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ISOSPECTRAL KAHLER GRAPHS
YAERMAIMAITI TUERXUNMAIMAITI AND TOSHIAKI ADACHI

Abstract

We give some basic ways to construct Kdhler graphs which are compound graphs
having principal and auxiliary graphs. By use of these methods we give some examples
of isospectral pairs of Kédhler graphs.

1. Introduction

Graphs which are pairs of a set of vertices and a set of edges are considered
as discrete models of Riemannian manifolds. Considering them as 1-dimensional
CW-complexes we regard paths on them which are chains of edges as geodesics.
In his paper [2] the second author introduced the notion of a Kéhler graph to
give a discrete model of a Riemannian manifold admitting a magnetic field. As
a generalization of a static magnetic field on a Euclidean 3-space R?, a closed
2-form on a Riemannian manifold is said to be a magnetic field (see [7], for
example). As typical examples of magnetic fields we have constant multiples of
the Kéhler form on a Kédhler manifold. They are called Kdhler magnetic fields
([1]). We consider that geodesics are trajectories of electric charged particles
without the action of magnetic fields. Under the influence of a magnetic field
motions of electric charged particles have their accelerations by getting the
Lorentz force. If we adopt graphs as discrete models of Kédhler manifolds, as
graphs does not have 2-simplexes, we need a system to show complex structure.
For this sake we consider decompound graphs having two kinds of edges,
principal edges and auxiliary edges. We consider paths consisting of principal
edges as geodesics and consider paths consisting of both principal and auxiliary
edges as trajectories under an action of a magnetic field.

In this paper we study Laplacians for Kdhler graphs corresponding to paths
where principal and auxiliary edges appear alternatively. Since the Laplacian of
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a graph is the generating operator of the random walk defined by paths of
graphs, we may say that its eigenvalues show some properties of the graph. We
show basic ways of constructing Kéhler graphs, which are to take complement
graphs and to take product graphs. By investigating the relationship between
eigenvalues of Laplacians for Kédhler graphs and eigenvalues of discrete Lap-
lacians for their principal and auxiliary graphs, we give examples of pairs of
isospectral Kéhler graphs.

The authors are grateful to the referee who read their manuscript very
carefully.

2. Laplacians for a Kihler graphs

A graph G = (V,E) is a 1-dimensional CW-complex which consists of a set
V' of vertices and a set £ of edges. We assume it has no loops and multiple
edges. Also we assume that it is not directed and is locally finite. We call
a graph G = (V,E) Kdhler if the set E of edges is divided into two disjoint
subsets E(?)| E@ and satisfies the following condition: At each vertex v there
are at least four edges emanating from v; two are contained in E(”) and two
are contained in E@. For a Kihler graph G = (V,EPUEW), we call the
graphs (V,E®) and (V,EY) its principal graph and auxiliary graph, respecti-
vely. For vertices v,w e V' we denote as v ~,w if they are adjacent to each
other in the principal graph (¥, E(?)), and denote as v ~,w if they are adjacent
to each other in the auxiliary graph (V,E@). For a vertex ve V we set
dP(v) =#{weV|w~,v} and d9(v) = #{we V|w~,v}, and call them the
principal degree and the auxiliary degree at v, respectively. Here, for a set X we
denote by #X its cardinality.

A bicolored path y = (v, ...,vy,) on a Kihler graph G = (V,EP) UEW) is
a 2m-step path satisfying vy ~, vox41 and vyq1 ~4v42 for k=0,...,m—1.
Roughly speaking bicolored paths show trajectories of charged particles under the
action of a magnetic field of strength 1. We consider that an edge (vax, v2kt1)
shows a motion of a charged particle without actions of magnetic fields, and that
if it gets a Lorentz force it is bended and reaches to vy,.,. More generally, for a
pair (p,q) of relatively prime positive integers, we can consider paths corre-
sponding to trajectories of charged particles under the action of a magnetic field
of strength ¢/p by use of p-step paths in the principal graph and g¢-step paths
in the auxiliary graph. But as their treatment is a bit complicated we shall only
consider paths under the action of a magnetic field of strength 1. Moreover,
we note that if we only consider paths under the action of a magnetic field
of strength 1, the condition d”)(v),d®(v) >2 at each ve V in the definition
of Kihler graphs can be weaken to the condition d(?)(v),d@(v) >1 at each
ve V. For a bicolored path y = (v, ..., v2,), we define its probabilistic weight
o(y) as o(y) :H,Tzo{d(”)(vzﬂl)}fl. Since a graph is a I-dimensional CW-
complex, we can not show the direction of the action of a magnetic field,
therefore we treat the position of the terminus of a trajectory probabilistically.
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For a finite ordinary graph G = (V, E) we set dg(v) = #{we V|w ~ v} and
call it the degree at ve V. We define the adjacency operator 4; and the
transition operator Pg acting on the space C(V) of functions on V' by

Acf(0)= S f ). Paf(6) = gos S ()

w~D w~D

The combinatorial Laplacian Ay, and the transitional Laplacian Ap, acting on
C(V) are defined by Ay, = Dg — Ag and by Ap, =1 — Pg, respectively, where
the degree operator Dg is given as Dgf(v) = dg(v)f(v). When G is regular,
that is, its degree-function d; does not depend on the choice of vertices, these
Laplacians are related with each other as Ay, = dgAp, because Ag = dgPq (see
[3, 5, 9] for more on Laplacians).

Corresponding to these operators we define Laplacians (or more precisely
(1,1)-Laplacians) for finite Kdhler graphs in the following manner. Let G =
(V,E»)UE@) be a finite Kihler graph. We denote by 4(?), P(?) the adjacency
operator and transition operator of the principal graph (¥, E()) acting on the
space C(V,C) of all (complex valued) functions on V. Similarly, we denote by
P9 the transition operator of the auxiliary graph (¥, E@). According to the
lines in the previous paragraph, we set the adjacency and the transition operators
of G corresponding to bicolored paths as 4 = A(?P@ and P= PP P, We
should note that these operators are not symmetric. Denoting D(?) the degree
operator of the principal graph, we set Ay, Ap as Ay =D — 4, Ap=1—P,
and call them the combinatorial and the transitional Laplacians for a finite
Kaihler graph, respectively. When the principal graph is regular as an ordinary
graph, we find 4 =d»P and Ay = dPAp.

We explain adjacency and transition operators in another way. For a
Kihler graph G = (V,E?)UE®), we can define a derived directed graph G i
by use of 2-step bicolored paths in the following manner. The set of vertices is
V. We say a vertex v is joined to a vertex w by a derived directed edge if there
is a 2-step bicolored path y with origin o(y) = v and terminus 7(y) = w. We note
that this graph G(; ;) may have loops and multiple edges. For each edge of
G(1,1, which is a 2-step bicolored path, we attach it its probabilistic weight.
Then the adjacency and the transition operators of a Kidhler graph are those of
the derived directed graph with weights on edges:

B0 = g1y SO0 ) = 5= oS00 (),

y

where y runs over the set of all 2-step bicolored paths with o(y) = v.

In this paper we only treat Laplacians of finite graphs. As the spaces of
functions on their sets of vertices are of finite dimensional, we frequently identify
operators acting on these spaces with matrices.
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3. Kabhler graphs with complement auxiliary edges

One of the most typical way to construct Kédhler graphs is to take comple-
ments of graphs. We take an ordinary finite graph G = (V,E) and consider
its complement graph G¢= (V,E¢). Here, the complement graph is given as
follows: Two distinct vertices are adjacent to each other in G° if and only if
they are not adjacent in G. When the degree-function dg of the finite graph
G satisfies min,cp dg(v) > 2 and max,cy dg(v) < #V — 3, we obtain a Kéihler
graph GK = (V,EUE*) by taking its complement as the auxiliary graph. We
call this the complement-filled Kdhler graph of G. In this section we study
eigenvalues of Laplacians for complement-filled Kéhler graphs.

We call a Kéhler graph regular if both of its principal and auxiliary graphs
are regular. When the degree d; of finite regular graph G satisfies 2 < dg <
#V — 3, we see its complement graph is reglar and of degree dgc = #V — dg — 1,
hence find that GX = (V, EUE®) is a regular Kéhler graph.

THEOREM 1. Let G = (V,E) be a connected regular finite graph whose degree
satisfies 2 < dg < #V —3. If we denote the eigenvalues of Ay, = Dg — Ag for
G as 0=41 <Ay <---<Agy, then the eigenvalues of Ay=Dg— A for the
complement-filled Kihler graph G¥ are Jy =0, A = {7 — 2;(2dg + 1) + de#V'} -
(#V —dg—1)"" (i=2,...,#V). Moreover, if f;:V —R is _an eigenfunction
corresponding to A;, then it is an eigenfunction corresponding to 2.

Proof. If we put

0 1 1
1 0
N = ) ,
|
1 1 0

then the adjacency matrix Ag. is given as Agc = N — Ag.

We note that the condition (D¢ — A¢)f; = 4 f; is equivalent to the condition
Acfi = (dg — ;) fi. For A1 =0, the eigenfunction f; is a non-zero constant
function. Therefore we have Agefi = Nfi — Agh = #V — 1 —dg) fi1.
Hence we obtain

Aufi = D6 fi — AP = defi — - AcAc/1 = dc /1 — Acf1 = 0.
#V — 1 —dg

For 4; (i =2), the eigenfunction f; is orthogonal to f;. That is, {f;, fi) =
>ver 1(0) fi(v) =0. Hence we have ) _, fi(v) =0. Therefore we get

Ny = > filw) = i),

welV , w#v
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Thus we have Ag.f; = Nfi — A¢fi = (L —dg — 1) f; and obtain

- (do — A)(hi —dg = 1)\ . A} — 4i(2dg + 1) + de#V .
A*‘f’_{dG v —1—d; '~ #V —1—dg Ji

This completes the proof. O

Remark 1. (1) The eigenvalues of Ap =1 — P for our Kéhler graph GX
are 0, {1} — 1;(2d + 1) + de#V }H{de#V — dg — D} (=2, #V).

(2) These operators A, P are symmetric because NAg = AgN, hence so are
Ay, Ap.

Two finite graphs are said to be combinatorially isospectral (resp. transi-
tionary isospectral) if their combinatorial Laplacians (resp. transitional Laplacians)
have the same ecigenvalues by taking account of their multiplicities. Clearly
these notions are equivalent when these graphs are regular. So in this case
we just say that these graphs are isospectral. It is well known that there exist
many pairs of isospectral regular graphs (see [3]). We here study Kéhler graphs
from this point of view. We call a pair of Kédhler graphs combinatorially
isospectral if their principal graphs are combinatorially isospectral and their
combinatorial Laplacians as Kéhler graphs have the same eigenvalues by taking
account of their multiplicities. Also, we call a pair of Kdhler graphs transi-
tionary isospectral if their principal graphs are transitionary isospectral and their
transitional Laplacians as Kéhler graphs have the same eigenvalues by taking
account of their multiplicities. When the principal graphs of two Kéhler
graphs are regular, they are combinatorially isospectral if and only if they are
transitionary isospectral. In such a case we just call them isospectral.

COROLLARY 1. If two finite connected regular graphs Gy, G, are isospectral,
then their complement-filled Kdihler graphs GEK, GX are isospectral as Kihler
graphs.

We here give some examples following to [3] and [4].

Example 1. The following figures show an isospectral pair of Kdhler graphs
consisted by isospectral regular graphs and their complements. In these figures
we show principal and auxiliary graphs separately to get their feature clearly.
We draw auxiliary edges by dotted lines. Their eigenvalues of combinatorial
Laplacians are

Spec(A4,) = {0,3,5,5,5,5,4 — V5,4 +V5,(9 = V17)/2,(9 + V17)/2},
Spec(Ay) = {0,4,4,4,4,22/5,24/5,24/5, (25 — V/5)/5, (25 + V/5)/5}.
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FIGURE 1 FIGURE 2

If we denote the eigenvalues of A,, for a connected regular finite graph G as
0=4 <y <--- < Auyp, then the eigenvalues of Ay, of its complement graph
G are 0 and #V — J; (i=2,...,#V). Therefore we can reverse the principal
and the auxiliary graphs of an isospectral pair of Kéhler graphs.

Example 2. 1If we reverse the principal and the auxiliary graphs of the
Kéhler graphs in Example 1, their eigenvalues of combinatorial Laplacians are

Spec(A4,) = {0,5,5,5,5,7,6 — /5,6 + V5, (11 — V17)/2, (11 + V17)/2},
Spec(A4) = {0,5,5,5,5,11/2,6,6, (25 — V/5) /4, (25 + V/5) /4}.
Example 3. The following figures show another isospectral pair of Kéhler

graphs consisted by isospectral regular graphs and their complements. Their
eigenvalues of combinatorial Laplacians are

Spec(A4,) = {0,5,5,(9 — V/5)/2,(9 + V/5)/2, solutions of the equation
£ =214 +1676 — 6241 +1092¢ — 716 = 0},
Spec(A,) = {0,4,4,21/5,21/5, solutions of the equation 5°¢° —5%.118¢*
+5%. 555763 — 52 - 130552¢% + 5 - 1530052¢ — 7156316 = 0}.

FIGURE 3 FIGURE 4

It is known that the pairs in Examples 1, 3 are the only pairs of isospectral
regular graphs whose numbers of vertices are not greater than ten (see [3, 4]).
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Therefore we have only four pairs of isospectral regular complete Kéhler graphs
having ten vertices.

If we consider only A for the adjacency by 2-step bicolored paths and do not
consider principal graphs, we have many examples (c.f. [10]).

Example 4. The following vertex-transitive Kdhler graphs are not isomor-
phic, but their derived graphs by 2-step bicolored paths are isomorphic, hence their
A4 and Ap have the same eigenvalues

991 n\ 1 v
Spec(AA)—{0,§,§,§<9+\/§cosE>,§(9+\/§cosﬁ),

1 5 1 5
5(9—\/§cosﬁn),5<9—\/§cosﬁn>,

ln),% (9— V/3 cos %n)}

FIGURE 5. non-isomorphic vertex-transitive Kéhler graphs

Since we treat connected regular graphs in Theorem 1, we here study
operations of graphs to treat Kédhler graphs induced by non-connected graphs.
Given two graphs G, = (V|,E}), Gy = (V5,E;) we set V =V, UV5 and E?) =
E|UE,. We define E@ in the following manner: Arbitrary ve V} and we V;
are adjacent to each other, two vertices in V| are not adjacent to each other, and
nor are two vertices in V>. We call (V,E(?)UE@) the joined Kihler graph of
G, and G,, and denote it by G|+ G,.

PROPOSITION 1. The eigenvalues Ap of the joined Kihler graph Gi+ G, of
graphs Gy = (V1,Ey), Gy = (Va,E) are 0,1,....1,2, where the multiplicity of 1 is
#V1+#V2 = 2.

Proof. We put m; = #V; (i=1,2). We denote by M;; an (m;, m;)-matrix
all of whose entries are 1. The adjacency matrix 4(?) for the principal graph
and the transition matrix P for the auxiliary graph of G;+ G, are
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0 — M
xym:<A@ 0>, po—| e
0 e — My o

Thus, if we take functions f:7; — R and g: V5, — R then for the function

1 1
(f,9): V=V1UV, — R we have PY((f,g)) = (m_ZZWGVz g(M})7m_12UEV1 f(v)).
We denote the function of degree on G; also by dg, : V; — R. We then have

A0)= () AG)=(a)
(") 6) %)= ()

where Vi ={vi,...,vm}, Va=4{wi,...,wn,} and ,: V; — R, 6, : V2 — R de-
note characteristic functions. Thus we get the conclusion. O

By the proof of the above proposition we obtain the following.
PROPOSITION 2. The eigenvalues Ay of the joined Kdihler graph G+ G, of
regular graphs Gy = (V1, E\), Gy = (Va, Ep) are 0,dg,,...,dg,,da,, ... ,dc,, dg, +

dg,, where dg, appears #V;— 1 times.

Proof:  We only need to change (1,—1) to (dg,,—dg,). We then have

dg —dg —dg,dg
A 1 — A(p) 2 — 1462
< _dGz ) ( dGl ) ( dGI dGz ) ’

hence get
dg dg; + dG1 dG2 ( dg )
A ') = ! = (d dg, .
A<_dGz) <déz B dGldGz ( G + G_) _dGz
We therefore obtain the conclusion. O

Given two graphs G, = (V1, E1), Gy = (V2, E>) we consider a Kéhler graph
constructed by taking their complements and their join. One can easily find
that it is the Kahler graph (G, U G,)* by taking the complement of G;U G, =
(ViU Vy, E\UE,).

ProrosiTiON 3. Let Gy = (V1,E)), Gy = (V>,E;) be connected regular
graphs. We denote the eigenvalues of AAGI as Ay <2y <--- < Agy, and the
eigenvalues of Ay, as ny <1y < -0 <y,
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(1) The eigenvalues of Ay of (G1UGy)™ are
0,dg, —dg'(dg, — )4y —dg, — 1) (j=2,...,#W),
da, — dg (de, —mi) (e — dg, — 1) (k =2,...,#V2), d,dg #V> + da,dg #V.

where c;’Gf =#VI+#V>—dg — 1.
(2) The eigenvalues of Ap of (G1U Gy)X are

0,1~ (dg,da,) " (dg, — 2))(4y — dg, = 1) (j=2,....#W),
| — (de,dc,) " (de, — m) (o — dgy — 1) (k =2,...,#V5), CQG_,I#VZ + 62521#1/1-

Proof. By using the notation in the proof of Proposition 1, we see the
transition matrix P@ of the auxiliary graph of (G;UGy)* is

-1 51
P<a) _ dGl AGI‘ dGl My, ‘
d&;MZl dEZIAGé'
Therefore we have

()=o)

| CAIGI #Vi—dg —1— dorda # dGlA# d
N G dGl dGz
A dg,dg, #V1 .
- d. d
dodo#Vy) | 9oy, _dade# Vi Ly 4oy
Gy dG] dG2 # VZ

Also, if we take eigenfunctions f; and g; for 4; and #, with j>2, k>2,
respectively, as we have ) _p fi(v) =0 and > ;. gk(w) =0, we find

a(h) - (c?a%dal =y = o - l)f}),
A(gok> N (‘;’Gzl(dGz - ﬂk)((’)7k —dg, — 1)9/«)'

Thus we get our conclusion for Ay.
As we have

1 de, #V,
1 - #Vl - dG] -1- ﬁ
~ dGl dGz
P a#V1 | = N ’
— 1
do# Vs Ly — %Ny g 1)
G, GZ#V2

we get our conclusion for Ap. O
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4. Kabhler graphs of product type

We give typical examples of Kéihler graphs. Let G = (V,E) and H =
(W, F) be two (non-oriented) graphs. We define their Kéhler graph of Cartesian
product type GO H as follows:

i) its set of vertices is the product V x W;

i) two vertices (v,w),(v',w’) e V x W are adjacent to each other by a
principal edge if and only if v, v’ are adjacent to each other in G and
w=w;

iii) two vertices (v, w), (v, w’) € V' x W are adjacent to each other by an
auxiliary edge if and only if v = v’ and w, w’ are adjacent to each other
in H.

Example 5. If G and H are graphs of real lines, which are non-circuit
regular graphs of degree 2, then their Kdhler graph of Cartesian product type is
a graph of complex line.

| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

| | | | |

| | | | |
| | | | |

FIGURE 6. G=H FIGURE 7. GO H

When G, H are graphs of finite degrees, their Kéhler graph of Cartesian
product type is of finite degree. At a vertex (v,w) € V' x W, we have dé’gH(v, w)

= dg(v) and dé‘%H(v, w) = di(w).

THEOREM 2. Let G = (V,E), H = (W,F) be finite graphs whose eignevalues
of Ap, and Ap, are y; (1 <i<m(=#V)) and v, (1 <o <n(=#W)), respec-
tively. Then the eigenvalues of Ap for their Kdihler graph G H of Cartesian
product type are w;+ vy, — v, (1 <i<m,l <a<n).

Moreover, if Ap,f = uf, Ap,g =vg and if we set a function ¢; , on V x W
by ¢r 4(v,w) = f(v)g(w), then we have App; , = (u+v—w)o,

Proof. We denote by Ag = (af) the adjacency matrix of G and by Py =

(pf/’}) the transition matrix of H. Then the adjacency matrix A(?) = (a((lp l),( i ﬂ>)

of the principal graph of QGH and the transition matrix P = (P(Za).u. ﬁ)) of
the auxiliary graph of GO H are of the form T
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O all - al I Py O --- O
G . . . .
A(l’) _ Cl211 0] . . , P(a) _ o0 PH . . ,
oy o
a}gll a’gm7ll O 0 0 PH

where I denotes the unit matrix and the components of A(”) and P@ are
expressed according to lexicograph(ical order. If we denote their components,
we have a(fa)_’(jyﬂ) = afd,y and p(;foc),(jVﬁ) =d;pj. Corresponding to these if
We denotg f = t(ﬁv cee 7fm)a g= t(glv e 7gn) and gpfq = t(.flgla e 7flgn7 ey
Jmg1, -, fmgn), we then have

fiPrg /2:; agﬁPHg
APy —an| | =
O D
=
dg(v1) fig
==l -p : ;
dc(vm) fmg

where dg(v;) denotes the degree of G at the vertex v;. Thus we have

Appr,={1 -1 =1 =)}, , = (u+v—w)os .

This completes the proof. O

For a finite Kéhler graph G [0 H of Cartesian product given by G = (V, E)
and H = (W, F), its principal graph is a #W-copies of G. Therefore if two
graphs Gj, G, are combinatorially (resp. transitively) isospectral and if the
cardinalities of the sets of verticies of graphs H;, H, are the same, then the
principal graphs of the Kéihler graphs G H,, G, H, are combinatorially
(resp. transitively) isospectral. Hence we get the following.

CorROLLARY 2. If Gy, Gy are transitionary isospectral graphs and H\, H are
also transitionary isospectral graphs, then their Kdihler graphs Gy O Hy, G, O H, of

Cartesian product type are transitionary isospectral.

Remark 2. For Kihler graphs of Cartesian product type in Corollary 2,
their auxiliary graphs are also transitionary isospectral.

By the proof of Theorem 2 we have the following.
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PROPOSITION 4. Let G be a regular finite graph of degree dg and H be
a finite graph. I Ap.f = pf, Ap,g = vg and if we set a function ¢; , on V- x W
by ¢ 4(v,w) = f(v)g(w), then the combinatorial Laplacian of GUH satisfies
Auprg =da(p+v—mw)es,

We note that there are pairs of isospectral regular graphs of same degree
(see for example [4, 5]).

CoROLLARY 3. Let Gy, Gy be isospectral regular graphs of same degree and
H\, Hy be transitionary isospectral graphs. Then their Kdhler graphs G, H,,
G, O H, of Cartesian product type are combinatorially isospectral.

Most typical Kéhler graphs of product type are Kéhler graphs of Cartesian
product type. But for the sake of contrast, we here give definitions of other
Kaéhler graphs of product type which correspond to ordinary product operations
of graphs.

Given two graphs G = (V,E) and H = (W, F), we define their Kéhler graph
of strong product type G Xl H as follows:

i) its set of vertices is the product V x W;

ii) two vertices (v, w), (v',w') € V' x W are adjacent to each other by a prin-

cipal edge if and only if v, v’ are adjacent to each other in G and w = w’;
iii) two vertices (v,w),(v,w’) € V x W are adjacent to each other by an
auxiliary edge if and only if either v = v’ and w, w’ are adjacent to each
other in H or v, v are adjacent to each other in G and w, w’ are adjacent
to each other in H.
We define their Kéhler graph of semi-tensor product type G @ H as follows:
i) its set of vertices is the product V x W;
ii) two vertices (v, w), (v',w') € ¥V x W are adjacent to each other by a prin-
cipal edge if and only if v, v’ are adjacent to each other in G and w = w’;

iii) two vertices (v,w),(v,w’) € V x W are adjacent to each other by an
auxiliary edge if and only if v, v’ are adjacent to each other in G and
w, w' are adjacent to each other in H.

Example 6. 1f G and H are graphs of real lines, then their Kdhler graphs
of strong product type and of semi-tensor product type are as Figures 8§ and 9 in
the next page.

When G, H are graphs of finite degrees, their Kéhler graph of strong product
type is of finite degrees. At a vertex (v,w) € V' x W, we have déH(v, w) = dg(v)
and déaH(v, w) = dy(w){dg(v) + 1}. Therefore we have the following property

on eigenvalues of Kdihler graphs of strong product type.

THEOREM 3. Let G = (V,E), H= (W,F) be finite graphs whose eignevalues
of Ap, and Ap, are y; (1 <i<m(=#V)) and v, (1 <o <n(=#W)), respec-
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P e s
S W 5

IRAAAR

G®H

S IX XX XN
GXNH

FIGURE 8. FIGURE 9.

tively.  Suppose G is regular of degree dg. Then the eigenvalues of Ap of their
Kdihler graph GIX H of strong product type are
[0+ d — do) (s, + v — ) + deu}/1do + 1} (1 <i<m 1 <a<n).

Moreover, if Ap,f = pf, Ap,g = vg and if we set a function ¢, , on V x W
by ¢ ,(v,w) = f(v)g(w), then we have

A _ (I +dg —dau)(u+v—p) +dep
PPrg = de + 1 ?r.9-
Proof.  For arbitrary finite graphs G, H, the adjacency matrix A?) for the
principal graph of G X H is the same as of G H, and the transition matrix P@
for the auxiliary graph of GX H is given as

1 G G

a a
P 12 P 1m P
do(w)+ 1" dglon)+1°" dg(o)) +1° "
a 1
P P
P(a) _ dg(l]z) +1 " dg(Uz) +1 "
argflm PH
dG(Umfl)‘i‘l
G G
A1 Aym—1 1
_ % p 77 W S
dg(vm) + 171 do(vm)+ 1" dglog)+1° "

: : : () _ .G (a) _
That is, their components are given as Ao i) =a;d,p and Pl ip) =

Pip 0y + af)/{ds(vi) + 1}. Thus we have

m
A pla) — (Po{é (%G + Zaiiaij)/{dG(Ui) + 1]’)
=1

We now compute eigenvalues of GX H when G is regular. We have
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1
Ariyy =0y, — _A<p>P<a>¢

)
<

(1=v)(1—p)
figs - dv o <f+2a,kfk>>

k=1

A-vd-p
= ido 1 d 1_ iYa
figa =S 0 ol - ) s
_ (U +de —dp)(u+v—w)+depu
dG +1 (of-,.q'
Thus we get the conclusion. O

COROLLARY 4. Let Gy, Gy be isospectral regular finite graphs of same degree
and Hy, Hy be transitionary isospectral finite graphs. Then their Kdhler graphs
G X H,, G, Xl Hy of strong product type are isospectral.

Remark 3. For Kihler graphs of strong product type in Corollary 4, their
auxiliary graphs are also transitionary isospectral.

When G, H are graphs of finite degrees, it is clear that their Kdhler graph
of semi-tensor product type is of ﬁmte degrees. At a vertex (v,w)e V x W,
we have de®)H(U w) = dg(v) and dG®H( w) = dy(w)dg(v). Th?,refore we have
the following property on eigenvalues of Kédhler graphs of semi-tensor product

type.

THEOREM 4. Let G = (V,E), H = (W, F) be finite graphs whose eignevalues
of Ap, and Ap, are p; (1 <i<m(=#V)) and v, (1 <o <n(=#W)). Then
the eigenvalues of Ap of their Kdhler graph G ® H of semi-tensor product type
are

{0 = w) (i + v = pva) + 3 (1<i<m,1 <o <n).

Moreover, if Ap,f = uf, Ap,g =vg and if we set a function ¢; , on V x W
by o7 4(v,w) = f(v)g(w), then we have

Appr g ={(1 =) (p+v—w)+ o,

Proof.  For arbitrary finite graphs G, H, the adjacency matrix 4(?) for the
principal graph of G ® H is the same as of G0 H, and the transition matrix P@
for its auxiliary graph is given as
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af a,
dg (o) " dg(v1)
G
)| Py 0
P(a) dG(UZ) .
a
m—1m PH
dG(Umfl)
aG P nG1m lP 0
dG(Um) H dG(Um)

: : : () _ .G (@) _
That 1is, their components are given as Ay, Gip) = Oup ar?d. P, Gh =
aiplf/dc(vi) = pipl}. Here, we denote by Pg = (p) the transition matrix of
G. Thus we have

m
k=1

Therefore, we have

Apgy , = (ﬁw—ﬁ(}jpﬁgﬁ) (; 2 agpy ))
(ot o)
(

= (figs — (1 =)(1 = 1)*figs) = {1 — (1 = v)(1 — 1)}y,

Thus we get the conclusion. O

PrOPOSITION 5. Let G be a regular finite graph of degree dg and H be
a finite graph. If Ap,f = if, Ap,g = vg and if we set a function ¢; , on V x W
by gofg(v w) = f(v)g(w), then the combinatorial Laplacian Ay of G ® H satisfies
Aapy g = de{(1 =) (u+v—w) + o

COROLLARY 5. Let Gy, Gy be transitionary isospectral finite graphs and H\,
H, be also transitionary isospectral finite graphs.
(1) Their Kdihler graphs Gy ® H\, G, ® H, of semi-tensor product type are
transitionary isospectral.
(2) If G\, G, are regular and of same degree, then their Kihler graphs
G\ ® H, G,® H, of semi-tensor product type are (combinatorially)
isospectral.

Remark 4. For Kihler graphs of semi-tensor product type in Corollary 5
(2), their auxiliary graphs are also transitionary isospectral.
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We can consider lexicographical products. Given two graphs G = (V,E)
and H = (W, F), we define their Kéhler graph of lexicographical product type
Go> H as follows:

i) its set of vertices is the product V x W;

ii) two vertices (v,w),(v',w’) eV x W are adjacent to each other by a
principal edge if and only if v, v’ are adjacent to each other in G and
w=w'

iii) two vertices (v,w),(v,w’) € V x W are adjacent to each other by an
auxiliary edge if and only if w, w’ are adjacent to each other in H.

Example 7. 1f we take G and H to graphs of real lines, then their Kdhler
graph of lexicographical product type is as Figure 10.

FiGure 10. Go H

When G = (V,E) is a finite graph and H = (W,F) is a graph of finite
degree, their Kéahler graph of lexicographical product type is of finite degrees.
At a vertex (v,w)eV x W, we have d (v,w)=dg(v) and d%,(v,w)=
#Vdy(w). In order to study eigenvalues of G > H, we consider the mean M
on ¥ which is given by Mf(v) =", f(u). Eigenvalues of M are 0,...,0,m,
where m = #V. We denote as V = {v},...,v,} and define a function ¢ by
e1(v) =1 for all veV, and define functions é&,...,&, by & =Jd, —J, Wwith
characteristic functions J,. Then ¢; is an eigenfunction corresponding to m, and
&,...,&m are linearly independent eigenfunctions corresponding to 0. Therefore
we have the following property on eigenvalues of Kdhler graphs of lexicographical
product type.

THEOREM 5. Let G = (V,E) be a finite graph and H = (W ,F) be a finite
graph whose eignevalues of Ap, are v, (1 <o <n(=#W)). Then the eigenvalues
of Ap of their Kdhler graph G H of lexicographical product type are 1,...,1,
Vi,...,Vn, where 1 appears (#V — 1)#W times.
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Moreover, for k (k=1,... .m(=#V)) and for a function g with Ap,g = vg
we define a function W, on V. x W by Y ,(v,w) = ex(v)g(w). Then we have

APWl,g :le],g and APlpk,g :lpk.g (k:2a7m)

Proof.  For arbitrary finite graphs G, H, the adjacency matrix A?) for the
principal graph of G > H is the same as of G0 H, and the transition matrix P
for its auxiliary graph is given as

1 1
Py - —Py
m m
Pl — :
1 1
—Py -+ —Py
m m

That is, a((iljzc%(j,ﬁ) = ad,y and P((Z?z),(_/,/g) = pip/m. Thus we have

I, doli)
(ppla) _ | = H G| _ G H
AP p = <m pxﬂ ki] aik) = ( m paﬁ)

We therefore have

Aty = (mv»gx - <Z p;;gﬂ> (fj a(v;)))
p=1 J=1

_ { (9 — (1 =V)gs) = vpy ,, k=1,
(e (v1)9x) = Pp g5 k#1.

Thus we get the conclusion. O

COROLLARY 6. Let Gy, Gy be finite graphs and H), H, be transitionary
isospectral finite graphs. Suppose cardinalities of the sets of vertices of G| and of
G, coincide.  Then their Kdhler graphs Gy > Hy, Gy > Hy of lexicographical product
type are tranmsitionary isospectral.

For construction of Kihler graphs, we can generalize the notion of Kéhler
graphs of lexicographical product type to the following. Let H = (W,F) be
a finite graph and G, = (V,,E,) (e=1,...,n=#W) be finite graphs. We
denote W = {wy,...,w,}. We set V="V;U---UV, and EP) =E U..-UE,.
We define E@ in the following manner: Two vertices v,v' € V' are adjacent
to each other in auxiliary graph if and only if ve V;, v' € V; and w;, w; are

adjacent to each other in H. We denote this Kihler graph (V,E®) UE@) by
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HX(Gy,...,G,) and call it a Kdhler extension of H by Gy,...,G,. It is clear
that G> H = I‘IK(G7 ceey G) and that G, —T— G, = I‘]K(G]7 G2) with H = ({W],Wz},
{0v1,w2)}).

We here give another way to construct Kéhler graphs. Since the operations
of taking complement graphs and of taking products are independent, we may do
both of them. For example, given two graphs G = (V,E), H = (W, F) we define
a Kihler graph GIX H as follows:

i) its set of vertices is the product V x W;

i) two vertices (v,w),(v',w’) e V x W are adjacent to each other by a
principal edge if and only if v, v’ are adjacent to each other in G and
w=w';

iii) two vertices (v,w),(v,w’) € V x W are adjacent to each other by an
auxiliary edge if and only if either v =o' and w, w’ are adjacent to
each other in H or w=w', v #v' and v, v’ are not adjacent to each
other in G.

For the sake that this definition makes sense, we suppose G is not complete.
One may easily find the definitions of GHX H, G ®X H and G X H.

Example 8. When G and H are graphs of real lines, principal and auxiliary
edges emanating from a vertex of their Kihler graphs GOX H, GKHX H, G @ H
and G>X H are like the following figures.

Figure 11. GOXH  Fieure 12. GXKXH  Fiure 13. G®XH  FiGure 14. GoX H

ProposITION 6. Let G=(V,E), H= (W,F) be finite regular graphs.
Suppose G is connected. We denote the eignevalues of Ap, and Ap, by u,
(I<i<m(=#V),u; =0) and v, (1 <o <n(=#W)), respectively. Then the
eigenvalues of Ap of the regular Kéhler graph GX H are

d 1 .
Ej{vwl —5(1 —p)(dop; —dpvy —dg +dy —1) 2<i<m1<o<n),

where 9 =m —dg +dy — 1.

Proof. The principal graph of GX H is the same as of GJH, and the
transition matrix P@ for its auxiliary graph is given as
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1 G¢ G°¢

a a
—A 12 I L. Im I
77" g 17
G(
ay 1
I —A
@ _ | 2 7
P = o
am—lml
G‘ G¢
ml amm—l 1
[ ... Cemolp C g
9 17 720

That is, their components are given as aéf )a),(jﬁ 8 = afd,; and p((z)“)ﬁ(j’ 5=

(af 0oy + dyaly)/%. Therefore we have

AW pla) — ( {al/axﬁJrZalkak] “[;})

For functions f, g satisfying Ap.f = pf and Ap,g = vg we define a func-
tion ¢, , as in the proof of Theorem 2. Since we have Agf = dg(1 —u)f and
G is connected, we see that Ag.f = {m—dg—1}f when =0 and Ag.f =
{dg(p—1)—1}f when u#0 (see the proof of Theorem 1). As Apg=
dy(1 —v)g, we find

1
{ —g(m—dg—l—FdH—de)}gof’g, when p =0,
Ap(ﬂf’g = 1
{1_é(l_'u)(dG,u_dG_1+dH_dHV)}(pf,g= when p # 0,
and get the conclusion. O

By the same argument we have the following.

ProposITION 7. Let G=(V,E), H= (W,F) be finite regular graphs.
Suppose G is connected. We denote the eignevalues of Ap, and Ap, by pu;
(I<i<sm(=#V),u;=0) and v, (1 <a<n(= #W)), respectively. Then the
eigenvalues of Ap of the reqular Kdihler graph GXX H are

du(dg + 1 1
s £ 1)y, 1 L1 )y~ do — V(div —dy + 1)

2<i<ml <a<n),

where 9 =m+dgdy — dg +dy — 1.

Proof. The components of the transition matrix P for its auxiliary graph
is given as p((l L) B = ( Gup + (0 + a,]) w)/e@ For functions f, g satisfying
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Ap.f =1 and Ap,g =vg we define a function ¢, , as in the proof of Theorem
2. By the same argument as in the proof of Proposition 6, we find

|
é(dy(l—v)(a’(;+l)+m—d(;—l)gaf’g, when u =0,
P(pf-,g = 1
5 I —wldop —d = 1)(dyy —dy + )¢y 4, when p # 0,
hence get the conclusion. O

ProrosITION 8. Let G = (V,E), H=(W,F) be finite regular graphs.
Suppose G is connected. We denote the eignevalues of Ap, and Ap, by p,
(I<i<m(=#V),uy =0) and v, (1 <a<n(=#W)), respectively. Then the
eigenvalues of Ap of the reqular Kihler graph G @ H are

dgd 1
%Vm 1 —5(1 _:ui){deH(l —ﬂf)(l — V) +dep; — dg — 1}

2<i<ml<a<n),

where 9 =m+dgdy —dg — 1.

Proof. The components of the transition matrix P for its auxiliary graph
is given as P )) B = (a Oup + aj aaﬁ)/@ For functions f, g satisfying Ap, f
= uf and Ap,g = vg we deﬁne a function ¢, , as in the proof of Theorem 2. By
the same argument as in the proof of Proposmon 6, we find

g(dcdy(l — V) +#V —dc—1)g, ,, when y =0,
P(pﬁg = 1
5 —w(dedn (1 = w)(1 —v) +dgpt — dg = 1)¢y 5, when i #0,
hence get the conclusion. O

ProposITION 9. Let G=(V,E), H= (W,F) be finite regular graphs.
Suppose G is connected. We denote the eignevalues of Ap, and Ap, by u,
(I<i<m(=#V),u; =0) and v, (1 <o <n(=#W)), respectively. Then the
eigenvalues of Ap of the Kdéhler graph G>X H are

md 1 .
7/1{% l—g(l —w)dop; —dg —1) 2<i<m1<a<n),

where 9 =m(dy + 1) —dg — 1 and the latter appears n times.

Proof. The components of the transition matrix P for its auxiliary graph
is given as P(,.)a)_(],ﬂ) (“u Bup +aaﬁ)/J For functions f, g satisfying Ap,f =
wf and Ap,g = vg we define a function ¢, , as in the proof of Theorem 2. Since
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Y wer f(v) =0 when u # 0, by the same argument as in the proof of Proposi-
tion 6, we find

1
é(de(l —v)+m—dc—1)p,,, when =0,
P¢f 9 1
é(l —,U)(dG,U—dG— l)gaf,g’ When,u#()?
hence get the conclusion. O
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