Z. XIA
KODAI MATH. J.
38 (2015), 310-332

PSEUDO ASYMPTOTICALLY PERIODIC SOLUTIONS OF TWO-TERM
TIME FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAY

ZHINAN XIA

Abstract

In this paper, the existence and uniqueness of pseudo S-asymptotically w-periodic
mild solutions of class r for the nonlinear two-term time fractional differential equations
with delay are investigated. The working tools are based on the generalization of the
semigroup theory and fixed point theory. Finally, we present an application to a
fractional partial differential equation with delay.

1. Introduction

The study of the existence of asymptotically w-periodic solutions is one of
the most interesting and important topics in the qualitative theory of differential
equations. From an applied perspective, asymptotically w-periodic systems de-
scribe world more realistically and accurately than periodic ones, one can see
[7, 12, 13, 22, 23] for more details. The notion of S-asymptotic w-periodicity,
introduced by Henriquez et al. in [10, 11], is related to and more general than
that of asymptotic w-periodicity. Since then, it has attracted the attention of
many researchers and the interest in this topic still increases [3, 4, 5, 8, 9, 16, 18].
Recently, in [19], the concept of pseudo S-asymptotic w-periodicity and pseudo S-
asymptotic w-periodicity of class r, which generalizes the notion of S-asymptotic
w-periodicity, was introduced and the applications to semilinear first-order
differential equations with delay in Banach spaces were studied.

In this paper, we study the existence, uniqueness of pseudo S-asymptotically
w-periodic solutions of class r for the nonlinear two-term time fractional differ-
ential equations with delay

(1.1)  D*'u(t) + uDlu(t) — Au(t) = f(t,u), teRY, 0<a<f<1,u>0,
u =9 €€, uy=gp,€%,
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where A is an @-sectorial operator of angle /2 with & < 0, u,(0) := u(zr + 6)
for 0 € [-r,0], r >0 is a fixed constant, ¥ := C([—r,0],R) denotes the space of
continuous function from [—r,0] to R with the supremum norm. The fractional
derivative is understood in the Caputo sense.

Note that fractional differential equations arise in many areas of applied
science, such as physics, engineering, biology, control theory, among other areas.
For this reason, those equations have been of a great interest during the last
few decades. Our motivation to study (1.1) come from recent investigation on
the subject. For (1.1) without delay, the existence, uniqueness of mild solutions
in the special case o =f were studied in [15]; the nonlinear two-term time

2

fractional diffusion-wave equation with 4 = 0<a<f—1 was studied in

dx?’
[20]; asymptotic behavior of mild solutions was studied in [14]; the S-asymptotic
w-periodicity of mild solutions was studied in [6]; the almost periodicity, compact
almost automorphy, almost automorphy and pseudo asymptotic behavior of mild
solutions were studied in [1], but in the case of delay, i.e., (1.1), to the best of
our knowledge, there is no work reported in literature. Moreover, the pseudo S-
asymptotic w-periodicity of (1.1) is quite new and an untreated topic. This is
one of the key motivations of this study.

The paper is organized as follows. In Section 2, some notations and
preliminary results are presented. In Section 3, we explore some properties
of pseudo S-asymptotically w-periodic function of class r, and establish the
composition theorems. Section 4 is devoted to the existence, uniqueness of
pseudo S-asymptotically w-periodic mild solution of class r for (1.1). In Section
5, we present an application to a fractional partial differential equation with
delay.

2. Preliminaries and basic results

Let (X,[-|), (Y,|l-|ly) be two complex Banach spaces and N, R, R", and
C stand for the set of natural numbers, real numbers, nonnegative real numbers,
and complex numbers, respectively. Z%(u) denotes the range of u(-). In order to
facilitate the discussion below, we further introduce the following notations:

* BC(RT,X) (resp. BC(R" x Y, X)): the Banach space of bounded con-
tinuous functions from R* to X (resp. from R™ x Y to X) with the
supremum norm.

« C(R",X) (resp. C(R" x Y, X)): the set of continuous functions from R"
to X (resp. from R" x Y to X).

« L(X,Y): the Banach space of bounded linear operators from X to Y
endowed with the operator topology. In particular, we write L(X) when
X=7Y.

« LP(R", X): the space of all classes of equivalence (with respect to the
equality almost everywhere on R*) of measurable functions f : RT — X
such that || f|| e L?(RT,R™).
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+ LP (R, X): stand for the space of all classes of equivalence of measurable

functions f :RT — X such that the restriction of f to every bounded
subinterval of R is in L?(R", X).

Let pe([l,o0). The space BSP(R",X) of all Stepanov bounded functions,
with the exponent p, consists of all measurable functions f : Rt — X such that
fPe L*(RT,LP([0,1]; X)), where f? is the Bochner transform of f defined by
fP(t,s) = f(t+s), teR", s€0,1]. BSP(RT,X) is a Banach space with the
norm [17]

t+

1 1/p
I s = NN o Ly = sup (J £ (@I df) :
teR*

t

It is obvious that L?(R*,X) < BS?(R",X) < L}
BSY(RT,X) for p>g=>1.

For each p e [1, ), we denote by #%”(R" x Y, X) the set of all continuous
functions /:R* x Y — X with the property that there exists a function L; €
BS?(R",R™) satisfying Ve >0, 36 > 0 such that

(R*,X) and BS’(R*,X)c

sup | f(z,u(r)) — f(z,v(x))|| < Ly(t)e, for all re R and

Te(t—r,1]

u,ve Y with |lu—vl, <d.

It is easy to see that #6?(R" x Y, X) c %64 (R" x Y, X) for 1 <¢g < p < oo.
Let « >0, m = [«] denote the integer part of « and u:R" — X. The
Caputo fraction derivative of u € R™ of order « is defined by

t

D7) = | anooli =) s, 10,

A1
T(B)

set go(f) := dy, the Dirac measure concentrated at the origin.
In order to give an operator theoretical approach to (1.1), we have the
following definition.

where gp(t) := ,t>0, >0, T is the Gamma function, and in case =0,

DerNiTION 2.1 [14]. A closed and densely defined linear operator A is said
to @-sectorial of angle 0 if there exists 0 €[0,7/2) and & e R such that its
resolvent exists in the sector

(2.1) o+ Sp:={a+1:1eC,larg(1)

<n/2+ 0}\{@o}

M
(A —4)7" < oA Led+ Sy

In the case @ =0, we merely say that A4 is sectorial of angle 6.
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We should mention that in the general theory of sectorial operator, it is not
require that (2.1) holds in a sector of angle 7/2. Our restriction corresponds to
the class of operators used in this paper.

DEerINITION 2.2 [14]. Let £ >0, 0 <o,f <1 be given. Let A be a closed
and linear operator with domain D(4) defined on a Banach space X. We call 4
the generator of an (a,f) -regularized family if there exist @ >0 and a strongly
continuous function S, 5 : R* — L(X) such that {2*" + 1P Re ) > @} < p(A)
and

o0
PO b — )y = J e S, p()x dt, Rel>ad, xeX.
0
Because of the uniqueness theorem for the Laplace transform, if u =0,
o =0, this corresponds to the case of a Cy-semigroup whereas the case u =0,
o =1 corresponds to the concept of cosine family. For more details on the
Laplace transform approach to semigroups and cosine functions, we refer to [2].
Sufficient conditions to existence and the integrability for the generators of

an (,f) regularized family are given in the following results.

THEOREM 2.1 [14]. Let O<a<f <1, u>0 and @ <0. Assume that A is
an w-sectorial of angle fr/2, then A generates an (o, p),reqularized family S, g(t)
satisfying
C
(2.2) 185, 5(2)

<
= 1 + |@| (2! + wth)’

for some constant C > 0 depending only on o, p.

Note that

dt -
o 1+ |o|ret! (0 + 1) sin(z/ (o + 1))
for 0 < o < 1, therefore S, 4(¢) is integrable on (0, c0).

J-oo 1 |Cb|71/(o<+l)n_

THEOREM 2.2 (Hardy-Littlewood [2]). Let feL.,.(RT,X) and F(1):=
f(;f(s) ds. Assume that M :=sup,. t||f(t)|| < co for some t>0 and F,, € X.
If im;_g f(2) = Fo, then lim,_.. F(t) = F.., where f(A):= [;" e *f(t) du.

3. Pseudo ¥-asymptotic w-periodicity of class r
For w > 0, define
Co(RY, X) = {f e BC(R™,X) : lim || /(1) = o}.
— 00

Co(RT,X)={feBCR" X): f is w-periodic}.
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DerINITION 3.1 [21]. A function /€ BC(R™, X) is called asymptotically w-
periodic if there exist g € C,(RT,X), p € Co(RT,X) such that f =g+ ¢. The
collection of those functions is denoted by AP,(R*,X).

DerINITION 3.2 [10]. A function feBC(RT,X) is said to be S-
asymptotically periodic if there exists w > 0 such that lim,,.,(f(# + w) — f(¢))
= 0. In this case, we say that f is S-asymptotically w-periodic. The collection
of those functions is denoted by SAP,(R™, X). It is clear that AP,(R", X) <
SAP,(RY, X).

DerINITION 3.3 [19]. A function f e BC(R',X) is called pseudo S-
asymptotically periodic if there exists w > 0 such that

lim lj 1/ (t+ ) — £(2)] dt = 0.

T—owo T 0

In this case, we say that f is pseudo S-asymptotically w-periodic. Denote by
PSAP,(R", X) the set of such functions, PSAP,(R", X) is a Banach space when
endowed with the supremum norm and SAP,(R',X) < PSAP,(R", X).

DEerFINITION 3.4 [19]. A function f e BC(R",X) is called pseudo S-
asymptotically w-periodic of class r (r > 0) if there exists w > 0 such that

1 T
lim TJ sup ||f(t+w)— f(7)] dt = 0.

T—w rotet—r,1

Denote by PSAP, ,(R",X) the set of such functions, PSAP, ,(R",X) is a
Banach space when endowed with the supremum norm.

DErFINITION 3.5 [19]. A function F e BC(RT x Y, X) is called uniformly
pseudo S-asymptotically w-periodic of class r (r > 0) if there exists @ > 0 such
that

1 T
lim _J sup  sup ||F(c+w,z) — F(z,2)| di =0,

T—ood Jr cefi—rq |z|y <R

for all R>0. Denote by PSAP, . (R" x Y, X) the set of such functions.
Next, we show some properties of the space PSAP, ,(R™,X).

Lemma 3.1. Let r >0, then

(i) PSAP, . (R, X)< PSAP,(R",X).

(il) PSAP,,(R",X) is a closed subspace of BC(R*, X).

(i) PSAP, ,(R*,X) is a Banach space under the supermum norm.

~— —

Proof. From the estimate
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r T
=z | o= s 1 [ i o) - s a

T

<[ 1o —sona 1] s i) - o

0 - relt—r,1]

it is easy to see that (i) holds.
Let f, € PSAP, ,(R",X) and f, — f in BC(R',X), then

1 (T ,
—j sup |If(c+ ) — f(2)]| di
T rotelt—r,1

1 T
:_J sup  [|fo(z + @) — fu(©)] dt
T rotelt—ri

T
+1J sup ||/ (v + @) = f(7) = (fu(r + @) = fu(0))| dt

rotelt—r,1

Z|  sup [t + @) = fu(7)] di
T, Tet—r,1]

1 T
+—j sup [|f(z+ @) — fult + )| dr
T rotelt—r,1]

1 T
bp| s s - Al

rotelt—r,1

315

which yields that f e PSAP, (R, X), then (ii) holds, therefore (iii) holds.

LemMMA 3.2. Let r1 >0, r, >0, then
PSAP,, (R*, X) = PSAP, , (R* X).

Proof. Let r >0, first we show that
(3.1) PSAP, ,(R*, X) = PSAP,, »(R", X).
For f € PSAP, ,(R",X), one has

T
7l s o) - s ar

T )y T€[t—2r,1

O

<z| s o) s@ld g sp fero)- @) d

2r telt—r,1] T 2r te(t—2rt—r|
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1 T 1 T—r
<] s Irero) @l L] s 1) - £ d
rotelt—r1] r Teu—r,ul
1 (" ("
<z| sw Mo -s@la | s o) - r@)] de
T, Te(t—r,1] T, T€u—r,ul

SO

1 T
fim [ sup [f(e+ @)~ S di =0,

T—o 2r te(t=2r,1
thus f € PSAP, »(R*, X). Hence (3.1) holds.
Now, let r; >r, >0. If fe PSAP,, (R", X), then

(T
lim —J sup ||f(z+w)— f(2)| dt = 0.
T—w T r ‘L'E[t*}“ht]

From

1 T
7l s Wero) sl

ry TE[t—r,
T

:%r sup ||f(f+w)—f(f)||dt+%J sup | f(z+ @) = f()|| dr

r TE[t—r,1) r te(t—ra, 1]

1" (7
s7| sw Mo -s@ldrg] s Ifero) - o]

T r TE[t—r, 1 T r TE[t—r,1

then

1 T
lim —j sup [\f(z+ ) — £(2)] dt = 0,

T—cw ) TG[tfrz,t]
so f e PSAP, ,(R* X), ie., one has
(3.2) PSAP,,, (R*, X) = PSAP,,,,(R*, X).

On the other hand, since r; > r», there exists k € N such that 2%, > r;. By
(3.1), (3.2), one has

PSAP,,,(R",X) < PSAP, 5, (R*, X) = PSAP,, (R, X).
Thus, PSAP, ,, (R",X)= PSAP, ,,(R",X). The proof is complete. O
Remark 3.1. It is interesting that PSAP,,(R",X)= PSAP, (R", X)

for all » >0 by Lemma 3.2, but for »r=0, it is not necessarily holds, i.c.,
PSAP, o(RT,X) = PSAP, (R", X) is not true.
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LemmA 3.3. Let f e PSAP, ,(R",X), then f(-+n)e PSAP, ,(R",X) for
all n = 0.

Proof. For n >0,

1 T
7 s W o) - sl

rotelt-r,1

1 T
:TJ sup  |[f(t+w) — f£(z)] dr

rTE[thy—r, t+1]

1 T+n
_ 1 J sup ||f(r+ @) — £(7)| dt

T +n Te(t—r,1]

T+77 1 JT‘H’/

= su f(t4+w)— f(7)| dt
), e - s

r+n
_%J sup ||f(t+w)— f(7)| dt,

r T€(t—r,1]

then
1 T
lim [ sup 17+ @)~ Se k)] dr =0,
T—oT ), te(t—r,1]
which implies that f(- +#) € PSAP, ,(R", X) for all n > 0. O

We will establish some composition theorems for pseudo S-asymptotically w-
periodic function of class r.

TueoreM 3.1. Let f € PSAP, ,(RT x Y, X) and there exists a constant
Ly >0 such that

1f(t,u) = f(t.0)| < Lyllu—vlly, teR" uvey,
then h(-) = f(-,u(-)) € PSAP, ,(R*, X) if u(-) € PSAP, ,(R*,Y).

Proof. 1t is clear that f(-,u(-)) e BC(R*,X). For ¢ > 0, there exists L, > 0
such that

1 (7 X
—J sup  sup [|f(z+w,2) — f(z,2)]| di <,
T)r cefi—rq 2| <R

1 T
7| st o) —uoly di< oLy,
T rotelt—r,1]

for every T > L,, R>0. For T > L,
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T
% j sup ||/ (7 + o, u(t + @) — f(z,u(x))|| dr
rote(t—r,1]

T
s%j sup £ (2 + w,u(t + ) — £z u(z + )| di

rotelt—r,1

17
+7J1 sup ||f(r,u(t+ w)) — f(z,u(z))| dt

o Te(t—r,1]

1 T
g—J sup  sup ||f(t+w,z)— f(r,z)| dt

rotelt—r1] ||z]| <R

ﬂ

Ly (T
+— | sup Ju(z+o)—u(@)|y dr
T rotelt—r,1]

< 2e,
implies that h(-) € PSAP, ,(R", X). O

In the following, we establish another composition theorem which weakens
the assumptions on f.

LemMA 3.4. Let f € BC(R,X), then f € PSAP, ,(R", X) if and only if for
any &> 0,

(3.3) Tlgr;% mes(Mr .(f)) =0,

where mes(-) denotes the Lebesgue measure and

MTﬁs(f):{te[r’T]: sup ||f(f+w)—f(f)||28}-

Te(t—r,1]

Proof. Sufficiency: From the statement of the Lemma it is clear that
|lf]l < oo and for any & > 0, there exists Ty > 0 such that for T > Ty,

1 €
7 mes(Mr .(f)) < 21411

Then,

1 (7 ,
—j sup [|f(x+ @) — £(0)] di
T rotelt—r1

:%(JM sup [|f(z+w)— f(7)| dt

T.c TE[t—T,1]

4 j sup [Lf(z+ @) — £(2)] dz)

[ T\M7,, t€lt—r,1|
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2|1/l ‘
— mes(Mr .(f)) + ?J[r, T)\Mr.,

T

mes(Mr.,(f)) +%L dt

dt

IA

IA

2710
T

< 2e,
o)

1T
lim —J sup || f(t+w)— f(7)] dt =0.
T—oT ), Te(t—r,1

That is f € PSAP, (R, X).
Necessity: Suppose the contrary, that there exists g >0, such that
T mes(Mr .(f)) does not converge to 0 as 7 — oo. That is there exists

0 > 0, such that for each n,

1

o mes(Mr, ., (f)) =0 for some T, > n,
n

then

1 (%
2| s o) - s a

ndr telt—r1

1 X X
:TJ sup || f(t+w)— f(2)| dt
nJMr, o T€(t—r,1]

+j sup ||f(c+ ) — £(0)]] dr
["-, Tn]

\MTn_,:0 T€(t—r,1]

>ij sup |f(z+ ) — f(z)] dt
Mr, .

T, s TE[=T,1]

z%mmmmmm

n

> €0,

which contradicts the fact that

1T
;m—j sup |1/ (z+w)— f(2)] de =0.
—© rotet—r,d

Thus (3.3) holds. O

THEOREM 3.2. Assume that f € PSAP, . (R* x Y, X)NUE"(R" x Y,X),
pell, o), then h(-) = f(-,u(-)) e PSAP, ,(R*,X) if ue PSAP, ,(R",Y).
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Proof. 1t is clear that f(-,u(-))e BC(R",X). Moreover, since f e
PSAP, ,(R" x Y, X)NU€’(R" x Y, X), for Ve >0, there exists L, >0, 6 >0,
L; € BS?(R*,R") such that

T
lj sup  sup || f(t+w,z)— f(z,z)|| dt <e&, for every T > L,, R>0.
T r otelt-r1 |z]ly <R
1F()] = Sup ]llf(fau(ﬂrw)) —f(mu(@))l < Ly()s, if

Telt-r,1

I20)lly = llu(t + ) —u(t)lly <6, 1eR".

Denote

My s(z) = {t er,T]: sup |u(t+w)—u(t)|y = 5}.

Te(t—r,1]

Mrs(z) = {te[r. 7] : lu(t + ) — u(0)]y = 6}.

N 1
then My s5(z) « My s(z) and limTHOO? mes(M7 5(z)) =0 by Lemma 3.4.
So

1 T
(3-4) ?J sup || (z,u(t + w)) — f(7,u(2))| dr

- Tet—r, 1

T Jatr.o() vefi—r.d

< ij sup [/ (2, u(z + @) — f(r.u(0)]] de

TJ ~oswp [ (mu(r+ ) = f(zu(0)]| de
[r, T\Mr 5(2) te(t—r,1]

T),
S LY 7 JML o
< ) - f
T T )k
1] o gh ([ "
< © mes(Mr 5(z)) + = (J Ly(r)” dl)
Ti=\Jk
£l (7] +1
< mes(Mr 5(z)) +T|\Lf||sv3a

where [|F|,, == sup,cg+|[F(1)]-
For T > L., by (3.4), one has
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T
% j sup ||/ (7 + o, u(t + @) — f(z,u(x))|| dr
rote(t—r,1]

T
s%j sup £ (2 + w,u(t + ) — £z u(z + )| di

rotelt—r

1 T

b j s 1 (x, u(z + w)) — £ (x,u(z))| dt
r TE|l—1,1]

[T +1
T

F
<e + % meS(MTﬁ(Z)) + ||Lf||S1'87

Due to the arbitrariness of ¢, one has

o1 (T
fim [ sup (e (e + o)~ flru(e)]| di =0,
T—xT), te(t—r 1

implies that A(-) € PSAP, ,(R*, X). O
LemMa 3.5, Let ueBC([-r,©),X) and assume that uly €
PSAP, ,(R*,X), then u, € PSAP,, ,(R" %).
Proof. Note that
T
= SUp  ||terew — Uello dt
TJV Te(t—r,1] e ¢

1 T

< — sup sup |lu(t+w+0) —u(t+0)| | dt
T), tet—r,1 \Oe[-r,0]
1 T

< — sup |lu(t + w) — u(z)|| dt
T rotelt=2r1]
(7 1"

<= sup  |lu(t + w) — u(7)]| dt+—J sup |u(t + @) — u(7)|| dt
T), Te[t—2r, t—r] T), Te(t—r,1]
1 T—r 1 T

— 7 s o) a2 swp e+ o) - ()] d
T)o Te(t—r,1 T, Te(t—r,1]
1 r 1 T—r

=_ sup |ju(t + @) — u(7)|| dt + = sup ju(t + @) — u(r)|| dt
T 0 te(t—r,1 T r Te(t—r,1]

1 T
+—J sup |u(t + w) —u(7)|| dt
T rotelt-r,1

1 (" 2 (7
<] s o) u@la L] s fuer o) - uo) a
T Jo Te(t—r,1] T, Te(t—r,1]
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By uly ) € PSAP, (R",X), it is easy to see that

1 T
lim —J SUp  ||theyw — Ul dt = 0.

T—oo rotelt-r

Hence u, € PSAP,, ,(R",%). The proof is complete. O

Lemma 3.6. Let {S(t)},59 = L(X) be a strongly continuous family of
bounded and linear operators such that ||S(1)|| < ¢(t), t e R, where ¢ € L'(RT)
is nonincreasing. 1If f € PSAP, ,(R*,X), then

(AS)(2) = J; S(t—s)f(s) dse PSAP, (RT,X), teR™.

Proof. Note that

w T

S(t+w—1s)f(s) ds+J S(t=9)[f(s+w)— f(s)] ds

0

(Af)(z+ ) — (Af)(@) = J

0

0 0
Since
lJT sup |[I(7)]| dl<l i sup (Jw¢(f+a)—s)||f(s)|| ds) dt
T rotelt—r1 T rotet—r, 1] \JO
1 T w
sz s (], o as)a
1 T [0}
<3| se=n(] wrenas)a
1 T—r [}
1), s ([ 1ro1e)
< ([1rona)~o. 1w,
then
(T
(3.5) Tlgrﬁjr s @) di=0
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Next, we will prove that

T
(3.6) lim lJ sup ||J(7)| dt = 0.

T—o rotelt—r
Since f € PSAP, ,(R",X), f e PSAP,(R",X) by Lemma 3.1, then
1 T
lim —J 1/ (t + ) — f(1)]| dt = 0.
W Ty
1 T
lim —J sup [|f(t+w)— f(7)] dt =0.
T—wT ), Tet—r,1]
Define
1 T—s
o) =7 | Wero) - sld sert,

0

then ¢ (s) is decreasing on R and

. o1 (T
Jim 07(0) = Jim | " 17(t+0) = r(0)] dr =0,

Moreover,

F), s s 1] s ([ise-oiiss o) - so @) a

o Te(t-r, 1] rote(t—r,1]

<3 s ([[ste-91s6 01— sl @) a

elt—r, ] \JO
5], s (7 b0 - o) ) a

T ](j =9 s+0) - 10l ) d

roTe(t—r,t t—r
= J1(T) + Jo(T),
where

wy=1[ s ([ s ror- s a)a

rotelt—r,f] \JO

J2<T>=ijT sup (j Bz — ) f s+ ) — £ ds) .

rotelt—r] \Jt—r
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From Fubini’s theorem and ¢ is nonincreasing, one has

<J0r sup p(r—8)| /(s + ) — 15 ds> i

celi—r,1]
<} jT(jH«s(z— =95+ )~ S0 ) d
[ 0l r=s+0) = =9 as) dr

J s —P)f(t—s+w)— f(t—9)| ds> dt

rT #s -1 (j I£0=s+ )~ fe=s)] ) ds

< | s —rpr(0) ds

<orOlely =0, T — co.

By f € PSAP, ,(R*,X), one has

B(T) = j sup (j Bz —9)f s+ o) £ ds) di

ret—r ] \Jt—r

T T
<17 40) sup (J 15+ ) — 73] ds) d

relt—r, ) \Jr—r

(| 1o sl as)

s¢(°)JT<Jt sup [If(s+ ) — £5)] ds> i

t—r se(t—r,1]

< r¢(O)JT sup |lf(s+w)—f(s)||dt—0, T — co.

[t—r,1]

So (3.6) holds.
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By (3.5), (3.6), one has

lim ij sup [(Af)(z+ ) — (AS)(0)]] di = 0,

T—ow rotet—rd

which means that Af € PSAP,, ,(R*,X). The proof is complete. O

4. Fractional differential equations with delay

In this section, we establish some sufficient criteria for the existence and
uniqueness of PSAP,, , solutions for (1.1).
We adopt the following concept of mild solution.

DerINITION 4.1 [14]. Suppose O0<a<f<1, p#>0. A function ue
C([-r,0),X) is said to be a mild solution of (1.1) if uy =¢,, uy=¢, and
for teRY,

(4.1) u(t) = Sy, p(1)91(0) + (91 % S, p) (1) 92(0)

Tl Gia g * S ) (1)1 (0) + L Suplt — )1 (5. 15) ds.

To establish our results, we introduce the following conditions:
(Hy) A is an @-sectorial operator of angle fiz/2 with & < 0.
(H,) fePSAP, . (R* x €, X).

(H31) f satisfies the Lipschitz condition

1/ (t,¢) = fE D < Lellg = Wlly, ¢ €€, 1R

where Ly > 0 is a constant.
(H3,) f satisfies the Lipschitz condition

1/t ¢) = f(E ) < Ly(D)ll¢ = llg, b €%, teRT,

where Ly € BS?(R",R"), p>1.
(H33) f satisfies the Lipschitz condition

||f(l7 ¢) - f(t7 lp)” =< Lf(t)||¢ - l//H‘Kv ¢7 l// € (g» te R+7
where Ly e BS?(RT,R")NLYR",RT), p>1.
THEOREM 4.1. Assume that (Hy), (H3), (H31) hold, then (1.1) has a unique

mild solution u(t) € PSAP,, ,(R",X) if CL; < 1, where C is the constant defined in
Theorem 2.1.

Proof. By Theorem 2.1, A generates a uniformly integrable (a,f),-
regularized family S, 3(f) on Banach space X. Let B ={u:[-r ) — X|u
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= @1, Uy = @yl o) € PSAP, . (R*,X)} endowed with the metric d(u,v) =
lu—vllcws y and let F:B—B be the map defined by (Fu),=g,
(Zu)y = ¢, and

4.2)  (Fu)(1) = Sup(1)p1(0) + (g1 * Ssp) (D)92(0) + (G142 * Sa.p) (1)1 (0)

t
+ J Sy p(t—5)f(s,us) ds, teR™.
0

Let ue®B be given,

(i) lm_o||Syp(0)e1(0)| =0 by (22), so S,p(0)p;(0)e Co(RT, X) =
PSAP, (R, X).

(ii) By (2.2), one has sup,..[[tS, 4(?)|| < oo for each 7> 0. Since 4 is an
@-sectorial of angle fn/2, then ||S,4(4)| =0 as A — 0. Thus, by
the Hardy-Littlewood theorem (Theorem 2.2), we conclude that
lim,— . [|(g1 * Su,4)(¢)]| = 0. Hence (g1 * Sy p)(D)p2(0) € Co(RT, X) <
PSAP, ,(R", X).

(iii) Let 0 <e < f— o, then

19140 % So p (1)

t
_ ’ J Gapli = 7)S, 4(7) d
t

0
= HF(ﬁ' —o— a)J Grsap(t = T)gpne(t) T PHELS, 4(7) dr
0

t

<I(f-a—¢ JO Grrap(t = Dgp-as( DT P8, p(0)]| dr,

By (2.2), one has
Mr—Bretl Mz B+e

< =
| < 1+ |@|ret! 1 0
o+l + |CO|

I'p—o-— s)r“_ﬁ+‘"‘+l||S%/j(r)| >0,

where M is a constant. Since & < f8, there exists a constant C > 0 such
that

L(B— o =) IS, p(0)] < C.

Therefore,
t

Hgl+a7[)’ * Sx.,[)’(l)” < éJO g1+o%7/f(t - T)g/ffafe(f) dt

Cre
I'(l—eg)’

which shows that ||gi 4—p * S, p(7)|| — 0 as t — oo0. Therefore, g1 4p*
S, € PSAP,, ,(R*, X).

= églfe(t) =
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(iv) For ue PSAP, ,(R",X), u,e PSAP, ,(R",%) by Lemma 3.5. It is
not difficult to see that f(s,u) € PSAP,, .,(R",X) by Theorem 3.1. By
Theorem 2.1, Lemma 3.6, one has

t
J Sy p(t — )1 (s,us) ds € PSAP, ,(R*, X).
0

By (i)-(iv), Fue B, so F is well defined.
Moreover, let u,v € B, one has

t

[(Fu)(1) = (Fo)(I)] < J 1855t = ) 1/ (s 145) = S (s, 05)| ds

0
t

< L¢|lu—v| - J CH 7 ds
ol +|@|[(t—5)""" +ult—s)"]

< CLyllu o],

which implies that
d(Fu,Fv) < CLyd(u,v).

By the Banach contraction mapping principle, # has a unique fixed point in B,
which is the unique PSAP, , mild solution of (1.1). O

THEOREM 4.2. Assume that (H)), (Hy), (H3) hold and

|d)|71/(a+1)
1 Ly P la
A s I lls <

then (1.1) has a unique mild solution u(t) € PSAP, ,(R", X).

Proof. Define the operator & as in (4.2), it is easy to see that f(s,u,) €
PSAP, ,(R", X) by Theorem 3.2 and # is well defined similarly as the proof of
Theorem 4.1.

For u,ve B, one has

[(Fu)(1) = (Fo)(9)] < L: 1825t = )| Lf (s, 15) = S (s, 05) | ds

T CLy(s) )
<l =l Jo 1+ |@|[(r = )™ + u(t — 5)] ¢

t
L,
< |lu—v| - J L - 7 ds,
ol +|@d|(r—s)

« If t=meN, in this case
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‘ 1
#3) L 1+ lal(—s* 7

1
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Ls(s) ds

_Jo 1+ |@|(m

I
agh

3

1

ing

m— 1Jk+1 1
e 1+|e|(m—s

)9:+] Lf(S) dS

k+1

=0 |+ |of(m —

._

m—

IA

T,

Ly(s) ds

1/p

2T

k=0

1
1+< +
0

(1+]
0

IA

| ~|71/ o+1)

k+1
— ) (L L)’ ds)
+J~m—l 1
D) 1+ |C?)|t°‘+1

dt] 1L lss

g ) s

(0]
<(1+
( (o4

«If t=m—h, where 0 <h < 1.

)a+1 Ly(s) ds =

! 1
Jol+|cb|(t—s

(0]
<|1+
( @+

where L, is defined by

y 0,
L) = { Ly(s —h),

then |[Ls[|s, = ||Zy|

f I
(4.4) JO R L

1) sin(z/(ax +

)1+1 ()ds<<+(d+

1))) 1Ll

In this general case,

m—h 1

Ls(s) ds
o Txjalm—h—g )

" 1
i1+ ool (m
m 1 ~

~ L(s) ds
0 1+ |o|(m

_S)%+l ‘f
|~|71/(a+1) B
1)) ||Lf||S/’a

L(s—h) ds

. S) o+1

1) sin(z/(ax +

0<s<h,
s> h,

s»- So we infer that

|d)|7l/(a¢+l)

1) sin(z/ (o + 1))) ILr s
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By (4.3), (4.4), one has
|d)|71/(a+1)n
- Lyl sr - e =0l
(04 1) sin(z/(a+ 1))

I(Fu)(t) — (Fo) )] < C<1 .

SO

‘d)|71/(<x+l)n

(04 1) sin(z/ (e + 1

d(Fu, Fv) < c<1 + >>> ILs |y - d(u,v).

By the Banach contraction mapping principle, # has a unique fixed point in B,
which is the unique PSAP, , mild solution of (1.1). O

THEOREM 4.3.  Assume that (Hy), (H>), (H33) hold, then (1.1) has a unique
mild solution u(t) e PSAP, ,(R", X).

Proof. Define the operator # as in (4.2). Let u,ve B, one has

(Fu)(1) = (Fo)(I)] < J; 1855t = )1 (5 145) = S (s, 05)| ds

— ol ! CL/‘(S) 2
<l J01+|cb[(t—s)““+ﬂ(t—s)ﬂ] .

t

< CJ Ly(s) ds - |lu— o
0

< C|[Lellpr -l —of.

Similarly,

7200 - (Fa0] < | L) [(Fu)(s) — (F0)(s)] ds

o T+l ="+ ute =)
< ¢ LEIFNE - (Fe) &

< ol [ 2,6(] Lo ar) as

=l [ (], o ar)a( | Lo ae)

IA
12|
= S
=
I
=
N —
—
S -
Xy
Q
S~—
[
)
\_/M
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By the method of mathematical induction, we have

" " cn t n
7m0 - o0l < 5ol (]| 1) de)
Moreover, since Ly(f) e L'(R™,R™),

L n

1)) = (7o) ()] < <=

_UH7

which implies that

)

7y < B 4, 4.

g n
d(F"u p

For sufficiently large n, we have (C||Ls|,:)"/n! <1, by the Banach contraction
mapping principle, % has a unique fixed point in B, which is the unique
PSAP, , mild solution of (1.1). O

5. Example

Consider the following fractional partial differential equation with delay
(5.1) D u(t, x) + uDPu(t, x)

2

T ox?

where re R", x€[0,1,0<a<pf <1, u>0,0>0, a(t) e PSAP, 1 (R*,R), with
initial and zero boundary conditions.
Let X = (L*([0,1],R),]| - ||;2) and define the operator 4 on X by

0
u(t, x) —ou(t, x) + a(t) J 1 b(s) sin[u(t + s, x)] ds,

Au = ;—;u —ou
with
D(A) = {ue L*([0,1],R) : u" € L*0, 1], u(0) = u(1) = 0},
and

0
f(t,0)(x)=al(r) J_l b(s) sin[p(s)(x)] ds, teR", pe C([-1,0],X), xe[0,1].

It is well know that A4 is a @-sectorial operator with @ = —d < 0 and angle
n/2 (and hence of angle fn/2 with f < 1) [14]. (5.1) can be rewritten as an
abstract system of the form (1.1), where u(¢) = u(z,-). In addition, since a() €
PSAP, 1 (R",R) and

0

12
If(t,¢)—f(t,w)IISIall<JIIb(S)IZdS> 16— vll,. for all gy e C(1~1,01,X),
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so (Hs;) holds with L, = ||a||(J"E1 b(s)|* ds)'>. By Theorem 4.1, we conclude
that (5.1) has a unique solution u e PSAP, if CL; < 1.
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