divisor of degree 2|, and, moreover, the elliptic curve Ep is ordinary. Then
a [uniquely determined—cf. Proposition 3.2, Corollary 3.4] k*-multiple of Op
corresponds, via the bijection of Corollary 2.4, to a nilpotent [necessarily admis-
sible—cf. (i)] indigenous bundle over X/S.

(iii) Let wck € T'(X,wy/s) be a Cartier eigenform associated to Ux. Then a
[uniquely determined—cf. Proposition 3.2, Corollary 3.4] k*-multiple of wce ® wcg
e ['(X, a)g?zs) corresponds, via the bijection Corollary 2.4, to a nilpotent [necessarily
admissible—cf. ()] indigenous bundle over X /S.

(iv) Every nilpotent nondormant [ie., admissible—cf. (i)] indigenous bundle
over X /S is obtained as the result of either (ii) or (iii).

(v) It holds that a nilpotent indigenous bundle over X /S is ordinary if and
only if one of the following two conditions is satisfied:

(1) The indigenous bundle is obtained as the result of (ii).
(2) The indigenous bundle is obtained as the result of (iii), and, moreover,
X is parabolically ordinary.
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Proof. Assertion (i) follows from Corollary 3.6. Next, we verify assertion
(ii). Let D < WP be as in assertion (ii). Then it is immediate that %) ®,
wy/s = Oy (D) [if we naturally regard D as a reduced divisor of degree 2]. In
particular, it follows that I'(X,%p ®., wy/s) is of dimension 1, which thus
implies that the zero locus of every nonzero global section of %p ®, wy/s
coincides with [the reduced closed subscheme of X whose underlying subset is]
D. Moreover, since Ep is ordinary, it follows from Proposition A.6 [cf. also
Remark A.8.1] that every nonzero global section of ¥p ®., wy/s is a Cartier
eigenform associated to #p. Thus, it follows immediately from Proposition 4.1
that assertion (ii) holds. This completes the proof of assertion (ii).

Assertion (iii) follows from Proposition 4.1. Next, we verify assertion (iv).
Let P be a nilpotent admissible indigenous bundle over X/S. If the Hasse defect
of P is trivial, then it follows from Theorem 5.2, (iii), that P is obtained as the
result of (iii). If the Hasse defect of P is nontrivial, then it follows from Theorem
5.2, (iii), together with Proposition A.6, that P is obtained as the result of (ii)
[cf. also the proof of assertion (ii)]. This completes the proof of assertion (iv).
Assertion (v) follows from the final portion of Theorem 5.2, (i), together with
assertion (iv). This completes the proof of Theorem 6.1. O

Remark 6.1.1. 1t follows immediately from Proposition 3.2, together with
the various definitions involved, that the Hasse invariants and the supersingular
divisors of nilpotent admissible indigenous bundles over X /S are given as follows:

+ Write P for the nilpotent admissible indigenous bundle over X /S obtained
as the result of Theorem 6.1, (ii), with respect to a subset D = WP as in Theorem
6.1, (it). Then the supersingular divisor of P is [the reduced closed subscheme
of X whose underlying subset is] D. Next, let us observe that Oy (D)®* ~ a)f?/zs,
and, moreover, the vector space I'(X, Ox (D)) over k is of dimension 1. Let s be
a nonzero global section of Ox(D). Then the Hasse invariant of the indigenous
bundle P is a k*-multiple of

se (X, 0x(D)).

« Write P for the nilpotent admissible indigenous bundle over X/S ob-
tained as the result of Theorem 6.1, (iii), with respect to a global section
wcg € I'(X,wy/s) as in Theorem 6.1, (iii). Then the Hasse invariant of P is a
k*-multiple of

(CE € F(X, wx/s).

The supersingular divisor of this indigenous bundle is the zero locus of wcg.

Remark 6.1.2. One verifies immediately that an indigenous bundle [implic-
itly] discussed in [1], §11, is a nilpotent admissible indigenous bundle obtained as
the result of Theorem 6.1, (iii) [cf. the discussion in Remark 6.1.1 concerning
supersingular divisors; also condition (2) of Theorem 6.1, (v), and the equivalence
(a) & (b) of [1], Theorem 2.8, (3)].
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The following corollary follows immediately from Theorem 2.1 and Theorem
6.1 [cf. also Remark 6.1.1], together with elementary linear algebra [cf. also [§],
Corollary, p. 143]:

COROLLARY 6.2. Write nwp for the number of subsets D of WP of cardinality
2 such that the elliptic curve Ep is ordinary. Write, moreover, vy (€ {0,1,2}) for
the p-rank of the Jacobian variety of X. Then the following hold:

(i) The number of isomorphism classes of nilpotent indigenous bundles over
X/S is given by

1 + nwp + #P7x 1 (F3)

—where we write #P~(F3) def ).

(i) The number of isomorphism classes of nilpotent admissible indigenous
bundles over X /S is given by

nwp + #P771(F3)

—where we write #P~'(F3) o,

(i) If X is parabolically ordinary (respectively, not parabolically ordinary)
[ie., vy =2 (respectively, yy #2)|, then the number of isomorphism classes of
nilpotent ordinary indigenous bundles over X /S is given by

nwp +4  (respectively, nwp).

Next, let us recall the following well-known lemma on the p-rank of the
Jacobian variety of a projective smooth curve of genus < 2 over an algebraically
closed field of characteristic three. The following well-known lemma follows
immediately from, for instance, the characterization of the Cartier operator [cf.,
e.g., [4], Theorem 7.2], together with a well-known explicit description of the
global differential forms on a hyperelliptic projective smooth curve:

LeEMMA 6.3. The following hold.
(i) Suppose that X admits a dense open subscheme which is isomorphic to the
affine scheme over k

Spec(kls, 1/(s* — (1))
—where s and t are indeterminates, and
f(0) = +aut* + a3t + axt® + ayt + ag € K[1].

Then it holds that X is parabolically ordinary if and only if a; # as - ay.
(ii) If an elliptic curve E over k admits a dense open subscheme which is
isomorphic to the affine scheme over k

Spec(k[s, 1/ (s* = f(1)))
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—where s and t are indeterminates, and
f(6) = t* + a3 + axt® + ayt + ag € k1]
(respectively, f(t) =t 4+ ayt* + a\t + ap € k[t])
then it holds that E is ordinary if and only if a, # 0.

The following corollary was already proved in [7] [cf. Remark 6.4.1 below]:

COROLLARY 6.4. There exists a dense open substack of > such that every
projective smooth curve parametrized by a geometric point on this open substack
admits exactly 19 isomorphism classes of nilpotent ordinary indigenous bundles.

Proof. 1t follows from Theorem 6.1 [cf. also Corollary 6.2, (iii)] that, to
verify Corollary 6.4, it suffices to verify the following assertion: There exists a
dense open substack Uyg S M, (respectively, Uwp S .#,) of .4, such that every
projective smooth curve parametrized by a geometric point on Uq (respectively,
Uwp) is parabolically ordinary (respectively, satisfies the condition that, for every
subset D = WP of cardinality 2, the elliptic curve Ep is ordinary). On the other
hand, the existence of “U,q4" (respectively, “Uwp”) as above follows immediately
from Lemma 6.3, (i) (respectively, Lemma 6.3, (ii)), together with a straight-
forward calculation. This completes the proof of Corollary 6.4. O

Remark 6.4.1. Let us observe that the number “19” in the statement of
Corollary 6.4 coincides with the result of the formula of [7], Chapter V, Corollary
1.3, (3), pp. 237-238, i.e., the formula

r P
nsty = §(2P2 +1).

Finally, we prove the existence of a nilpotent ordinary indigenous bundle
over X/S:

ProposITION 6.5.  The following hold:

(i) There exist at least 12 isomorphism classes of nilpotent ordinary indigenous
bundles whose Hasse defects are nontrivial over X/S.

(i) There exist at least 13 isomorphism classes of nilpotent ordinary indig-
enous bundles over X /S.

Proof. Let us identify Q with P} by an isomorphism over k. Moreover, let
us naturally identify the set of closed points of P} = Q with the set kU {o0}.
First, T claim that the following assertion holds:

Cram 6.5.A. If the number “nwp” defined in the statement of Corollary
6.2 is <12, then, by considering a suitable automorphism of P,i = (0, one may
take the subset “WP” of P = Q to be

{0,1,00, 1,0, —a} = kU{o0}
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—where « € k satisfies that > = 2—i.e., X admits a dense open subscheme which
is isomorphic to the affine scheme over &

Spec(k[s, 1/ (s> = f(1)))

—where s and ¢ are indeterminates, and
f(0) =x(x—D(x+ D (x—a)(x+a) = x> +2x e k[1].

Indeed, suppose that there exist 3 distinct subsets Dy, Dy, D3 = WP of cardinality
2 such that the elliptic curves Ep,, Ep,, and Ep, are not ordinary.

First, we consider the case where WP = D; U D, UDs;. Then let us observe
that we may assume without loss of generality, by considering a suitable auto-
morphism of P} = Q, that &(D;) = {0,00} and 1 €&(D,). Then since Ep, and
Ep, are not ordinary, it follows from Lemma 6.3, (ii), that there exists an element
o€ k\{0,1,—1} such that

f(DZ) = {17 _1}7 E(D3) = {“7 —OC}.
On the other hand, since
(=)t lta (=) + (=) T+ (=) (=) + 1 (=1) = —«* — 1,

and Ep, is not ordinary, it follows from Lemma 6.3, (ii), that «> = 2. Thus, one
may take the subset “WP” to be as in Claim 6.5.A.

Next, we consider the case where WP # Dy UD,UD;. Then let us observe
that we may assume without loss of generality, by considering a suitable auto-
morphism of P} = Q, that oo € &(WP\(D; U D, U D)), that 0 e E(WP\ (D, U Dy)),
and that 1e&(D;\(D;NDy)). Then since Ep, and Ep, are not ordinary, it
follows from Lemma 6.3, (ii), that there exists an element o € £\{0,1,—1} such
that

E(WP\D;) ={0,00,a,—0a}, EWP\D;)=1{0,00,1,—1},
which thus implies that
é(WP) = {07 17 _1a o, —a, OO}

Thus, since oo ¢ £(Ds3), one verifies easily from Lemma 6.3, (ii), that Ep, is
ordinary—in contradiction to our assumption that Ep, is not ordinary. This
completes the proof of Claim 6.5.A.

Now we verify assertion (i). Suppose that the number “nwp” defined in the
statement of Corollary 6.2 is < 12. Then it follows from Claim 6.5.A that one
may take the subset “WP” to be as in Claim 6.5.A. In particular, it follows
from Lemma 6.3, (ii), together with a straightforward calculation, that the number
“nwp”’ defined in the statement of Corollary 6.2 is equal to 12. Thus, assertion
(i) follows from Theorem 6.1. This completes the proof of assertion (i).

Next, we verify assertion (ii). Assume that the set of isomorphism classes of
nilpotent ordinary indigenous bundles over X /S is of cardinality < 12. Then it
follows from Corollary 6.2, (iii), that the number “nwp” defined in the statement
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of Corollary 6.2 is < 12. Thus, it follows from Claim 6.5.A that one may take
the subset “WP” to be as in Claim 6.5.A. Then it follows from Lemma 6.3, (ii),
together with a straightforward calculation, that the number “nwp” defined in
the statement of Corollary 6.2 is equal to 12. Moreover, since [it follows from
Lemma 6.3, (i), that] X is parabolically ordinary, it follows from Corollary 6.2,
(iif), that X'/.S admits exactly 16 (= 12+ 4) > 12 isomorphism classes of nilpotent
ordinary indigenous bundles—in contradiction to our assumption that the set
of isomorphism classes of nilpotent ordinary indigenous bundles over X /S is of
cardinality < 12.  This completes the proof of assertion (ii). O

It follows from Proposition 6.5, (ii), together with [6], Chapter II, Propo-
sition 3.4, p. 1044, that the following corollary holds:

COROLLARY 6.6. Every projective smooth curve of genus 2 over a connected
noetherian scheme of characteristic 3 is hyperbolically ordinary [cf. Introduction).

Remark 6.6.1. Corollary 6.6 yields a partial positive answer to the basic
question (1) of [7], Introduction, §2.1, p. 72. By Corollary 6.6, we conclude that
the image of the natural (1-)morphism discussed in the basic question (1) of [7],
Introduction, §2.1, p. 72, in the case where (g,7, p) = (2,0,3) contains the open
substack (‘%270)& c (’ﬂlo)Fg'

Remark 6.6.2. Corollary 6.6 also yields an example of a projective smooth
curve of positive characteristic which is not parabolically ordinary but hyperboli-
cally ordinary [cf. also Lemma 6.3, (i)].

Appendix A. Cartier operator associated to a square-trivialized invertible sheaf

In the Appendix A, let us recall the Cartier operator associated to a square-
trivialized invertible sheaf on a projective smooth curve in positive character-
istic. It seems to the author that the content of the Appendix A is well-known;
however, since a suitable literature could not be found, the author has decided to
discuss it in the Appendix A.

In the Appendix A, let p be an odd prime number, g > 2 an integer, S a
connected noetherian scheme of characteristic p [i.e.,, over F,|, and f: X — S
a projective smooth curve [i.e., a morphism which is projective, smooth, geomet-
rically connected, and of relative dimension one] of genus g. Write 7 : X¥ — §
for the projective smooth curve obtained by base-changing f via the absolute
Frobenius morphism of S and @ : X — X for the relative Frobenius morphism
over S. We shall use the notation “w” (respectively, “7”’) to denote the relative
cotangent (respectively, tangent) sheaf.

PROPOSITION A.1. Let ¥ be an invertible sheaf on X such that £®* =~ Oy.
Then the following conditions are equivalent:
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(1) The restriction of & to every fiber of f is of order two [i.e., is nontrivial].

(2) There exists a point s € S of S such that the restriction of £ to the fiber of
f at s is of order two [ie., is nontrivial].

(3) The invertible sheaf & does not arise from an invertible sheaf on S.

(4) The image of the classifying morphism of & [from S to the relative
Jacobian variety of X /S| does not intersect the image of the identity section.

Proof. The implications (1) = (2) = (3) and (4) = (1) are immediate. The
implication (3) = (4) follows immediately from our assumption that S is con-
nected, together with the [well-known| fact that the endomorphism of the relative
Jacobian variety of X /S obtained by multiplication by 2 is finite étale. This
completes the proof of Proposition A.l. O

DEFINITION A.2. Let % be an invertible sheaf on X such that £®? ~ (Oy.
Then we shall say that ¥ is of relative order two (respectively, one) if ¥ satisfies

(respectively, does not satisfy) the four conditions in the statement of Proposition
A.l.

DrerNiTION A.3.  We shall refer to a pair
(Z,0: 292 = 0y)

consisting of an invertible sheaf ¥ on X and a global trivialization ® of the
square #®? of & as a square-trivialized invertible sheaf on X.

Let
P =(L,0: 2% 5 0y)

be a square-trivialized invertible sheaf on X. Thus, the trivialization ® deter-
mines isomorphisms of invertible sheaves on X

7S g% S ot
QU NP V2. [ ®r s @ F

—where we write #¥ for the invertible sheaf on X obtained by pulling back
% via the morphism X — X induced by the absolute Frobenius morphism of
S, 1 is a local section of %, and ¥ is the local section of #% determined by /.

Let us recall [cf., e.g., [4], Theorem 7.2] that we have an exact sequence of
Oy r-modules

0— (QXF — (D*(Q)( % q)*a))(/s ;> wxl"/s —0

—where we write d for the exterior differentiation operator Oy — wy/s, and ¢ for
the Cartier operator. We shall write

%, € Coker(Oxr — ®.,0x) = Ker(c : D.wy)s — wxr/s)
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for the locally free coherent Oyr-module of rank p — 1 obtained by forming the
cokernel of the natural homomorphism Oyr — ®,0y, or, alternatively, the kernel
of the Cartier operator ¢ : ®.wy s — wyr/s. Then, by tensoring with & F and
applying the above isomorphism % = ®* %7 determined by ®, we obtain an
exact sequence of (yr-modules

0= 2" ®q,, B — V(L B, wxss) = LT ®q,, oxrs — 0,
which thus determines an exact sequence of ()s-modules

0— f;F(gF ®6‘XF go) - f;(g ®(rx COX/S) - f;F(gF ®@XF wXF/S)'

DrerNiTION A.4.  We shall write
Co
for the third arrow of the above exact sequence of (s-modules and refer to
Cy: (%, wx)s) — fF(LF ®q, ; Ox7/s)
as the Cartier operator associated to ¥ = (¥,0).
Remark A4.1. If we take the pair “(%,0)” to be the pair consisting of Oy
and the natural identification Oy ®,, Ox = Uy, then the Cartier operator f.wy s
— fFwyr s associated to (&, 0) coincides with the [homomorphism induced by
the] usual Cartier operator.
Remark A.4.2. One verifies easily that since the formation of
0 — Oyr — B0y 28 Doy)s — wyr s — 0
commutes with arbitrary change of base “S’ — S, the formation of
Co : fi(ZL ®q, wxss) = [I(LT ¢, wxr/s)
commutes with arbitrary change of base “S’ — S”.

If [the underlying invertible sheaf of | ¥ is of relative order two, then we shall
write

(yp Xy — X

for the connected finite étale double covering of X over S which trivializes the
invertible sheaf % [determined by ©] and

f;:XB;HXF

for the connected finite étale covering of X% over S obtained by base-changing
&y via the absolute Frobenius morphism of S. Thus, a trivialization of ¢3,.%
determines respective isomorphisms of (y-, Oyr-modules

(Cx).Ox, =O0x @ L, (E5).0xr = Oxr @ LT
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Moreover, one verifies immediately that the natural homomorphism of ©s-
modules

R'(fFo 5;)*(9)(5 —R'(f0éy),0x,

determined by the relative Frobenius morphism Xg — X% over S is decomposed
into the direct sum of the natural homomorphisms of (s-modules

RifFOyr - ROy, RYSFPT RSO 927 Z RS2
[cf. the isomorphism given in the discussion following Definition A.3].

DEerNITION A.S.

(i) We shall say that f: X — S is parabolically ordinary [cf. the discussion
following [6], Chapter II, Definition 3.3, p. 1044] if the Jacobian variety of every
fiber of f is ordinary.

(i) Let Y — S be a projective smooth curve over S and &: Y — X a finite
étale covering over S. Then we shall say that &: Y — X is parabolically new-
ordinary if, for every point s € S of S, the “new part” of & at s [i.e., the abelian
variety over s obtained by forming the quotient of the Jacobian variety of ¥ xgs
by the image—via the homomorphism induced by &—of the Jacobian variety of
X xgs] is ordinary.

Thus, we obtain:

PROPOSITION A.6. It holds that the Cartier operator Cy : fi(¥ ®¢, wx/s) —
fEer ®q, , wxr/s) associated 1o L = (£, 0) is injective at every point of S if
and only if one of the following conditions is satisfied:

(1) & is of relative order one, and X /S is parabolically ordinary.

(2) & is of relative order two, and the connected finite étale double covering
(o : Xy — X is parabolically new-ordinary.

Proof. Let us first observe that it follows from Remark A.4.2 that, to verify
Proposition A.6, we may assume without loss of generality that S is the spectrum
of an algebraically closed field. Next, let us recall from the discussion preceding
Definition A.4 that we have an isomorphism of ()s-modules

SH( LT ®q¢,, B.) = Ker(Co).

In particular, the exact sequence of (yr-modules in the discussion preceding
Definition A.4

D.d ¢
0— @XF — q)*@')( — (D*COX/S — CI)XF/S — 0,

together with the isomorphism ¥ = ®* %% given in the discussion following
Definition A.3, determines an exact sequence of (s-modules

0 — Ker(Cy) — RifF ot L RIf, 2.
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Thus, it follows from the discussion preceding Definition A.5 that Proposition
A.6 holds. This completes the proof of Proposition A.6. O

DEFINITION A.7. Let .# be an invertible sheaf on X such that .#®? ~ Oy.
Then we shall say that .# is parabolically ordinary if, for some [or, equiva-
lently, every] trivialization ® , : .# ®2 =, Oy, the square-trivialized invertible sheaf
(M,0,) satisfies either (1) or (2) in the statement of Proposition A.6 [i.e., the
Cartier operator associated to (.#,0,) is injective at every point of S—cf.
Proposition A.6].

Next, let us observe that the morphism X — X induced by the absolute
Frobenius morphism of S determines a Frobenius-semi-linear homomorphism

f(Z ®, wx)s) — [F(LF R, ; OxF)s)-

For a global section u of ¥ ®, wy/s, we shall write u® for the global section
of #F ®o,r OxF/s obtained by formlng the image of u via this Frobenius-semi-
linear homomorphlsm

DEermNITION A.8.

(i) We shall say that a global section u of ¥ ®, wy/s is a normalized
Cartier eigenform associated to ¥ = (%, Q) if u defines a relative effective Cartier
divisor of X /S, and, moreover, Cy(u) = —u’.

(ii) Let .# be an invertible sheaf on X such that .#®? =~ Uy. Then we shall
say that a global section of .# ®, wy s is a Cartier ezgenform associated to A if
there exists a trivialization ® , of the square of .# such that the global section
is a normalized Cartier eigenform associated to the square-trivialized invertible
sheaf (#,0.).

Remark A.8.1. One verifies immediately that if S is the spectrum of an
algebraically closed field & [of characteristic p], then the following two conditions
are equivalent:

* A global section u e I'(X, ¥ ®, wy/s) is a Cartier eigenform associated to
[the underlying invertible sheaf of] %

« It holds that u # 0, and, moreover, Cy(u) is a k*-multiple of u’.
Moreover, in this case, the subset of k* consisting of ¢ € k* such that cu is a
normalized Cartier eigenform associated to & = (&, 0) forms an F;-torsor, which
thus implies that this subset is of cardinality p — 1.

Remark A.8.2. If we take the pair “(.Z,0)” to be the pair consisting of O
and the natural identification Oy ®,, Ox = Oy [i.e., if we are in the situation of
Remark A.4.1], then the property of being a [normalized] Cartier eigenform is
closely related to the property of being locally logarithmic [cf., e.g., [3], Théoréme
2.1.17].
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Finally, we consider a local criterion for a normalized Cartier eigenform.
Let x € X be a point of X, t, =t € Oy a local parameter of X/S at x, [y =/e€ &
a local trivialization of ¥ at x, and

XE F(X7$®@XwX/S)

a global section of ¥ ®., wy/s. Then the global trivialization ® and the local
trivialization /. =/ determine a local unit

sc=0¥eu®lec;
at x. Moreover, the global section y determines a local function ¢, = ¢ € Ox on
X at x which fits into the equality

y=¢-1®dt

at x. Then it follows immediately from the characterization of the Cartier
operator [cf., e.g., [4], Theorem 7.2; also the discussion given in [3], §2.1—
especially, the equality (2.1.13) in [3], §2.1], together with the explicit description
of the isomorphism % = ®* %% given in the discussion following Definition A.3,
that the following lemma holds:

Lemma A9. Write 0, for the local derivation corresponding to the local
trivialization of ty;s which maps dt, to 1 [ie., “0, (—)” is the “derivative of (—)
with respect to t,”]. Then the following hold:

(i) 1t holds that the global section y of & ®q, wy,s is annihilated by the
Cartier operator Cy associated to & = (&,0) if and only if, for every point
x € X, the equality

p—1
—TN—
(0, 0-+-00,)(@0; "2 9) =0
holds.
(i) It holds that the global section y of ¥ ®, wx,s is a normalized Cartier

eigenform associated to ¥ = (£, 0) if and only if, for every point x € X, the local
function ¢, is not a zero-divisor, and, moreover, the equality

p—1
—N—
$l=(0,,0--00,)(0, "V 4))
holds.

Appendix B. The Hasse bundle of a nilpotent admissible indigenous bundle

In the Appendix B, we discuss the Hasse bundle of a nilpotent admissible
indigenous bundle. In the Appendix B, let p be an odd prime number, g > 2
an integer, S a connected noetherian scheme of characteristic p [i.e., over F,],
and f: X — S a projective smooth curve [i.e., a morphism which is projective,
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smooth, geometrically connected, and of relative dimension one| of genus g¢.
Write ff: X¥ — S for the projective smooth curve obtained by base-changing
f via the absolute Frobenius morphism of S and ®: X — X7 for the relative
Frobenius morphism over S. We shall use the notation “w” (respectively, “z”)
to denote the relative cotangent (respectively, tangent) sheaf.

Let
P=(n:P— X,Vp)
be a nilpotent admissible indigenous bundle over X/S. Write
OHdg : X — P
for the Hodge section of P and
SHag € Op

for the ideal of (p which defines the section onge. Thus, it follows from the
definition of an indigenous bundle that the Kodaira-Spencer homomorphism at
ondg Telative to Vp [ie., the homomorphism obtained by differentiating onqz by
means of Vp]

*
OpggWr/x — Wx/s

is an isomorphism.

ProPOSITION B.1. There exists a unique section o.on : X — P of n: P — X
which satisfies the following conditions:

(1) The section ocon is horizontal with respect to Vp. In particular, the
connection Vp induces a connection on the invertible sheaf o}, wp/x on X.

(2) There exists a horizontal isomorphism o}, wp;x = @ tyr/g, where we
regard ®"tyr;g as an invertible sheaf equipped with a connection by equipping
O tyr/s with the connection arising from the exterior differentiation operator
Oy — wyys.

We shall refer to this section o.n as the conjugate section of the indigenous
bundle P.

Proof. This follows from the second paragraph of [the statement of] [6],
Chapter II, Proposition 2.5, pp. 1030-1031. O

Write
Ocon : X — P
for the conjugate section of P and
Seon € Op

for the ideal of (p which defines the section ocop.
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DEerINITION B.2. We shall refer to the invertible sheaf on X
O';Idgf%OWZ@P (efcon, @p) = Jfomccx (O-lildg'%om (Q)()

obtained by pulling back Home,(Feon, Op) via ouge as the Hasse bundle of P.
We shall refer to the invertible sheaf on X

Uﬁdgﬁ’om(ﬂp(%om Op) ®e, T}(?/(g—l)/Z = Homg, (aﬁdgfcom r)(?/(g—l)h)
obtained by tensoring the Hasse bundle with r)(?/(g*l)/ * as the Hasse defect of P.
Write
Ho € g Home,(Joon, Op)
for the Hasse bundle of P. Then let us observe that since 7 : P — X is of genus
zero, and the invertible sheaf on P
Homa,(Ieon, S Hdg)

is of relative degree 0 over X, it follows immediately that the natural homo-
morphisms

n*e}fom(i'p(-fcona deg) - Gﬁdgﬁom(ﬁ‘p(vfcona fHdg) ~ Ap ®@X Wx/s,
n*%om(f‘p (%on; JHdg) - O'C*on%om((‘p (%on; fHdg) = Jsoandg ®6’X (D*wXF/S

[cf. the discussion preceding Proposition B.1; Proposition B.1, (2)] are isomor-
phisms. Thus, by means of the natural identification offldgfgon = 0} Y Hdg, We
obtain:

ProPOSITION B.3.  There exist isomorphisms of invertible sheaves on X

®2 ~ ~ p®r-1
pr = fﬁfom(ox(d)*rxf/s,rx/s) . wX/S .

In particular, the square of the Hasse defect is trivial
Moreover, we obtain:

ProrosITION B.4.  The global section of
Homg, (P tyr/s,Tx)s)

obtained, relative to the isomorphism of Proposition B.3, by forming the square of
the global section of #p determined by the natural inclusion J.,, — Up coincides,
up to multiplication by a global section of 05, with the square Hasse invariant
of P. In particular, the global section of #p determined by the natural inclusion
Jeon — Op coincides, up to multiplication by a global section of (g, with the Hasse
invariant of P.

Proof. This follows from the discussion in the proof of [6], Chapter II,
Proposition 2.6, (3), p. 1032. O
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Appendix C. Various moduli stacks

In the Appendix C, we consider various moduli stacks related to the notions
discussed in the present paper. In the Appendix C, let p be an odd prime
number and g > 2 an integer.

We shall write

My
for the moduli stack of projective smooth curves of genus g of characteristic p;
Gy — My
for the universal curve over .Z;
Sy — My

for the relative Jacobian variety of 6, — .#;

Syl = 4,

for the kernel of the endomorphism of #, over .Z, obtained by multiplication by
n [where n is a nonnegative integer]. Moreover, we shall write

Ny

for the moduli stack of smooth nilcurves of genus g of characteristic p, i.e., the
moduli stack of projective smooth curves of genus g of characteristic p equipped
with nilpotent indigenous bundles;

adm
NS ANy

for the moduli stack of projective smooth curves of genus g of characteristic p
equipped with nilpotent admissible indigenous bundles;

ord adm
c

for the moduli stack of projective smooth curves of genus g of characteristic p
equipped with nilpotent ordinary indigenous bundles.

DrermniTiON C.1. It follows from the final portion of Proposition B.3 that
the Hasse defect of the universal nilpotent admissible indigenous bundle over
Cy X, ,/Vgadm — Jt/yadm determines a (1-)morphism over .#,

adm ;

We shall refer to this (1-)morphism as the Hasse defect morphism.

ProrosITION C.2. The following three open substacks of Ji/gadm coincide:
(1) The open substack J!fgord = ./Vgadm.

(2) The étale locus of the natural (1-)morphism ,/Vgadm — M.

(3) The étale locus of the Hasse defect morphism /Véladm — %[2].



NILPOTENT ADMISSIBLE INDIGENOUS BUNDLES IN CHARACTERISTIC THREE 729

Proof. The assertion that the open substack given in (1) coincides with the
open substack given in (2) follows from the definition [cf. also the discussion
following [7], Introduction, Theorem 0.1, p. 24]. On the other hand, since the
(1-)morphism JVgadm — My is flat [cf. [6], Chapter II, Theorem 2.3, p. 1029], the
assertion that the open substack given in (2) coincides with the open substack
given in (3) follows from the well-known fact that the natural (1-)morphism
Sy12] — My s a finite étale surjection. O

Now let us observe that since, as is well-known, jg[Z] is finite étale over .,
the identity section of ¢, — .#, determines an isomorphism of stacks over .7,

My U (S5 2\F[1]) = 7, [2).

Thus, by considering the Hasse defect morphism, we obtain:

ProposiTioN C.3. Let U — ,/andm be a scheme over ./Vgadm. Suppose that

there exist two geometric points sy, s» of U such that the Hasse defect of the
nilpotent admissible indigenous bundle corresponding to s\ (respectively, s,) is of
relative order one (respectively, two). Then U is not connected.

Next, we shall write

Y
2,

for the moduli stack of “nontrivial” smooth Prym curves of genus g of char-
acteristic p, i.e., the moduli stack of projective smooth curves of genus g of
characteristic p equipped with square-trivialized invertible sheaves whose under-
lying invertible sheaves are of relative order two;

def

Ay = S2N\F[1]-
Thus, we have a natural (1-)morphism %, — %, over .#,. For a nonnegative
integer d, write
oy
for the moduli stack of principally polarized abelian varieties of dimension d of
characteristic p and
A < oy

for the moduli stack of principally polarized ordinary abelian varieties of dimen-
sion d of characteristic p.

DeriniTioN C.4. Since .7, LI #, is naturally isomorphic to #,[2] over ./,
the inverse image of !%ord < o, via the Torelli morphism My, — </; and the
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image in %, of the inverse image of Jz/g‘f‘lj € .,y via the Prym morphism
Ry — Ay determine an open substack of 7 [2]. We shall write

/‘][2] pb-ord c fq[Z}

for this open substack.

Thus, it follows immediately from the various definitions involved that the
following proposition holds:

ProposiTiON C.5.  In the notation introduced at the beginning of the Appendix
B, let P be a nilpotent admissible indigenous bundle over X /S. Then the following
conditions are equivalent:

(1) The image of the composite

S_>./1/‘(-]adm_>jg[2]

of the classifying (1-)morphism S — ./Vgadm of P and the Hasse defect morphism is

contained in the open substack f,[2] pb-ord Z,12].
(2) The Hasse defect of P is parabolically ordinary.
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