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Abstract

In this paper, we study the Deligne’s sovereign structure theorem on the finite
dimensional weak Hopf algebras, and give a necessary and sufficient condition for a
finite dimensional (co)quasitriangular weak Hopf algebra H with bijective antipode to
admit a (co)ribbon structure. As an application we discuss the ribbon structures over
the Drinfeld doubles of some weak Hopf algebras to verify our theory.

Introduction

In 1996, Béhm and Szlachanyi ([3]) introduced and studied weak Hopf
algebras (or quantum groupoids) as a generalization of ordinary Hopf algebras
and groupoid algebras. The axioms are the same as the ones for a Hopf
algebra, except that the coproduct of the unit, the product of counit and the
antipode condition are replaced by the weaker properties. General theory for
the weak Hopf algebras was subsequently developed in [3], [14], [15], [16], etc..

A ribbon structure (see [10], and also see [18]) in a rigid braided category
% is a self-dual twist (or a self-dual balanced structure), which is a natural
isomorphism from the identity functor to itself and compatible with the duality
and the braiding. A sovereign structure (or a pivotal structure) in an auton-
omous category (see [1], and also see [8]) is a monoidal natural isomorphism from
the left duality functor to the right duality functor. In 1992, Deligne ([20],
Proposition 2.11) showed that there is a twist in a rigid braided category % if
and only if ¥ admits a sovereign structure. Thus a ribbon structure in ¥ must
be a sovereign structure satisfying some axioms. From the reconstruction
theoretical point of view, a ribbon (resp. sovereign) category is equivalent to
the category of (co)modules over a (co)ribbon (resp. sovereign) Hopf algebras
(or its generalizations) (see [1], [4], [17]). This leads us to a natural question:
how to represent the Deligne’s Theorem in the Hopf algebra (or its general-
izations) language?
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In 1993, Kauffman and Radford ([11], Theorem 1) gave a bijective map
between the ribbon elements and the sovereign elements (notice that they did not
use the word ‘“‘sovereign”) satisfying suitable axioms related with the Drinfeld
element in a quasitriangular Hopf algebra. That provides us a Hopf algebra
view of Deligne’s Theorem (also see Theorem 1.3, [6]). In 2001, Bichon ([1])
introduced the (co)sovereign Hopf algebras and described the relation between
the cosovereign Hopf algebras and coquasitriangular Hopf algebras. In 2007,
Bruguieres and Virelizier provided the Hopf monad version of Deligne’s Theorem
(see [4], Theorem 8.14). A natural idea is to discuss how this theorem appears in
a weak Hopf algebra version. This is the motivation of our paper.

In this paper, we first review some basic definitions. In Section 2, we
discuss the relation between the ribbon elements and sovereign elements in a
weak Hopf algebra, and give the definition of a (co)sovereign weak Hopf algebra.
As the main result of this section, we mainly find a necessary and sufficient
condition based on Deligne’s Theorem for a (co)quasitriangular weak Hopf
algebra to be (co)ribbon. Finally, as an application, we consider the Drinfeld
doubles for the 2-dimensional, 3-dimensional and Sweedler’s 5-dimensional weak
Hopf algebras (note that these examples are in fact face algebras introduced by
Hayashi in [9]), and discuss whether they admit the ribbon structures or sovereign
structures.

1. Preliminaries

Throughout this article, we always work over a fixed field k satisfying
char k # 2. All algebras, linear spaces etc. will be taken over k. We use
Sweedler’s natation for coproduct on a coalgebra H : A(h) = h; ® hy, for all
h e H, where summation is understood.

In this section we recall some basic definitions and results related to our

paper.

1.1. Sovereign categories and ribbon categories
Let (4,®,1,a,l,r) and (4',®',1',a’,l',;r") be two monoidal categories.
A natural transformation o: F = G: % — €' is called monoidal if o satisfies

OCX®YOF2(X, Y) = Gz(X, Y)O(ax®ay), and G() ZOCIF(),
or equivalently ([7], Definition 1.5.1), if a satisfies
oxey o F2(X,Y) =Gy (X,Y)o (axy ®ay), and «; is an isomorphism.
DEerFINITION 1.1. A sovereign structure on an autonomous category € is a
monoidal natural isomorphism y: ()" — *(), where () means the left dual

functor and *() means the right dual functor. A sovereign category is an
autonomous category with a sovereign structure.

Note that there is another definition of a sovereign structure in [8] and [20]
which used the monoidal natural isomorphism from *() to ().
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Recall from [1] that in the earlier definition by Freyd and Yetter (see [8],
[20]) there is a redundant axiom, which was proved by Maltsiniotis (see [13],
Proposition 3.2.3).

Recall from [[19], Remark 4.12] that one can equivalently define a sovereign
category as an autonomous category equipped with a monoidal natural transfor-
mation i:id — ()™ (in [8] and [19] it is called a pivotal structure).

Let (4,®,1,a,l,r,c) be a braided monoidal category. Recall from [10] (or
[19]) that a twist (or a balanced structure) on € is a family 6 : V' — V of natural
isomorphisms indexed by the objects V' of & satisfying

Ovew = cw ver, w0y @ Ow).

A twist § on an autonomous category % is self-dual if 0y. = (0y)" (or
equivalently, 6. = *(8y)).

A ribbon category is a braided autonomous category endowed with a self-
dual twist.

DELIGNE’S THEOREM ([20], Proposition 2.11, or [19], Lemma 4.20). Let
% be a braided autonomous category. Then giving a twist Oy : V — V on €
(making € into a balanced category) is equivalent to giving a sovereign structure
iy : V* = *V (making € into a sovereign category).

1.2. (Co)Ribbon weak Hopf algebras

Recall from [3] that a weak Hopf algebra (H,m,n, A, ¢, S) is both an associa-
tive algebra and a coassociative coalgebra with an antipode S : H — H satisfying
the following conditions: for all x,y,z€ H,

(1) ( ) = AX)AW);

(2) A%(1) =AM @ DI ®A(L) = (1@ A1) (A1) ® 1);

(3) elxyz) = elxy)e(y22) = e(xy2)e(12);

(4) x1S(x2) =¢e(lix)l2, S(x1)x2 = Lig(xly), S(x1)x2S(x3) = S(x).

For a weak bialgebra H, define the maps &,¢&: H — H by the formulas
e(x) = e(lix)ly;  g(x) = 11g(x1y).

Denote the image ¢(H) by H, and the image ¢,(H) by H,, where H, and H; are
called the target algebra and source algebra of H.

Recall from [14] that an element ge H is said to be group-like if it is
invertible and satisfies

Alg) =A(1)(g ®g) = (9 ® 9)A(1).

Group-like elements of H form a group denoted by G(H). Note that for any
g€ G(H), we have ¢(g) = &(g) =1 and the element S(g) =¢~! is also group-
like.
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Suppose that H is a finite dimensional weak Hopf algebra. Then the linear
dual H* is also a finite dimensional weak Hopf algebra with structure maps s,
7, & A, S (see [3]).

A quasitriangular weak Hopf algebra ([16]) is a pair (H,R) where H is a
weak Hopf algebra and R=3 R @ R® e A”(1)(H ® H)A(1) such that

(1) there exists Re A(1)(H ® H)AP(1) with

RR=A(1), RR=A(1);

(2) for all he H, we have

A (h)R = RA(h),

(id ® A)R = Ry3R)2,

(A ®id)R = Ry3Rz3,
where Rp =R® 1, Ry3 =1® R, etc.

Let (H, R) be a quasitriangular weak Hopf algebra. If there is an invertible
central element v e H, such that

A(v) =Ry R(v®v) and S(v)=v,

then v is called a ribbon element and H is called a ribbon weak Hopf algebra.
A coquasitriangular weak Hopf algebra ([5]) (H,o) consists of a weak Hopf
algebra H and a map o: H ® H — k satisfying the following conditions:
(1) there exists a map : H ® H — k (called a weak inverse of ¢) such that

elaiby)a(ar ® by)e(bsasz) = G(a ® b),
and
(a1 ® b1)a(ar ® by) = e(ba), &(a; ® by)a(ay ® by) = ¢(ab);
(2) for all a,b,c € H, we have

o(a1 @ by)asby = byayo(ax ® by),
ola® bc) = o(a) ® c)o(a, ® b),
alab®c) =o(a® c1)a(b® ca),
e(biay)o(a; ® by)e(ashs) = a(a ® b).
Note that the above definition is opposite to Pfeiffer’s one (see [17]). Actu-
ally, they are weak inverse with each other.
Let H be a weak Hopf algebra. A linear form f : H — k is called

1. convolution invertible if there exists f~': H — k such that for any x € H
we have

ag
ag

ST x) = £ x0) () = &(x);

2. dual central if f(x1)x; = x1f(xy) for any x € H;
3. dual group-like if it is convolution invertible and satisfies for any x, ye H

S(xp) = e(xip) f(x2) f(32) = f(x1) f(»)e(x2)2)-
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Let (H,o) be a coquasitriangular weak Hopf algebra. If there is a con-
volution invertible and dual central linear form 7 : H — k satisfying the following
conditions

t(xy) = a(y1 @ x1)o(x2 ® y2)t(x3)z(p3), and  7(S(x)) = 7(x),

for any x, y € H, then 7 is called a ribbon form of H, and H is called a coribbon
weak Hopf algebra.

1.3. The representations of weak Hopf algebras

Let Rep(H) be the category of representations of a weak Hopf algebra H,
whose objects are finite dimensional left H-modules and whose morphisms are
H-linear homomorphisms.

For any V,W € Rep(H), define their tensor product by

Ve, W =A(lp)(V @ W),
and the module structure is given by
h-(b@w)=h-v®hy-w, forany he H v@weV & W,

then recall from [15] that Rep(H) is a rigid category through the following
statements:
*+ H, is the unit object of Rep(H), where the action of H on H, is given by

h-x=¢(hx), heH,xeH,
and the unit constraints are given by
ly HQV =V, xQuv—x-v, I,':V-H®V, v—S1)®I1,- v,
rv:V®H —V, v®xn—>S’1(x)~v, r;l:V—>V®H,, v 1 v ® 1o

« for any V € Rep(H), set V* = homy(V, k), with the action of H on V*
given by

(h-f)(v) = f(S(h)-v), heH,feV"' veV,
and V* is a left dual of V via

coevy - H;, — VRV*, x+—>x~(2q“~ei®ei),
where e; and e’ are bases of ¥ and V* respectively, dual to each other, and

evy : V*'®V - Hyy, f®uv— f(1;-0v)ly

+ for any V € Rep(H), set *V = homy(V k), with the action of H on *V
given by

(h-f)(v) = f(STYh)-v), heH, fe 'V, veV,
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and *V is a right dual of V via

oz (x) = x- (e @e). @@ ) = f(57 (1) o)L

Recall from [15] that a weak Hopf algebra H is a quasitriangular weak
Hopf algebra if and only if Rep(H) is a braided category with the braiding

crw: VW -WRV, vQwr ZR(Z) -w® RW -0,
and a weak Hopf algebra H is a ribbon weak Hopf algebra if and only if Rep(H)
is a ribbon category with the twist

Oy :V -V, ve—v-o.

2. Sovereign weak Hopf algebras and ribbon weak Hopf algebras

Assume that H is a finite dimensional weak Hopf algebra with the bijective
antipode S. In this section, we will introduce the notion of a (co)sovereign
weak Hopf algebra, and consider the (co)representation category over it and give
a necessary and sufficient condition for a finite dimensional (co)quasitriangular
weak Hopf algebra to admit a (co)ribbon structure through the (co)sovereign
structure. This work generalizes [[11], Theorem 1] and [[1], Proposition 2.9 &
2.10].

Let ()" be the left dual functor, *() be the right dual functor over Rep(H),
F be the underlying functor from Rep(H) to Vecy. Let Q denote the collection
of all natural transformations from Fo ()" to Fo *().

Lemma 2.1. There is a bijective map between Q and H.

Proof. Define a map
P:Q—H, i P(i)=y:=ig(a)(lu)a,

where a; and a' are bases of H and H*, respectively, dual to each other, and
define

0:H—Q, y—0@y) =i
where y € H and i satisfies
iv: M*—*M, fw [ where f'(m)=f(y -m),

for any me M € Rep(H). It is easy to check that i is a natural transformation.
Obviously P and Q are inverse with each other. O

From now on, assume that i € Q and y € H are in correspondence with each
other.
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LemMMA 2.2. i is H-linear if and only if y satisfies
S%(h) = yhy~',  for all he H.

Proof. =-: Since iy is H-linear, for any h,xe H, f e H*, we have

in(h- f)(x) =h-(in(f)(x)),

which implies
(S (h)yx) = f(yS(h)x).

Thus S(h)yx = pS~'(h)x. Take x = ly, we get S*(h) = yhy~L.
«<: Straightforward. O

Lemma 2.3. i is a natural isomorphism in Q if and only if v € H is invertible.

Proof. = Assume that i~':*() = ()" is the inverse of i, then the inverse
element of y is y' =iy (a")(14)a;.
«<: Suppose y~! is the inverse of y, define i’ : *() — ()" by

i (f)(m) = f(y~" - m),
for any me M € Rep(H), f € *M. Obviously i’ is the inverse of i. O

Since the objects in Rep(H) are all finite dimensional, we obtain that
V*QW*=(W®YV)" for any V,W € Rep(H), which means (); =id. Simi-
larly, *(), =id. Thus if i€ Q is a monoidal natural transformation, we have
Iy Qiw =lyew-

Lemma 2.4. i is a monoidal natural transformation if and only if y is
invertible and satisfies A(y) = (y ® p)A(1g).

Proof. 1Tt is a direct computation to check that i is monoidal iff y satisfies
A(y) = (y®»)A(ly). From Lemma 2.3, i is an isomorphism if and only if y is
invertible. Thus the conclusion holds. O

DreriNITION 2.5. Let H be a finite dimensional weak Hopf algebra with the
bijective antipode S. A sovereign element of H is a group-like element y such
that S?(h) = yhy~! for any he H. A sovereign weak Hopf algebra is a weak
Hopf algebra with a sovereign element.

THEOREM 2.6. Let H be a finite dimensional weak Hopf algebra with the
bijective antipode S. Then H is a sovereign weak Hopf algebra if and only if
Rep(H) is a sovereign category.

Proof. Let ye H. If A(y)=(y®y)A(ly), y is invertible and S*(h) =
yhy~! for any he H, we immediately get that (y ® »)A(ly) = A(lp)(y ® ).
Thus from Lemma 2.1-Lemma 2.4, we obtain the conclusion.
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Assume that (H,R) is a finite dimensional quasitriangular weak Hopf
algebra. Define the Drinfeld element u = S(R®)R"). Recall from [15] that the
following identities hold

u_l :R(Z)Sz(R(l)), A(u) =I_QI_Q21(u®u) = (u®u)]_'(’]_221,
and
S(u) = RWS(RP),  S*(h) = uhu™'

for all he H.

Recall from [[15], Proposition 7.3] that Rep(H) is a ribbon category if and
only if H is a ribbon weak Hopf algebra, and Deligne’s Theorem said that the
twist is equivalent to a sovereign structure in an autonomous category. Thus we
get the following theorem.

THEOREM 2.7. Let (H,R) be a finite dimensional quasitriangular weak Hopf
algebra with the bijective antipode S. Let h=u"'S(u). Then H has a ribbon
element if and only if there exists a sovereign element y € H, such that y*> = h~!.

Proof. Let E={ye G(H)|y*=h"",8*(x) = yxy~!,Vxe H}, and F be the
collection of the ribbon elements in H. Define a map P': E —F by P'(y) =
u~'y. On the one hand, since S*(x) = uxu~' for any x € H, we have u~'yx =
xu~'y which implies 'y is the central element in H.

On the other hand, recall from [[15], Proposition 5.7] that (H° P Ry) is
also a quasitriangular weak Hopf algebra with the Drinfeld element u~', thus
we immediately get

Aw™ )= @' ®@u " )RuR=RyRu" @u™").
Hence we have
A(u'y) = A ")A(y)
=AW DA ®7)
=RyRu'y®@u'y),
and
Sw™y) =y7'Sw) " =pu!
— 'S () = uly

for any ye E. That means u~!'yeF, ie., P’ is well defined.
Conversely, define Q' : F — E by Q'(v) =uv for any veF. Firstly, from

[[15], Lemma A.1], we have v} =u~'S(u)”'. Thus we get

() =wu=Su) 'u=h".
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Secondly, we have
Awv) = Aw)A() = (u @ u)RA?(1)R(v ® v)
— (W@ WAL)(v® )
= (uv®@uv)A(1) (Since v is a central element)
=A(1)(uv@uv) (Since (u@ u)A(ly) = A(ly)(u®u)).

Since uv is invertible, uv e G(H).
At last, by ve Z(H), it is easy to get that S2(x) = uvx(uv)"'. Thus Q' is
well defined, and it is the inverse of P’. O

Dually, we have the following definition and theorems which generalize [[1],
Definition 2.7] and [[1], Proposition 2.9 & 2.10], respectively.

DEerINITION 2.8.  Suppose that H is a finite dimensional weak Hopf algebra
with the bijective antipode S. A sovereign character on H is a dual group-like
linear form S such that $2 = B« id«f~". A cosovereign weak Hopf algebra is a
weak Hopf algebra with a sovereign character on it.

THEOREM 2.9. Let H be a finite dimensional weak Hopf algebra with the
bijective antipode S. Then H is a cosovereign weak Hopf algebra if and only if
Corep(H) is a sovereign category.

Thus we get the following theorem which is dual to Theorem 2.7.

THEOREM 2.10. Let (H,o) be a finite dimensional weak Hopf algebra with
the bijective antipode S and the coquasitriangular structure o. Then H is a
coribbon weak Hopf algebra with the ribbon form t if and only if there exists a
sovereign character : H — k, such that B+ = (2""0S)* L

3. Applications

In this section we give some examples of ribbon weak Hopf algebras and
sovereign weak Hopf algebras. The examples of coribbon weak Hopf algebras
and cosovereign weak Hopf algebras can be obtained by the duality.

Let H be a finite dimensional weak Hopf algebra. On the k-linear space
H*? ®, H define a multiplication by

(P @) (9 ®g) = gp(S™" (13)?h) ® hag,
where ¢,pe H*? g ,he H. The linear span I of the elements

P ®e(x)g — ple — x) ® 9,
P®e(x)g—d(x — &) ®y,
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is a two-sided ideal in H*”? ®, H. Let D(H) be the factor-algebra (H*’ ®, H)/I
and ¢ [x] & denote the class of ¢ ® & in D(H). Then recall from [2] that D(H) is a
weak Hopf algebra with unit ¢ [X] 1, and its comultiplication, counit, and antipode
are given by

A(pRh) = (¢ & ) (4 B ho),
e h) = ¢(11)e(12h),
S(¢BIh) = (=SS (H) B ).
Recall from [15] that D(H) is a quasitriangular weak Hopf algebra with the

R-matrix R =) ",(¢ X ¢;) ® (¢' ¥ 1), where ¢; and e’ are dual bases in H and H*.
Thus the Drinfeld element in D(H) is u = S~!(e’) X ¢;.

3.1. The Drinfeld double of a 2-dimensional weak Hopf algebra

Let H, be a weak Hopf algebra with a basis {1,e} and the following
structures:

H21) the multiplication is given by

H2 1 e
e
e e | e

H22) the comultiplication is given by
AD)=(1-e)®(1—e)+e®e, Ale) =e®e¢;
H23) the counit is given by
(1) =2, ele)=1;

H24) the antipode is given by S = id.
It is easy to get that & =¢, =id.

Suppose that the dual basis of {1,e} in Hy is {I,E}, thus H; have a weak
Hopf algebra structure as follows:

CH21) the multiplication is given by

Hi| I | E

1 1 -1
E | -I|2I+F

CH22) the comultiplication is given by

AN =I®1, AME)=IQE+E®I+EQE;
CH23) the unit element is 1y; =& =21 + E;
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CH24) the counit is given by
&) =1, &FE)=0;
CH25) the antipode is given by S = id.
ProrosITION 3.1.  Hy is isomorphic to H> as weak Hopf algebras.
Proof. Define a map 0: H, — H; by
0(1)=2I+E, 0O(¢)=I1+E.

It is easy to check that 0 is an isomorphism of weak Hopf algebras. O

Now consider D(H,) = H,"” X1 H,. Since ¢ [Xé&i(x)g = ¢(e — x) X g for
any ¢ € H, x,g € H, we can get

IXle=IXe-1=1Ic—e)x11=0,
ERe=ERe - l=Ec—e)R1=IKI+EXI,
which implies {/ x| 1,EX 1} is a basis of D(H).
Furthermore, it is easy to get that D(H>) is isomorphic to H,“” = H, by the

canonical homomorphism jy : H,” — D(H,) defined by ju(¢) = ¢ X 1 for all
¢e H,".

THEOREM 3.2. H; is a ribbon weak Hopf algebra.

Proof. Since D(H,) is isomorphic to H, via IK1+—e, EX 11— 1—2e,
and D(H,) is a quasitriangular weak Hopf algebra with the R-matrix

R=(XNRUXN+(IX)®ER])+(EX])Q(EX1),

then H, is also a quasitriangular weak Hopf algebra with the R-matrix R = A(1).
Furthermore, the Drinfeld element u = 1.

Obviously 1 is the unique group-like element in H, and satisfies Theorem 2.7.
Thus H, is a ribbon weak Hopf algebra with the ribbon element 1. O

3.2. The Drinfeld double of a 3-dimensional weak Hopf algebra
Let H; be a weak Hopf algebra with a basis {1,e, f} where
H31) the multiplication is given by

H3 1 e f

1 |e|f
e |lelel|f
SN s




462 XIAOHUI ZHANG, XIAOFAN ZHAO AND SHUANHONG WANG

H32) the comultiplication is given by
AlD)=(1-e)®(1—¢)+e®e,
Ale)=e®e, A(f)=e®f+f®e-2(®f;
H33) the counit is given by
el)=2, ele)=1, e(f)=0;
H34) the antipode is given by S =id.
It is easy to get that in Hj
&) =a(l)=1, &le)=eale) =e &(f)=ea(f)=0.
Suppose that the dual basis of {l,e, f} in Hy is {I,E,F}, thus H{ has a

weak Hopf algebra structure:
CH31) the multiplication is given by

Hi | 1 E F
1| -1 0
E|-I1|2I+E| F
F |0 F | —2F

CH32) the comultiplication is given by
Al =1Q®I, ME)=IQE+E®I+EQ®E,
AF)=IQF+FQRI+EQF+FRE+FQ®F;

CH33) the unit element is ly; =e=21+E;
CH34) the counit is given by

&I)=1, &FE)=&F)=0;
CH35) the antipode S = id.
Remark. Hj and Hj are isomorphic as weak Hopf algebras. The bijection
p: H3 — Hj is given by

pl)y=2I+E, pley=I+E, PB(f) :—%F.

Now consider D(H3) = H;“” X1 H;. Since ¢ X e(x)g =¢(e — x)Kg for
any ¢ € Hy, x,g € H3, we can get

IXle=IXe-1=1Ic—e)x11=0,
IKf=IKe f=Ic—e)xlf=0,
EXle=EXe- 1=Ec—e) Xl =IXK1+EX]I,
FRle=FXle- l=Fle—e)x1=FX1,
which implies {IX1,EX 1,EX f,FX1,F X f} is a basis of D(H3).
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DH31) the multiplication and counit are given by

D(H;) | I®1 EX1 EXf| FRI FXEf
IXl | I®I Ix1 0 0 0
EX] | -IX1 |2IKI+ER] |ERf| FXI FR f
EXf 0 EX f EXf| FXf FXf
F1 0 FX1 FRf| -2FR1 | -2FKX f
FX f 0 FXf FXRf | 2FXf | 2FXf
g 1 0 0 0 0

DH32) the comultiplication is given by

Al =(IX)®UIXI),

AERD) = (@)@ ED)+(ERN®IE) 4 (ER)®ER)
AER)=(IRN®ERN+ERN®ERS)+(ERS) IR
FER®ERD) - 2AER ) ® (ER )
AFRD=(IRN®FRD+(ERD®FR)+(FR)Q IR

FEED®ERD) - (FE)® (FE ),

MFR/) =R ®FRS) +(ERD®(FE/)+(ERS)® (FEI)
“2ER)QFRf)+FR)ERS)
+FRAHASURD+FXN/)QERIT)
—2FR)@ERS)+FR S (FRS)
TFRHQFRD) -20FK /) FK[);

DH33) the antipode is given by S = id.

THEOREM 3.3. D(Hj) is a ribbon weak Hopf algebra.

Proof. 1t is straightforward to check that G(D(H3)) is the product of two
cyclic groups of order 2. Actually, the group-like elements in D(H3) are

gozlp(H3)=211+E17
G =2IK1+EXI-2EXf+FX1-2FX f,
p=2IXK1I+EX1+FXI,
g3=2IX1+EX1-2E[X f.
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and they satisfy Theorem 2.7 since the Drinfeld element of D(Hj3) is

u=2IK1+Ex1+F[Xf.

Thus D(H3) is a ribbon weak Hopf algebra. Moreover, the ribbon elements in
D(H3) are
N=2IKI+EXI+FX/f,
v =2IKI+EX]1-2EXf+FXI1-FX/,
v3=2IKI+EXI-2EXf—-FKXf,
v =2IKNI+EX1+2FX]1 -FKXf. O

3.3. The Drinfeld double of the Sweedler’s S-dimensional weak Hopf
algebra
Let Hs be the Sweedler’s 5-dimensional weak Hopf algebra with a basis
{l,e,¢c,x, y} satisfying the following:
H51) the multiplication is given by

Hs|1|e|c| x y
1 lje|c| x y
e |elelc| x y
¢c |clclel|l—y|—x
x |x|x|y| O 0
y|ly|ly|x]| O 0

H52) the comultiplication is given by
Al)=1®1-1Qe-e®@1+2e®e,
Ale)=e®e, Alc)=c®ec,
AX)=c®@x+xQe, Aly)=e®y+yQ®c;

H53) the counit is given by
1) =2, ale)=a(c) =1, a(x)=a(y)=0;

H54) the antipode is given by

S(l)y=1, Sl)=e, Sl)=c¢, Skx)=yp, S =-x
It is easy to get that
e(l) =e(l) =1, &le) =eale) =e,
g5(c) =e(c) =e, &(x) =a(x) =&(y) =&(y) =0.

Suppose that the dual basis of {1,e,¢,x, y} in HS is {I,E,C,X, Y}, then H?
has a weak Hopf algebra structure as follows:
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CHS51) the multiplication is given by

H: | 1| E |Clx|Y
[ | 1| -1 [0|lo0]oO
E|-I|2I+E|0|0]|Y
clo 0 |clx]|o
X|o| x |o]ofo
Y | 0 0 |r|o]o

CH52) the comultiplication is given by

A =I®]1,
AE)=ERE+IQE+ER®I+C®C,
AC)=I®C+CRI+E®C+CRE,
AX)=I®@X+XQ®I+E®RX+X®E+Y®C-C®Y,
AY)=I®Y+YRI+ERY+YRE+X®C—-CRX;

CH53) the unit element is ly: =e=21+E+C;
CH54) the counit is given by

§I)=1, &E)=&C)=4X)=8Y)=0;

CHS55) the antipode is given by

SIy=1, S(E)=E, S(C)=C, SX)=-Y, S(Y)=X.

Now consider D(Hs) = H:.“” X Hs. Similar to D(H,) and D(H3), we can
get that D(Hs) is a 17-dimensional weak Hopf algebra with a basis {x¢ = 1 X I,
X11 :El, X12:EC, x13:Ex, X14:Ey, X21 :Cl, XZQZCC,
X3 =CKXx, xu=CXy x31=XXI1, xp=XKc¢ x53=XKXx, x33 = XXy,
Xg =YX, xp=YKXc, xa3=YXx, x4 =Y [X p}.

Furthermore, the weak Hopf algebra structure of D(Hs) is given as follows:

DHS51) since ¢ X1h = (¢ Xl 1) (e X1 h) for all ¢ € H*°? and h € H, and there
are two canonical weak Hopf algebra homomorphisms: iy : H — D(H) defined
by ig(h) =e¢Xh and jy: H*? — D(H) defined by ju(¢) =¢ X 1y, we only
need to give the products under the form (¢ X /)(¢ X 1y). Moreover, we have

WY Ea)pXb) =W X1y)(eXa)(pX 1y)(eXb)
=Wl X1y (eXc)(eXb)
= (Yf X 1g)(e X ch),
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for any y,pe H*?, a,be H, where f[Xlc= (¢Xla)(p[xlly) obtained by fol-
lowing

D(Hs) | IK1 | ER1 | C®1 X®1 Y®1
ex!l | IK1I | EX]L | Cx1 XXx1 Y X1
eXle 0 EXc | CXec —X[Xc -YXc
eXl e 0 EXc | CXec —XXc -YXec
eX x 0 CXx | EXx IX1I+EX]I —CXce—-CKx1
—ERc+ yRx + X X x
eXly 0 Cxly| EXly IX1T+EXI CXlc+CxX1
—EXlc—Y Xy XXy

DH52) since A(gXh) = A4 X 1)5_(8
roducts under the form A(¢ X1 1) and A(e

A(I
A(E

X1 &), we only need to give the cop-
I

h):

X]

N=(Ix)®(IKI),
DN=URNQEX)+ER)Q@UIKI)
+EXDQERD+(CR) @ (CKRI),
ACRDN=(IRDNRCRN+(EX])®(CHI)
+F(CHDOURD+(CRDQ(ERI),
AXHD=XRNQURD+XHD®ER)+(CHD®(YRI)
~(YRNRCHN+ERN@XB)+(RD)®(XEI),
AYRD=IRDNQYRD+EXDH(YR)+(YH)®@UIXI)
FYRDQEND+(CHN)@I KNI - (XK (CKI),
AR =20RNQURN+(R)QER)+(ER1) QI K1)
FEXDQERD+(CR)Q(CKI)
+UHD@CH)+(ER])®(CHI)
+(CHD®URD+(CHI)Q(EXNI),
AeHe)=(IRNOUIRN+(IHNQER)+ER)QUIXI)
FEXDQERD+(CR)Q(CKI)
FURDRCHD)+(END)®(CKI)
F(CHD®UKR)+(CHI)(EXNT),
AeXe)=(EXRc)® (ERc)+ (CRc)® (CRc)
+(CH)@(ERC)+ (ERc)® (CKe),

X]
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AERX)=(ER)Q@ERX)+(EXY)QEXR+(ERXx)®(IX1)

+(CX)®(CHX)+(CRX)®(CH 1)+ (EXc)® (CKX x)

+(CHO)®(ERX) +(CRX)® (EX 1)

+H(CHN®UIED +(ERx)®(CHI),
AeRy)=(IRD@ERY) +ERD®ERY) +(ER)) @ ERC)

+(CHD®(CHY)+(CHY)®(CR)+(EXT®(CK )

+UIRD®(CHY) +(CH)(EX )

+(CHY)®(ER ) +(EXy) @ (CR¢);

DHS53) the unit element is lpy) =2IXK1+EX 1+ CKX I;
DH54) the counit is given by

gIx1)=1, &EXc) =1,

8x;) =0, for any (i, ) # (0,0) and (i, ) # (1,2);

DH55) since S(¢X %) = (e = S(h))(S~'(¢) ™ 1), the antipode of D(Hs) is
immediately determined by H54), CH55) and the table of the product.

THEOREM 3.4. D(Hs) is a sovereign weak Hopf algebra, but not a ribbon
weak Hopf algebra.

Proof.  On the one hand, it is a direct computation to check that G(D(Hs))
is the product of two cyclic groups of order 2. Actually, the group-like elements
in D(Hs) are

Ipuy =2IR1+ER 1+ CR,
gi=IK1I+EXc+ CKec,
p=IX1+EXc—-CKXec,
B=2IKI+EX]l-CHI,

and g, g3 are sovereign elements.
On the other hand, since the quasitriangular structure of D(Hs) is R =
>i(eXe) ® (e' X 1), we can get that the Drinfeld element

U=2IX1+EX1I+CXc—XXy+ Y Xx,
and

u ' =2RI+ERI+CRc—XRx— Y[ y.
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Then we have

uw!'Sw)=IKHI+ERc— CKc+2Y X y.

Thus there is no group-like element g in D(Hs) satisfing g = u~'S(u). O
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