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UNIVERSAL INEQUALITIES FOR EIGENVALUES OF A SYSTEM
OF SUB-ELLIPTIC EQUATIONS ON HEISENBERG GROUP!

FENG Du?, CHUANXI WU, GUANGHAN L1 AND CHANGYU XIA

Abstract

In this paper, we study the eigenvalue problem of a system of sub-elliptic equations
on abounded domain in the Heisenberg group and obtain some universal inequalities.
Moreover, for the lower order eigenvalues of this eigenvalue problem, we also give some
universal inequalities.

1. Introduction

It is well known that the (2n 4+ 1)-dimensional Heisenberg group H" is the
space R¥*! equipped with the non-commutative group law

1
(x7y7[)(x/7y/at/) = (X+x/7)/+ y/7t+ r +§(<x/7y>R" - <X7 y/>R”)>7

where x, y,x’, ' € R" and t,¢' e R, and {, Y. denotes the inner product in R”.
The Lie algebra #" of H" has a basis formed by the following vector fields

0 ¥y 0 0 Xx,0 0
D — T T, = — X T:—, :172,..., .
PTox, 200 " ay, 2 a ? "
We note that the only nontrivial commutators are [Y,, X,| = —7T9,,. Thus the
vector fields X1,...,X,, Yi,..., Y, generate a vector bundle on H”, the so called

horizontal vector bundle HH", that is a vector subbundle of TH", the tangent
vector bundle on H". Since each fiber of HH" can be canonically identified with
a vector subspace of R¥!, each section ¢ of HH" can be identified with a map
¢ :H" — R¥. At each point P e H" the horizontal fiber is denoted as HpH”"
and each fiber endowed with the scalar product <-,->p» and the associated norm
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|-|p that make the vector fields Xi,...,X,, Yi,...,Y, orthonormal, hence we
shall also identify a section of HH" with it’s canonical coordinates with respect
to it’s moving frame. In this way, a section ¢ will be identified with the func-

tion ¢ = (¢,,...,0,,) : H* — R*" such that ¢ = 21221 @;X;. As it is common in

Riemannian geometry, when dealing with two sections ¢ and ¢’ whose argument
is not explicitly written, we shall drop the index P in the scalar product writing
p,p"y for {p(P),p'(P)yp. The same convention will be adopted for the norm.
If Q is an open domain of Heisenberg group H” and k£ > 0 is a non-negative
integer, the symbols Cf(Q), Cf(Q) denote the usual (Euclidean) spaces of real
valued continuously differential functions. We denote by C*(Q, HH") the all
Ck-sections of HH”", where the C* regularity is understood as regularity be-
tween smooth manifolds. The notations of C*(Q, HH") is defined analogously.
Now, let us introduce some differential operators on the Heisenberg group H”.

Let Q be an open subset of H”, if 9 = (¢y,...,0,,) € C¥(Q, HH") and k > 1

is a positive integer, we define the horizontal divergence of ¢ as

n
divy ¢ = ZXI'(P[ + Yig, i
i=1

If fe C{;(Q) and k > 1 is a positive integer, we define the horizontal gradient of

f as
grady /= (Xif,.... Xuf, Y0 f,..., Y f).

If feCK(Q) and k >2 is a positive integer, the real Kohn Laplacian of f is
given by

Anf = divy grady f = (X2f + Y1),
p=1

If 9= (p,...,05,) € C5(Q, HH") and k >2 is a positive integer, we define
Xi(ﬁ”):(Xi%;uinﬁ”zn)a l:177na
Yj((ﬂ):(y}(pl?""Yj(o2n)7 jZI,...J’l;
AH(%”) = (AH(plv e 7AH¢2n);
grady f - grady(p) = ({grady f,grady ¢,),...,{grady f,grady ¢,,).

Based on the above facts and more results [25, 23, 17, 16, 24] of eigenvalue
problem in the Heisenberg group, in this paper, we consider the following eigen-
value problem of a system of sub-elliptic equations
(L Apu + o gradg(divg(u)) = —ou, in Q,

' u=0, on 0Q,
where Q is a bounded domain in H”, o is a non-negative constant, and u e
Cck(Q, HH").
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In [18], Ilias and Makhoul mentioned the following inverse spectral problem
(see [9]): “What kind of increasing sequences of non negative numbers can be
the spectrum of the Laplacian of a compact Riemannian manifold (respectively, of
the Dirichlet Laplacian on a domain of a fixed Euclidean space)?”. In the same
paper, they proposed another question which is less difficult than the first one:
“Is there any restrictions on these spectral sequences, which are independent of the
manifold (respectively, the domain)?”’. Such restrictions will be called ““universal”.
Thus, the universal inequalities are the useful tools to study the inverse spec-
tral problems. In recent years, many universal inequalities for eigenvalues on
Riemannian manifolds have been obtained by many mathematicians, we refer
to [1, 4-8, 10-15, 18-20, 26-28, etc.] and the references therein. In sub-
Riemannian geometry, it is natural to consider the following problem: In sub-
Riemannian manifolds, are there similar results for the eigenvalue problems as
in the Riemannian case? For the eigenvalue problem of a system of elliptic
equations on a Euclidean space R”, Levine-Protter [21], Levitin-Parnovski [22],
Cheng-Yang [3], and Chen-Cheng-Wang-Xia [2] gave some universal inequalities,
respectively. Our purpose in this paper is to prove a universal inequality for the
eigenvalue problem of a system of elliptic equations on a Heisenberg group H”
although the noncommutativity of vector fields {X;, ¥;} makes the discussion of
this problem more complicated than the similar one on the Euclidean space.

THEOREM 1.1. Let Q be a bounded domain in a (2n+ 1)-dimensional
Heisenberg group H" and let o; be the i-th eigenvalue of the eigenvalue problem
(1.1). Then we have

k k
(1.2) Z(O’/H_l — O-I')Z < min{(znn_;a)7A(n,oc)} Z(O’k+1 —a;)oj,

il i=1

where
8+ (2n+2
M, when 0 <o < (n+1)+1/(n+1)> + 4,
A(n, o) = 2n+a)(14+1L)
4+O€2 2
e when o> (n+1)+1/(n+1)"+4,
4+ 2n+2)a — o?)n?
andL:(+(n+ )ot oc)n.

(2n + )
From Theorem 1.1, we can easily get the following

COROLLARY 1.1.  Under the assumption of Theorem 1.1, we have

(1.3) Oyl < (1 +min{(2nTJ2roc),A(n,oc)}>%§;m,
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and the gap of any consecutive eigenvalues

. ((2n+o) 1 &
(1L.4) akH—akgmm{ p ,A(n,a) E;a,

For the lower order eigenvalues, we can obtain

THEOREM 1.2.  Under the assumption of Theorem 1.1, we have

2n

(1.5) > (11— 1) < 4(1 + 2)ay.

i=1

2. Preliminaries

In this section, we will prove a lemma which will play a key role in the proof
of Theorem 1.1.

Lemma 2.1. Let Q be a bounded domain in an (2n+ 1)-dimensional
Heisenberg group H". Let a; denote the i-th eigenvalue of the eigenvalue problem
(1.1) and let w; be the i-th orthonormal eigenfunctions corresponding to o;, namely,
u; satisfies

Apw; + o grady(divg (v;)) = —o;Agu;, in Q,
(2.1) u; =0, on 0Q,
JQ<ui7u/>:5i/a l7]:1727

Then for any he C*(Q)N CY(0Q), we have

k
(2.2) Z Ok+1 — O Z{J |gradyy A% |u|* + (ZJ {grady h,u,->2}
Q Q

i=1

k
Z (Ok+1 — 07) HP1||

and, for any positive constant A,

k
(23) D> (okn-—o {1 )J |grady h|2|u,»|27AocJ |grady h.uﬂ}
Q Q

i=1
k
§ Ok+1 — al

where p; € Ck(Q,HH") defined by

2

)

1
grady i - grady (u;) + EAHhu,-

p; = 2 grady & - grady(w;) + Aghu; + o grady<grady A, w;» + divg(u;) grady h}.
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Proof. Defining v; e C*(Q, HH") by
k
(24) Vi = hll,‘ — Za;,uj,
Jj=1

where a; = [ h{w;,w;) = a;;, we have

(25) Vi

w0 =0, J vi,uj> =0 for any i,j=1,... k.
Q
From the Rayleigh-Ritz inequality, we have
(2.6) Ok+1 J lv,|* < J (Anv; - vi + o(divg(v;))?).
Q Q

From the definition of v;, we derive

Anv; = Au(hy;) — Za,]AHuj

k
= hAu(w;) + 2 grady h - grady (w;) + Auhu; — Y _ ajAuy;

J=1

= h(—on; — o gradg(divg (w;))) + 2 grady & - grady (u;) + Aghu;

k
- Z a;(—om; — o grady (diva (u;)))

=1

= —g;h; + Z ajom; + 2 grady h - grady (v;) + Aphu;
Jj=1

k
— o grady(diva(w;)) + o Y  a; grady(diva(w;)).
=

Therefore, we have
(2.7) J {(=Anv;,v;> = a,-||v,~|\2 — J {(2 grady /- grady(u;) + Aghw;), v;>
o) Q

— 0 J {grady(diva(w;)), vi»
Q

+ acZa,,J grady (divyg (w;)), v ).
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Using integration by parts, we have

. k
—u JQ {grady (divg (w;)),v;> + o Z aj JQ {grady (divg(u;)), v;>

J=1

= ocJQ(diVH V,~)2 —o Jg(diVH(viKgradH hyu;y + divg (u;)<{grady &, v;))
= ocJQ(diVH v) +o JQ(<V,-, grady<grady i, w;)) + divg(u;)<{grady 1, v;)).
y (2.6)—(2.7) and the above equality, we have
(2.8) (opr1 —oi)|vill* < — JQ {(2 grady h - gradg(u;) + Aghuy), vi>
o JQ(<V,-, grady{grady h,u;>) + divyg (u;)<{grady A, v;)).
Let us set
by = L}<gradH h - gradg(w;) + %AHhui,ui> = —bj,
and
p; = 2 grady £ - grady (w;) + Aghu; + a{grady(grady 4 - w;) + divg (w;) grady A}.

By the similar computation such as (2.9)—(2.14) in [2], we have

k
(oxs1 = o) [,
1

k

Z(Ukﬂ - a,-)z{JQ |grady h|2|“i\2 + “JQ grady h, Ui>2}

i=1 i=

hence, (2.2) is true.
By the similar computation such as (2.15) in [2], we have

k
(k1 — 07)° (J |gradyy % |ui|® + 2Zaijbij
o

J=1

k
< (Jk+1 - 0-1) (J |gradH h| |u1| + Z a + O‘J <gradH haui>2>

j=1
(Oky1 — 07)
* A

2 k
— Zb;)
j=1

grady i - grady (u;) + %AHhui
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In the above inequality, summing over i from 1 to k and noticing a; = ay,
bg/' = —bj,‘, we obtain

k

> ok — 0:’)2J |grady h|*jw|* -2 Z k1 — 0i)(0: — 0;)a;by;
i=1 i,j=1
k
<A4) (ok41—0i) (J |gradyy /|*[u;|? +O<J grady h7“i>2>
i=1
k(o 2
+ kH gradH h - gradg(v;) + 2AHhu,
i=1

k

k

0k+1
AE (Grg1 — 03)( '—UJ a; E ,,7
i,j=

1 i,j=1

which implies

k
S (e — a[)zj lgrady A2 ful?
i=1 Q
k
<4

I

(Ok41 — 07) (J |grady Al [u;|? +0<J {grady h7ui>2>

1

k 2
Uk+1

+

I

1
gradH h - grady (u;) + EAHhu[

)

1

Thus, (2.3) is true. This completes the proof of Lemma 2.1.

3. Proofs of main results

In this section, we will prove our main results by using Lemma 2.1.

Proof of Theorem 1.1. Let Y, = X,.p, ¥p = Xntp, p=1,...,n, we know
that

X, (xp) =08, B,y=1,...,2n.

Then we can get

2n 2n
(3.1) > lgrady xg* =2n, Y <grady xp,u;)? = [uil’;
B=1 p=1

(3.2) grady xg - grady (w;) = Xp(w;), Apxg =0.

Using integration by parts, we have
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2n

2n
(3.3) ZJ Jerady, xp - grady ()2 = [ 3 (), Xy

=1JQ Q p=1

= —<§:Xﬁ2(ui),ui>
Q p=1

= —{Anu;,u;)
Ja

= | {om;+ o grady(divyg(w;)), ;>
Q

= 7 — of | diver (u)]| .
Taking h = x, in (2.3) and summing over o from 1 to 2n, we have

k 2n

34) D (o —a) Z{(l — A) L |lerady xp|*|w;|* — A L |gradyy xg - u,»z}

=1 p=1

k 2n 1 2
ZZ Ok+1 — O Z grady xp - grady (u;) + EAHx/gui ,
i—1 p=1
Taking (3.1)—(3.2) into (3.4), we have

k k

Z Oks1 — 0}) 2n —AQCn+a)) < Z okr1 — 0i)(o; — ocHdiVH(u,-)||2).

i=1 i—1
Taking

k .
(3.6) 4 = 21 (ke —0i) (o ; — ol divir(u)]*)
(2n+ ) 5 (051 — o)’
we have
k k
2n+a .
6 Yoy = IS o o) aldiva()|),
i1 i1
since o divr (u;)]|* > 0, we have
k k
(2 +

(38) Z(O‘k_H — O', 2 = " O( Z Ok+1 — O',

i=1 i=1
Taking s = x, into (2.2) and using (3.1) and (3.2), we have

k

k
(3.9) Z(Gk“ - Gi)z{l + OCJQ grady x,;,u,»}z} =< Z(Ukﬂ — o),

i=1 i=1
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and
(3.10) p; =2 grady xp - grady (w;) + afgrady<{grady xp,u;» + divg(u;) grady xz}.

Taking (3.10) into (3.9) and summing over f from 1 to 2n, we derive from (3.3)
that

GBI 2nta)S (ox — )’

™M=~

i=1

<

-

(Okt1 — 07)

1

1

X [|2Xg(w;) + o{grady{grady xz,w;» + divi(u;) grady x/g}||2
k
Z (011 — 1) (4 + 0oy — a(o® — (2n + 2)a — 4)||divg () ||?).

(44 (2n+2)a — o?)n?
(2n + )

8+ (2n+2)u
————— whenO<a<(n+1)++/(n+1)
(2n+a)(14+ L)
4+ a2

, when o > (n+1)+4/(n+1
2n+o

It then follows from the similar discussion as in [2] that

We set L = and

b

(3.12) A(n,a) =

k

k
(3.13) Z(O‘k+l — 0’, < Z O'k+1 — 0',
i=1 i=1
By (3.8) and (3.13), we have

k k
(3.14) Z Ok+1 — O7) 2 < min{(zn’:_ i }Z (Ok41 —

i=1 i=1

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Defining a (2n x 2n)-matrix C := (c;), where

Ci/:J xiu, w1y, i, j=1,...,2n.
Q
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From the orthogonalization of Gram and Schimidt, there exist an upper triangle
matrix R = (Rj;) and an orthogonal matrix 7' = (7}) such that R=TC. Thus,
we have

2n 2n
Rif = Z Tikaj = ZJ Tl‘ka<ll1,llj+1> = 0, for 1 < ] <i<2n.

k=1 k=1

Setting g; = 21311 Taxr, we have
J giup,upy > =0, for 1 <j<i<2n.
Q

We put
(3.15) W = (g; — a;)ui,

where a; = |, gilm|?, then it follows that

(3.16) Wwilo =0, JQ wiuip> =0, for 0<j<i<2n
From the Rayleigh-Ritz inequality, we have

(3.17) - JQ il < JQ<—<wl-, Auwsd -+ o(divig(w,)))

It follows from the definition of g;, the fact that T is an orthogonal matrix, (3.1)
and (3.2) that

2n 2n

(3.18) Z |grady g, = 2n, Z(gradH gnud? = |m)?;
i=1 i=1
2n

(3.19) grady g; - grady(uy) = Z TuXk(w1), Angi =0.
k=1

Hence, we have
Anw; = (9; — a;)Anu; + 2 grady g; - grady(u;)
= (g9, — a;)(—o1u; — o grady(divg(wy))) + 2 grady g, - grady (u;)
2n
= —o1w; + (9; — a;)(—o gradg(divg (u;))) + 2 Z Tt Xy (uy)

k=1
and

JQ (AW, W

2n
o [ il jg<<g,f — ) (o gradgg(diviu))) — 23 Ty Xe(w), w>

k=1
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y (3.17), we have

(3.20) (o141 — 1) L [wil?

2n
< JQ<((11‘ — ;) (= grady (dive(w))) =2 TuXs (“1),Wf>

k=1

+o Jg(diVH(w,-))z.

Since

2n
J <Z T Xi(wy),
Q \ k=1

we have
(3.21)

and

(3.22) L (g =

Wi> J ZTzk<Xk w), (g1 —au)

k=

2n
J ZTzk<Xk (w), (g1 —au) — J ZT,%JUH ;
0

k=1

2n
—ZJ <Z Tika(Ul),Wi> =1
Q \ k=1

a;) (o grady (divig(uy))), w>

=—a| diva(w) diva((g9; — a;)w;)

Q

=—o | divg(u;)((g9; — @;) divie(w;) + <Vrgi, w;»)

JQ

= —o | (diva(wy))? +ocJ divg(w;)<{Vugi,ur

Q

Q
ocJ divy (u1)<{Vugi, w;»
Q

ocJ (divig(w;)) aJ (Vugi,up 2.
Q Q

Substituting (3.21) and (3.22) into (3.20), we have

(3.23) (0ir1 — O'])J |VV,"2 <1+ O(J <V]—[gi,ll1>2.
Q Q
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On the other hand, for any positive constant J;, we have

2n
(3.24) 1= —2J > TuXi(ur), w,
Q\ k=1

2

5 1J 2n
<0; i - T X
<o g | [ Txi)

Q=1

Then by the similar discussion as in [3], we have

2

2n
oiy1 —op <4(1+ OC)J Z T Xy (uy)
Q| k=1

Summing over i from 1 to 2n, we have

2n 2n 2n 2
> (o1 —o1) <4(1+ “)ZJ > TuXi(w)

i—1 i=1 Q| k=1
2n

4403 [ D) <401+ 20
k=1

Hence, (1.5) is true. This completes the proof of Theorem 1.2.
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