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Abstract

This paper is concerned with the existence of local (in time) positive solutions to the
Cauchy-Neumann problem in a smooth bounded domain of R" for some fully nonlinear
parabolic equation involving the positive part function r e R — (r), :=rv0. To show
the local solvability, the equation is reformulated as a mixed form of two different sorts
of doubly nonlinear evolution equations in order to apply an energy method. Some
approximated problems are also introduced and the global (in time) solvability is proved
for them with an aid of convex analysis, an energy method and some properties peculiar
to the nonlinearity of the equation. Moreover, two types of comparison principles are
also established, and based on these, the local existence and the finite time blow-up of
positive solutions to the original equation are concluded as the main results of this
paper.

1. Introduction

Let Q be a bounded domain in RY with smooth boundary 6Q. In this
paper, we discuss the local (in time) existence and the finite time blow-up of
positive solutions of the Cauchy-Neumann problem for a fully nonlinear par-
abolic equation,

(L.1) o = g(u) (A Au+ u),, xeQ,t>0,
(1.2) ou =0, xedQ, t>0,
(1.3) u=g, xeQ, t=0,

where 0, = d/0t, g(u) is a positive continuous function in (0,+0), (s), :==sv0
stands for the positive part of se R, 1> 0 is a fixed constant, A is the standard
Laplacian, and 0, denotes the normal derivative. The one dimensional version
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(e, N=1 and Q=(0,1)) of Equation (1.1) was originally proposed by
Barenblatt and Prostokishin in the context of Damage Mechanics as a model
of damage accumulation processes taking account of microstructural effects in
[2] (see also [3, §2]), where a typical choice of g(u) is given by a power
function,

(1L.4) glu) =u*, a=>0.

One of peculiarities of the problem is found in the umnidirectional evolution of
solutions; more precisely, u = u(x,t) is non-decreasing in time due to the non-
negativity of the right-hand side of (1.1). This feature plays a crucial role in the
model of damage accumulation as a natural hypothesis on the unidirectional
evolution of an internal variable called a damage factor. It is also worth
mentioning that solutions of (1.1)—(1.3) may blow up in finite time. Indeed,
one can obtain a spatially uniform explicit solution that blows up in finite time
for the case (1.4) with « > 0 (see also the proof of Lemma 5.1 below).

The main purpose of this paper is to prove the local (in time) existence
and the finite time blow-up of positive solutions to (1.1)—(1.3) in an L?(Q)
framework.

For the one-dimensional case, Bertsch and Bisegna [3] proved the local
existence and the finite time blow-up of classical solutions under the assumptions
that

(1.5) ¢>6 in [0,1], ¢eC'([0,1]), ¢ is Lipschitz continuous in [0, 1]7}

$'(0)=¢'(1)=0, (2’9" +¢), € C([0,1])

for some 0 >0 and some structural conditions on ¢g(u). Moreover, they also
investigated qualitative properties of blow-up phenomena; in particular, regional
blow-up phenomena may occur, that is, the blow-up set is an interval of nonzero
measure (but not the whole of Q) under a suitable initial configuration. In order
to take account of chemical aggression, Natalini et al. [9] extended the one-
dimensional model as a system of nonlinear parabolic equations and also studied
it in view of numerical analysis. Furthermore, Nitsch [10] proved the local well-
posedness of the system and investigated blow-up properties of solutions (see
also [11]).

In this paper, we shall treat Equation (1.1) on the basis of an energy method,
that is a totally different way from the previous studies. Generally speaking,
energy methods are not so effective for fully nonlinear equations, and therefore,
such a severe nonlinearity often prevents us to construct solutions in a suitable
energy class. We shall reformulate (1.1) as a mixed form of two different sorts
of doubly nonlinear evolution equations, for which energy methods are more
effective, with an aid of convex analysis. In the next section, we actually
reformulate Equation (1.1) and state a main result of the paper. Moreover, an
outline of a proof is also exhibited. Sections 3-5 are devoted to a proof of the
main result. In Appendix §A, we give a brief exposition of the relevant material
on convex analysis for the convenience of the reader.
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2. Reformulation of the equation and main result
Define a strictly increasing function fe C} ((0,+0)) by

(2.1) p(s) J.S do +Cy for s>0
. = — 0

S0 g(a)
for some constants so, Cp € R (the following reformulation will not depend on the
choice of sy, Cp, because we shall treat the derivative of 8 only, i.e., 8’ or 0,8(u)
for u = u(x,t)). Particularly, in the case of (1.4), the function ff can be given as

1—o
(2.2) )= 75 T**L fors>o0.
logs if a=1

Then since 0,(u) = B’ (u)d,u = d,u/g(u), Equation (1.1) is equivalently rewritten
as

(2.3) opu) = (AAu+u),, xeQ,t>0.
Moreover, let us define the indicator function Iy ;) : R — [0,4-c0] over the set

[0,4+c0) by

0 if >0,
(2.4) Tos(s) = {

+o0 otherwise

and let dljp ) : R — 2R be the subdifferential operator of I, 1) given by

(2.5) 0o 4o0)(8) == {E€R: Ijg 10\ (0) — Ijg, 10\ (5) = &(0 —5) for all o€ R}
for seR

with domain D(01) ;,)) = [0,+0) (see also §Appendix A). One can observe
that

(71[0,+oo)(s) = { (—o0,0] if s=0.

Hence s + 0ljg, 1 )(s) is the (multivalued) inverse function of (s), = sv 0. There-
fore (2.3) is transformed into the inclusion,

Op(u) + 0l o) (0.p() 2 PAu+u, xeQ,t>0.

Since f is a strictly increasing function, so we observe that d,f(u) > 0 if and only
if d,u > 0; therefore, we have

(2.6) I ORICH 10 ) (G}

Thus (1.1)—(1.3) has been reformulated as the Cauchy-Neumann problem (denoted
by (P) below) for

(2.7) 8 p(u) + 0l o) (0u) 3 AU +u, xeQ, >0,
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equipped with the Neumann boundary condition (1.2) and the initial condition
(1.3).

Equation (2.7) now falls within the scope of an energy method and it can
be regarded as a mixed form of two sorts of doubly nonlinear problems; one is a
sort of nonlinear diffusion equations (e.g., porous medium/fast diffusion equation)
in the form

(2.8) of(u) =Au, xeQ,t>0,

and the other one is a sort of generalized gradient flows, e.g., the unidirectional
heat flow (see [1]),

(2.9) 0lo, 100y (Ou) = Au, xeQ,t>0.

The former one has been vigorously studied so far; however, to the best of the
author’s knowledge, the mixed form such as (2.7) has not yet been fully pursued.

Prior to stating the main result of this paper, let us introduce the following
assumptions (f); for general f and a constant J > 0: There exists a constant
Cs > 0 such that

(B)s

BeCY[5,+x)) and 0<p'(s)<Cs; for all s>,
B’ is non-increasing on [0, +0),

which implies
(2.10) |B(s)| < Css+ |p(0)] for all s >0

and the strict increase of ff on [0, 00). We note that (f),; holds true in the case of
(1.4) for any a« > 0.

Here and henceforth, C,,.([0, T]; L*(Q)) denotes the set of all L*(Q)-valued
weakly star continuous functions on [0, 7]. Moreover, we refer the reader to
Definition 2.3 below for the precise definition of strong solutions of (P).

Now, our main result reads,

THEOREM 2.1 (Local solvability of (P) and finite time blow-up of positive
solutions). Assume that

2.11) de HX(Q)NL(Q), d,p=0 on dQ, (J’Ap+¢) eL”(Q),
’ ¢ =0 ae. in Q for some constant & > 0,
where (s)_ :=sA0<0 is the negative part of s€R. Moreover, suppose that

(B)s is satisfied. Then the Cauchy-Neumann problem (P)={(2.7),(1.2),(1.3)}
admits at least one strong solution u on [0, Ty] for some Ty >0 such that ue
Cy« ([0, To); L™ (Q)) and

(2.12) 102 Au 4 1) oo, 7y) < 1(22A6 +6) |l (-

Moreover, let ue C,.([0,S]; L*(Q)) be a strong solution of (P) on some
interval [0, S] for some data ¢ € L*(Q) satisfying ¢ >0 a.e. in Q. Let Tyax >0
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be the supremum of v > S >0 for which u can be extended onto [0,71] such that
ue Cyu([0,7]; L*(Q)). In addition, define

T(s) := J+wﬁ/éC) dle (0,+0] for s> 0.

Then it follows that

Trax < T(0).

Moreover, if Tmax < 400, then it holds that

(2.13)

[/li;n [u()l] L () = +o0-

max

Remark 2.2. (i) The function ¢ [[u(?)||;~q) is left-continuous on [0, 7].

(iii)

An

Indeed, since ue C,.([0, T); L*(Q)) and u(x,?) is non-decreasing in
(0,T), we observe that

Jo2)] @) < Timinf )l < i sup ) .- @) < )
§ s/t

for each 7€ [0, T].
The local existence time 7, can be represented as follows:

To = ((I@ll ) + |(F2Ab +¢)_ll o) + Co + 1),

where /(-) is a positive strictly decreasing function depending only on S’
(see Remark 5.2 below for more details). .

In case g(u) = u® for o > 0 (see also (2.2)), one can check T'(d) < +o0
for any 6 > 0. Hence Ty is always finite. As for the case o =0, we
shall further exhibit a global (in time) existence result under weaker
assumptions on initial data ¢ (see Theorem 3.8 and Remark 3.9 below
for details).

This result is still new even for the case N = 1. Indeed, the assumption
(2.11) is slightly weaker than (1.5) assumed in [3]. Assumption (1.5)
requires ¢’ to be Lipschitz continuous on [0, 1], and hence, we partic-
ularly have ¢e W?>*(Q) < H*(Q), since every Lipschitz continuous
function belongs to W' *(Q). On the other hand, the non-increase of
B’ is assumed in Theorem 2.1 (cf. [3]), and the uniqueness of (general)
solutions (cf. Corollary 4.6) and qualitative properties of blow-up solu-
tions are not discussed in this paper.

outline of a proof is as follows: We first construct global (in time)

solutions to the Cauchy-Neumann problem (P),, 1 > 0, for the following approxi-
mated equations,

(2.14)

O+ 0,fp(u) + 0o, 40y (Osut) 2 PAu+u, xeQ,t>0

along with (1.2) and (1.3) under milder assumptions. Thanks to the additional
time derivative of u in the left-hand side, one may expect the existence of global
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(in time) solutions. Indeed, we construct a global solution u, = u,(x, t), which
is unbounded in time, by using a time-discretization technique and an energy
method (see Section 3).

Before going on to the limiting procedure as u — 0, we establish an L™ (Q)
estimate for u,(-,) uniform in ¢ on some interval and ux e (0,1). To this end,
we prove a comparison principle for strictly increasing subsolutions and general
supersolutions of (P), (see Section 4). However, one cannot directly apply the
principle to u, due to the assumption of the strict increase of subsolutions, which
is more restrictive than those of usual comparison principles and arising from a
peculiar nonlinearity of (P),. To overcome this defect, we introduce an auxiliary
subsolution of (P) , Which is greater than u, and strictly increasing. ~Constructing
an appropriate spatially uniform supersolution of (P) o We derive a uniform
estimate for ||u,(7)| ;- ) locally in time (see Section 5).

Furthermore, we estabhsh uniform estimates and pass to the limit as u — 0
in order to prove the local (in time) existence of solutions for the original
problem (P). The finite time blow-up of solutions for (P) is also verified by using
a comparison principle for (P) (see Theorem 4.5) and a strictly increasing explicit
subsolution (see Section 5).

Let us close this section by giving a definition of strong solutions for (P) and
(P), and some remarks. From now on, C,([0,T]; H 1(Q)) stands for the space
of all weakly continuous functions on [0, 7] with values in H'(Q).

DEerNITION 2.3 (Strong solutions of (P) and (P),). For 7 >0 and £ >0, a
positive function u e W2(0, T; L*(Q)) is called a strong solution (or a solution
for short) of (P), (= (P ) if £=0) on [0, 7], if the following (i)—(iii) hold true:

() we Cu(0. T H'(€Q)), plu )E Wl 2(0, T5 L*(Q)), Aue L*(0,T; L*(Q)),

(i) d,u=0 on 0Q and u(-,t) e H*(Q )forae te(0,7),

(iii) du(x,t) >0 for a.e. (x,£)eQ x (0,T), and there exists ¢ e L*(0,T;

L*(Q)) such that

(2.15) uou+ 0B(u) + & = PAu+u, Ee 0o, 1o (Or1t)

for ae. (x,1)eQ x (0,7).
Solutions of (P), (or (P)) are also denoted by (,¢) in order to specify the section
¢ of 0o, +o)(0 ,u) as in (2.15).
Furthermore, a solution u of (P), (or (P)) on [0,7] is said to be strictly
increasing if a,u(x7 1) >0 for ae. (x,1)eQx(0,7).

Remark 2.4.  Let (u,<) be a strong solution of (P), (or (P)) on [0, 7]. One
may obtain a representation of &,

(2.16) E=(APAu+u)_ for ae. (x,1)eQx(0,T).

Indeed, let (x, ) € Q x (0, T) be such that (2.15) holds there. In case when &(x, f)
=0, one has 0 < udu + 0,f(u) = A*Au+ u at (x,7). Hence (2*Au+u)_(x,1) = 0.
In case when &(x,7) <0, noting by (2.6) that du(x,t) = 0,f(u)(x,t) =0, we
deduce that 0 > & = 2?Au+ u at (x,7). Therefore in both cases, (2.16) follows.
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Here and henceforth, for simplicity, we use the same notation /o 1, for the
indicator function over [0,+c0) defined on R as well as for that over the set
{ue L*(Q):u >0 ae. in Q} defined on L?(Q), unless any confusion may arise.
Moreover, the subdifferential operators (in L?(Q)) of the both indicator functions
are also denoted by 0l ;) (see also Proposition A.2 for their equivalence).

3. Solvability of the approximated problems (P),

In this section, we construct strong solutions for the approximate problems
(P), for x>0 under a milder assumption,

(3.1) ¢eH*Q), d,6=0 on 0Q, ¢ >4 ae. in Q, for some constant ¢ >0

without assuming (2.11). Then one can remove the singularity of f(s) at s=0
(e.g., see (2.2)) by replacing f with a proper non-decreasing smooth function
which coincides with § on [0, 400) without any loss of generality, since solutions
u of (P), are always supposed to be not less than J under (3.1). Throughout this
section, we always assume that e C'([0, 0)).

We start with a time-discretization. Let NeN, 1 =1y :=T/N >0 and
consider the following discretized problems:

+ &1 = /12Aun+l +Upy1  in Lz(Q),

(3.2) plmel T +ﬂ(“n+1)r_ﬂ(”n)

T
Uil — Uy .

(33) &t €0l 1 (—) w=¢ in Q)

for n=0,1,...,N —1. We then claim

Lemma 3.1.  For each 7€ (0,u), the discretized problems (3.2), (3.3) admit
solutions (uy11,Epy1) € H*(Q) x L*(Q) for n=0,1,...,N — 1.

Proof. Let ne€{0,1,...,N —1} and let u, € D(—A) :={ve H*(Q) : o,

0 on dQ} be such that u, >J ae. in Q. Define functionals J,. : H'(Q) —
(—OO’—FOO] by

u— uy, 52
i) = 4 gy + 900 + o () 4 5 1Vl

1 n
—||u|iZ(Q)—<ﬁ(u )+,uun,u> for ue H'(Q),
2 T L

where 1 is a functional of class C! defined on H'(Q) by

B(u) dx for ue H'(Q) with f(s) := L B(o) do

i = |

Q
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and <-,-)p(q) stands for the duality pairing between H'(Q) and (H'(Q))".
Then J,.1 is well defined on H'(Q), since we see that B(u,) € L*(Q) by (B)s
along with the assumptions of u,. For 7 € (0, ), each functional J,,; is coercive,
strictly convex and lower semicontinuous in H'(Q2). Hence employing the Direct
Method, one can verify that J,,; admits a unique minimizer u,,; € H'(Q), and
then, u,,; solves the Euler-Lagrange equation,

Uy — Uy Uy — Uy . %
G4yt = P ) 2P0 P i (@)

Upy1 — Uy . .
(3.5) én+1€aH1(Q)I[0ﬁ+x)<%> in (H'(Q))",

where 0711, 1) denotes the subdifferential operator from H'(Q) to 2(7'(?)"
of the functional Ijg ... restricted onto H'(Q) (see (A.1) of § Appendix A below).
Note that

U — uy,

aHl(Q)I[OnLoo)( ) = 0@l ) (),

where 0p1(q)l>,, stands for the subdifferential of the indicator function /.,
over the set [ > u,] = {ue H'(Q) : u(x) = u,(x) for a.e. xeQ}. Then one can
rewrite (3.4), (3.5) as the variational inequality of obstacle type,

(36) (4= 1) = 22801+ up T 1)

Moy~ Blns) = B) )y,

> “u,
T T

Here we shall exploit a regularity theory for variational inequalities of
obstacle type. Let K :={ue H'(Q):u >y ae. in Q} for some ¢ € L*(Q) and
let A: HY(Q) — (H'(Q))" be the homeomorphism defined by

<Au7¢>Hl(Q):yJ u¢dx—|—)»2J Vu-Vgdx for u,¢ e H'(Q)
o o

for some y >0 (i.e, Au:yu—}.zAu). Concerning the variational inequality
with f e (H'(Q))",

(3.7) uek, {Au,v—upgiq)=<{f,o—uyyq for all vek,
which can be equivalently rewritten as
Au+ 0yl (u) 3 f in (H'(Q)*

(here Ix stands for the indicator function over the set K), we recall the following
proposition (see [1] or [7] with a proper modification):
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ProposITION 3.2 ([1], [7]). Suppose that € W*P(Q), 0, =0 on 0Q and
feLlP(Q) for some p>2. Then the unique weak solution u of (3.7) belongs to
W2P(Q), 6,u=0 ae on 0Q, and

f<Au< fvAYy ae. in Q,
where A = np — A2A.

Due to the fact that u, € D(—A), by applying Proposition 3.2 to (3.6), one
can verify that u,.; € D(—A) and

ﬁun _M < <ﬁ_ 1>Un+1 _ izAunH
T T T

< (ﬂ_w>

T

v ((g - 1>un - izAun> for a.e. xeQ,

0< qun+l — Uy +ﬁ(un+l) _ﬁ(un) _ /leun+1

T T

which implies

— Up41

Blunii) = Bluwn)

<0v (—izAun —u, +
T

) for a.e. xe Q.

Since u, € H*(Q) and B(u,), Blun+1) € L*(Q) (by (2.10)), we can verify from (3.4)
that &,y € L*(Q) and &,y € 0l o) ((Uns1 — un) /7). Moreover, from the fact
that &, 1(x) # 0 only if u,.;(x) = u,(x), we also deduce that

(3.8) 0<—&,1 < —(A*Au, +u,)_ for ae xeQ,

where (s)_ =sA0<0.
By virtue of (3.1), starting from n =0 and uy = ¢, one can iteratively obtain
solutions u,1 € D(—A) and &, € L*(Q) of (3.2), (3.3) for n=0,1,...,N — 1.
O

We next establish a priori estimates for u, and &,.

LemMaA 3.3.  There exists a constant C = 0 depending on u, 1 and ¢ such that

2

N-1
2 2 Upy1l — Uy
B39 max (i + Vil i) + 3ot <c
(3.10) max [|f(un) | 720) < C,
N-1 2
(3.11) Z T ‘M < C.
=0 T L2(Q)
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Proof. Test (3.2) by (upr1 —uy)/t to get
g (ﬂ(um) — Blun) i1 — un>
L2(Q)

L2(Q) ’

Upy1 — Uy
T

(3.12)

T T

2 2
Up+1 — Uy A 2 7 2
- —||V n 2 ——||V n
e M) Ml Vel

Upt1 — Up H
<|u T < =
( " T )Lz(g) 2

where (-,~)L2(Q) stands for the inner product in L*(Q), for n=0,1,...,N — 1.
Moreover, we note that

Upy1 — Uy 2
T LY(

2
) + C||un+l||L2(Q)7

2 2
lnillz2@) = lunll2@) 1 1 2

2
7 < §||un+1”L2(Q) +§

<¢th> _o
T LY(Q)

Hence exploiting the monotonicity of f and summing both sides of (3.12) for
n=0,1,....ke{2,3,...,N — 1}, we derive

2 2
1|2 @) + 5

Upy1 — Uy
T

L2(Q)

and

=y
2

|Vityey1 ”1242((2)

H 2 2’ 2 H < 2
< S0l + 51900 + (5 + €) el
=0

Exploiting the discrete Gronwall inequality, one has
2 2 2 2
max ([[ua| 20y + Vil 22(q)) < CUI4M1720) + VAl 120)):

which together with (2.10) also yields (3.10). Furthermore, recalling (3.12), we
obtain (3.9).
By (f)s; and the Mean-Value Theorem, we observe that

‘ﬁ(unﬂ) — Blun)

T

Upy1 — Uy

1
= ;Iﬁ'((l = On)ttn 1 + Ontty)| |ttn i1 — un| < Cs z

for some 6, = 0,(x) € (0,1), a.e. xeQ. Thus (3.11) follows from (3.9). O
We further prove:

LemMA 3.4. If (J*Ad+¢)_ e LP(Q) for some p € [2,4+x), it follows that

(313) Nuitllrg) < Nl < 1(A°Ad + 9 e forn=12,....N-1
In particular, (3.13) follows with p =2 from the fact that ¢ € H*(Q) by (3.1).
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Moreover, there exists a constant C > 0 depending on p, A and ¢ such that

N-1

(3.14) Z THAun+1”iZ(Q) <C
n=0

Proof. By subtraction of equations, we have

(3.15) ﬂ( = )  Ble) ~Pla) _ fl) )

T T T

+ én+1 - én

= le(”nwtl - un) + U1 — Uy

forn=1,2,...,N—1. Assume that (1’A¢ + ¢)_ € L?(Q) for some p € [2, +x0).
Let R >0 and let y; € C'(R) be a smooth monotone function satisfying

() = 4 17 if u] < R,
K sen(u)(R+ 1) if jul > R +2,

where sgn(-) denotes the sign function. Test (3.15) by 7, := y(&,1) € L7 (Q).
Here we note that #,,, also belongs to 0fjo o) ((tn1 — uy)/7) and that

(—=Au, 1) 2q) 20 for all nedlp 4o)(u) and ue D(-A) satisfying u >0

by (iii) of Proposition A.2 in Appendix. Furthermore, by definitions of the
indicator function /)y . and its subdifferential, we observe that

Upy1 — Uy Up — Up—1 Upt1 — Uy Uy — Uy—1
— >l ooy | —— ) — I — ] =0
( 7 7 a’7n+l>L2(Q) = [0,+Jv)( T ) [0,+00) ( 7 ) )

since {u,(x)} is non-decreasing in n a.e. x€ Q. Noting that

Un — Un Uy - Uy
T (e A (L )

T

one can similarly derive

Bluni1) — Plun)  Bun) — P(un—1)
( s T - T ’}7”+1>L2(Q) > 0.

Moreover, we also note that

(tns1 — un777n+1)L2(Q) =0,

since #,,1(x) # 0 only if u,;1(x) = u,(x). Combining all these facts, we have

j ﬁR@nH)dxsj Se(&) dx for n=1,2,..., N — 1,
Q Q

where J, stands for the primitive function of yj satisfying 7x(0) = 0. Moreover,
letting R — +oo and recalling (3.8) with n =0, we find by iteration that

1Sall o) < €11l Lr0) < ||()“2A¢+¢)7”LP(Q) for n=2,3,...,N.
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As for the case (1*A¢+ ¢)_ e L*(Q), passing to the limit as p — +oo in both
sides, we conclude that (3.13) holds true for p = oo.
Finally, (3.14) follows by comparison of both sides in (3.2). O

Now, let us move on to the limiting procedure. To this end, we first intro-
duce the piecewise forward constant interpolants u.(t) := u,4) and &.(¢) := &, for
1€ [ty,tyy1) and the piecewise linear interpolants

1 —t t— 1 .
u (1) == "+T ty +— Sty if 1€ [ty tar),

oult) = " ) + I Blung) O 1 1y t1)
for n=0,1,...,N —1. Then (3.2) is rewritten as
(3.16) ot + v + & = LPAd, + iy, & € 0lg 1o (Ottr).
From the preceding a priori estimates, we can derive the following con-
vergences by taking a (non-relabeled) subsequence of 7 — 0 (equivalently,

N — +o0):

LemMA 3.5. It holds, up to a subsequence, that

(3.17) u; —u  weakly star in L*(0,T; H'(Q)),
(3.18) strongly in C([0, T); L*(Q)),
(3.19) i, — i weakly star in L*(0,T; H'(Q)),
(3.20) strongly in L™ (0, T; L*(Q)),
(3.21) Oy — du weakly in L*(0,T; L*(Q)),
(3.22) v. — v weakly star in L*(0,T;L*(Q)),
(3.23) Bli;) — 5 weakly star in L*(0,T;L*(Q)),
(3.24) dwe — O weakly in L*(0,T;L*(Q)),
(3.25) E — & weakly star in L*(0,T; L*(Q)),
(3.26) A, — A weakly in L*(0,T;L*(Q))

for some ue W20, T; L>(Q))NL*(0,T; H'(Q)), e L*(0,T; H'(Q)) and ve
W20, T; L*(Q)) and ©,Ee€ L*(0,T; L*(Q)). In particular, it follows that
u(-,0) = ¢ Moreover, it holds lhat u=ia, v="=0=p(u) and

(3.27) o + 0,p(u) + & = 1*Au+ u.
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Proof. By Lemmas 3.3 and 3.4, we immediately obtain (3.17)—(3.26) except
for (3.18) and (3.20). Moreover, (3.18) follows from Ascoli’s compactness lemma
(see, e.g., [12]) along with (3.9) and Rellich’s compact embedding H'(Q) —
L*(Q). Then we also observe u(-,0) = ¢. By (3.9), we find that, for ¢ € [t,, 1 1),

2
_ the1 — t (39)
ot (1) = 2 (0) 22 = (—) it = tnlPgy < Cr—0,

which gives u =u and (3.20). One can similarly derive by (3.11) that v =o.
Since the operator u+ B(u) is maximal monotone in L?(Q), thanks to the
demiclosedness of maximal monotone operators (see Proposition A.l), one can
verify that v = f(u). Finally, (3.27) follows from these facts along with (3.16).

O

Remark 3.6. Due to (f);, ie., fp is Lipschitz continuous in R, and
(3.20), one can also directly derive the strong convergence of f(i;) to f(i) in
L0, T; L*(Q)).

By virtue of the relation C([0,T]; L*(Q))NL*(0,T; H(Q)) = C,([0, T);
H'(Q)) (see [8]), we obtain ue C,([0, T]; H'(Q)).
The next lemma identifies the limit ¢ as a section of 0fjp 4o)(dsu).

Lemma 3.7. It follows that ou >0 a.e. in Qx (0,T) and & € 0ljg 4oy (0su).

Proof. The proof given below basically relies on Minty’s trick. However,
compared to usual doubly nonlinear evolution equations such as (2.8) and (2.9),
some additional difficulty may arise from the coexistence of two sorts of non-
linearities, d,f(u) and 0l o) (0u). Noting that &, € 0l ;o) (du;), by Lemma
3.5, we first derive

T
(3.28) lim sup J (&, Ortte) 12y A1
0

7—0
T
L Jim sup J (e + A7 Adle — st — 0,0c, d) 12y At
7—0 0
) T B ;L2 o 5 /12 5
= lli% L (i, Ogttc) 1 2(qp) A — 5 hffnjglf Ve (T)| 72 () +7||V¢||L2(Q)
T

T
— U llm lnf J ||0tur||iz(g> dl — llm lnf J (5,1)1, 5,14,)“(9) dl
7—0 0 7—0 0

IA

T /’{2 ) AZ )
jo (1, 0) gy 41 = 5 V(T i+ 5 IV

T T
_ ﬂJ 8.l 720y dt—limig1fj (O1z, Dtz 12y 1.
0 (e 0
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Here the last inequality follows from the weak lower semicontinuity of norms and
the fact that

u(T) — u(T) weakly in H'(Q).
Moreover, we emphasize that the last term of (3.28) arises from the mixed double

nonlinearity of Equation (2.14).
We claim that

T T
(3.29) limian (0107, Ostz) 12y A = J (0:B(u), Ou) 2y L.

T— 0

To prove this, by using the Mean-Value Theorem, we observe that

T N-1
F 3 _ un+1 (“n) Upp1 — Up
( tUr, tur L2(Q = T y T
0 n=0 L2(Q)
_ = / Un+1 2 d
= | B(Z) z X
n=0 Q

for some z; = Z;(x,t) € (4, (x, ¢ — 1),u.(x,7)). Here, as in the proof of Lemma
3.5, one can verify that

(- —1) — u strongly in L*(0, T; L*(Q)),
which also yields that
Z, —u strongly in L*(0,T;L*(Q)).
Since f'(s) is continuous on [J,+o0) by (fB);, we have
(3.30) B'(Z:(x,1)) — B'(u(x,1)) for ae. (x,1)eQx (0,7T).
Moreover, noting by (f); that
WA (Z(x, 1) < C)* for ae. (x,1)eQx (0,T)
and applying the Lebesgue dominated convergence theorem, we obtain

\/B'(Z:) — /B (u) strongly in LI(Q x (0,T))

for any g e [l,+0o0). Here we particularly take g > 2.
For any ¢ e L*(0,T;L"(Q2)) with re (1,400) sufficiently large (e.g., r =
2q/(q —2) > 2), it follows that

JT JQ ov/ B ()0, dxdi — LT JQ o\/B (w)o,u dxdi

0
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as 7 — 0. Hence we deduce that

B (Z.)0u: — /B ()du weakly in L'(0,T;L"(Q)),
where 1’ :==r/(r— 1) < 2. Moreover, note by (3.9) that
T T
J J [)”(z’r)|6,ur|2dxdtSC5J 0|22y di < C,
0 Ja 0

which implies

B ()0, — /B (u)du weakly in L*(0,T;L*(Q)).

From the weak lower semicontinuity of a norm, we conclude that

T T T
liminfj J ﬂ/(z'f)|6,uf\2dxdtzj J ﬂ’(u)|8,u|2dxdtzj (0B (u), 0114) (g dt,
=0 Jo Jo 0 Ja 0
which implies the desired assertion (3.29).

Now, we obtain
T 2

, T A 22
lim sup JO (fr, (3,u,)Lz<Q> dr < J (l/l7 atu)L2<Q) dl — ? HVM(T)Hiz(Q) +7 ||V¢||22(Q>

7—0 0
T ) T
- ﬂJO ol 22 gy di — JO (0 (1), 00y e

T
_ J (1 22D — o — (), ) ) A
0

(3.27

) T
2 J (&, 0t) gy
0

which together with the maximal monotonicity of dljy ;) : L*(Q) — L*(Q) gives
du=>0ae. in Qx(0,7T) and & € 0l 1) (0u) (see Proposition A.1). The proof
is completed. O

Finally, let us derive an energy inequality to be used later. Recall (3.13)
and (3.25). Due to the weak star lower semicontinuity of a norm, we can obtain

{ esssup;co.1) €0l zria) < (APAP+ ) 1) if pe2,+00),
1€l 2o @x0,7y) < 1(Z2AG +6) |10 if p=co,

if (A*A¢ + ¢)_ belongs to L?(Q) for some p e [2,+]. Therefore we conclude
that

Tueorem 3.8 (Solvability of (P),). Let >0 and assume (3.1) and ()5 for
some constant 6 > 0. Then the Cauchy-Neumann problem (P), = {(2.14),(1.2),
(1.3)} admits at least one strong solution (u,&) satisfying

(331)  EeL®(0,T;L7(Q), esssup [[E(1)llLoq) < I(A°Ad+ ) _l1n(q)

te(0,T)
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with p=2. In addition, if (J*Ad+ ¢)_ belongs to L1(Q) for some q € [2,40),
then (3.31) holds for any pe[2,q. If (J*Ap+¢)_e L*(Q), then & belongs to
L*(Q x (0,T)), and it holds that

€11 @x(0,7y) < 1(A*Ad + ¢)_ 2= ()

Remark 3.9. In the case of (1.4) with « =0, by virtue of a scaling
argument, Theorem 3.8 also ensures the existence of a global (in time) solution
for (P) under the milder assumption (3.1). Furthermore, the non-increase of S’
(see (f)s) is not used in the proof of Theorem 3.8.

4. Comparison principle for strictly increasing subsolutions

We first define the notions of a subsolution and a supersolution for (2.14)
and (2.7), respectively.

DEerINITION 4.1 (Sub- and supersolution). For x>0, a positive function
ue WH2(0, T; L*(Q)) is called a subsolution of (2.14) if the following (i)—(iii) hold
true:

() Blu)e W20, T; LX(Q)),

(i) u(-,1) e H*(Q) for ae. t€(0,7T),

(iii) du(x,t) =0 for a.e. (x,¢) € Q x (0, T), and there exist &(-, ) € L*(Q) for

a.e. 1€ (0,7) such that

(4.1) pdu+ 0f(u) + & < PPAu+u, Ee 010, 4 o0)(Or1t)

for a.e. (x,1)eQ x (0,7).
A positive function u e W2(0, T; L*(Q)) is called a supersolution of (2.14) if the
conditions (i)—(iii) hold with the inequality of (4.1) replaced by the inverse one,
ie., udu—+ 0,f(u)+ ¢ > 2 *Au+u in Qx (0,7).
A positive function u e C([0, T); L>(Q)) is called a subsolution of (2.7) if
the conditions (i)—(iii) are satisfied with 4= 0. The notion of a supersolution of
(2.7) is also analogously defined.

Let us next state a comparison principle for (2.14).

THEOREM 4.2 (Comparison principle for (2.14)). Let >0 be fixed and
assume that
(4.2) P is strictly increasing in (0, c0).

Let u be a subsolution of (2.14) and let v be a supersolution of (2.14) such that
u(x,0) < v(x,0) for ae. xeQ and du <o for a.e. (x,t)edQ x (0,T). Sup-
pose that

(4.3) ou>0 ae in Qx(0,T).
Then it holds that u <v for a.e. xeQ and all t€]0,T).
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Proof. Set w=u—v. By subtraction of equations, we have
wow+ 0,p(u) — 0 p(v) +&—n < PAw+w, Ee 0o, o) (Ou), 1€ 0y 4oy (O10).

By assumption, we find that {=0. Test it by z:=sgn(w)v0 =sgn(f(u)—
B(v))v0 >0. Then we have

i [ oo x5 (g - g ax+ |

—nzdx < J (w), dx.
Q

Q

Here we used the fact that (—Aw, z) Q) = 0 by d,w < 0 and the monotonicity of
the mapping s — sgn(s) v0. Noting that —»z >0, w(x,0) <0 and S(u(x,0)) —
B(v(x,0)) <0 for a.e. xeQ, we have

] 00y ax [ ()= pio), (0 ax < |

0

t

J (W), (x,s) dxds.
Q
By exploiting Gronwall’s inequality, we deduce that
,uj (W), (x,£)dx=0 for all z€(0,T],
o
which concludes that u < v for a.e. xeQ and all t€ 0, T]. O

One can immediately obtain the following corollaries:

COROLLARY 4.3. Let u> 0 and assume in addition to (4.2) that ¢ € L*(Q)
satisfies ¢ > 0 a.e. in Q. Then strictly increasing solutions u = u(x,t) of (P) , are
unique.

COROLLARY 4.4. Let 1> 0 and assume that (B); holds and ¢ € L*(Q) satisfies
¢ >0 ae in Q for some constant 5 > 0. Then any solution u = u(x,1t) of (P), on
[0,4+0c0) diverges to +o0 as t — +o0.

Proof- Let z be a solution of the Cauchy problem,

uz' () +%ﬂ(z(t)) =z(t) for t>0, z(0)=z:=0.

Define a function ®, by

®,(2) J 1+p' Q)

R dl for z>zy > 0.

Then one can observe that

@,(z) < o0, ®@,(z) >0 for all zez,+m),

. : uo
lim, @,()> tim [ a0~ e,
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Hence the inverse function (I);l :[0,400) — [z0,+0) of t=d,(z) exists, and
moreover, ®,'() is strictly increasing on [0,+c0), ®,'(0) = zp, and @, (1) —
+c0 as t — +oo.

Now, z(¢) is explicitly written as

z(t) = (I);l(t) for 1> 0.

Moreover, since 0,z > 0 and z(#) is uniform in Q, z becomes a strictly increasing
(sub)solution of (P), on [0,4+0c0). Hence applying Theorem 4.2, we have

u(x,t) = z(t) for a.e. xeQ and all >0,

which implies the desired conclusion. O

The next theorem provides a comparison principle for (2.7), which will be
used to verify the blow-up in finite time of positive solutions for (P) in Section 5.

THEOREM 4.5 (Comparison principle for (2.7)). Assume (f); for some con-
stant 0 >0 and let u be a subsolution of (2.7) and let v be a supersolution of
(2.7) such that 6 <u(x,0) <v(x,0) for ae. xeQ and o,u <0, for ae (x,t)e€
0Q x (0,T). Suppose that

(44) 0u>0 ae in Qx(0,T) and |[ull, - 1) VIIUllLe@x0, 1)) <M

for some constant M > 0. Then it holds that u<v for ae xeQ and all
tel0,T]

Proof. Repeating the same argument as in the proof of Theorem 4.2, we
have

t

|, (b0 = o . ax < |

J (W), (x,s) dxds for all t€ [0, T7,
0lo

where w=u—v. Here letting z be a function defined as in the proof of
Theorem 4.2, we observe that

1

(Bu) = p(v)z = J B'((1 = 0)p+ Ou)(w) . dO > car(w) .

0

for some constant ¢, > 0, which is given as the minimum of £’ on [0, M] by (f);.
Thus it yields

Therefore we obtain

[, b~ po) (e v < i” (B(u) — B(©)), (x,5) dxds for all 1€ [0, 7],
Q Q

974
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which implies
J (Bu) — B(0)), (x,1) dx =0 for all 1€ 0,T].
Q
Thus u <v for ae. xeQ and all r€]0,T]. O

We close this section by an immediate consequence of the theorem stated
above.

COROLLARY 4.6.  Assume that (B); holds and ¢ € L*(Q) satisfies ¢ > J a.e. in
Q for some constant 5 > 0. Then bounded strictly increasing solutions of (P) are
unique.

5. Local solvability of (P) and finite time blow-up of solutions

This section is devoted to proving Theorem 2.1. Throughout this section,
we assume (2.11) and also suppose that f e C'(]0, c0)) without any loss of gen-
erality as in §3.

To construct a solution of (P), we employ strong solutions (u,, ¢,) of (P), on
[0, T] constructed in §3 as approximated solutions for (P). However, in contrast
with (P), for x> 0, solutions of (P) may blow up in finite time (see an explicit
solution blowing up in finite time given by (5.2) below). So it is a key step to
establish a local (in time) estimate for u,. To this end, we shall apply the
comparison principle (see Theorem 4.2) to u, (as a subsolution) and an explicit
supersolution. However, in Theorem 4.2, subsolutions are supposed to be strictly
increasing (see (4.3)), and this assumption is somewhat restrictive to directly apply
the principle to u,, whose time derivative may vanish. Hence it is crucial how to
apply the principle and obtain a local (in time) uniform estimate of u,.

LemMa 5.1 For each M > (|4, (q), there exists Ty >0 independent of
>0 such that

0 <u,(x,t) <M for ae xeQ and all tel0,Ty).

Proof. We start with constructing an explicit supersolution of (2.14). Let
z=1z(t) be a solution of the Cauchy problem of the following ODE:

(5.1) % (z(£) = 2(1), z(0) = zo > 0.

Here as in the proof of Corollary 4.4, define a function @ : [zg, o0) — [0, T'(zp))

by
D(z) := Jj % d¢, T(z) = Jxﬂ (©) € (0, o0].




LOCAL SOLVABILITY OF A FULLY NONLINEAR PARABOLIC EQUATION 721

Then z is explicitly given by
(5.2) () =@ (1) for t€[0,T(z)).

Here we remark that z solves (P) with ¢ =z,. We find that z'(r) > 0 for all ¢
and z(f) - +o as t,/ T(z). Moreover, since z is constant in Q and
0l +)(2'(2)) = {0} for >0, it follows that

6.2+ 0,f(2) + 0l + o) (0i2) = APAz+ 2 in Q x (0, T(z0)),
d,z=0 on dQ x (0, T(z)).

Hence z is a supersolution of (2.14) on [0,S] for any S e (0, T(z)).
Let (uy,&,) be a strong solution of (P), and define a positive function
2, € WH2(0,T; L*(Q)) by

Wy = uy + 1+ K,

where x > 0 is a constant to be determined later. Then we observe that 6,4, = 0
on 0Q x (0,T) and 0,2, = du, + 1 > 0in Q x (0, T'), which implies 0/jo, ) (0;,)
= {0}. Moreover, we note that

OB (i) = B () ity < B () (01t + 1) < B () 010 + Cs
by the non-increase and the boundedness of S’ (see (B);). Therefore we have
:uatﬁ,u + atﬁ(ﬁll) = ﬂatu,u + ﬂ/(uﬂ)atu,u + H + C&

= 22 Auy +uy — &+ e+ Cy

< APAiy, + dy — (i — I€ull o @x(0.17) = # = G5)-
Here we recall by Theorem 3.8 and (2.11) that

[€ull 2= @x 0, 7)) < 1(A*Ag + 9)_ll L= (0)-

Hence choosing x = ||(A*A¢ + ¢) 1= + 1+ Cs, we conclude that, for any
ue(0,1), @, is a subsolution of (2.14) such that d,i, > 0 in Q x (0, 7).

Let us take zo:= ||¢||;~q) +# = #,(-,0) and apply Theorem 4.2 to the
strictly increasing subsolution #, and the supersolution z. Then we obtain

i, (x,t) < z(t) for all t€[0,T(z)),
which implies
(x,1) < z(t) —t —x for all 1€ [0, T(z)).
Therefore for each M > ||¢||;~(q), one can choose T € (0, T(zp)) such that
z2(Ty) = M +x, and hence, u,(x,t) < M for all 1€ [0, Tyl O
Now, fix M = ¢~ + ! and take To:= Ty >0 such that
(5.3) sup |[u (1)l (o) < M.

te [()A To]
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Remark 5.2. One may also obtain
(54) To = £(|$ll o) + (2A$ + §) Nl ooy + Co+ 1)

with a strictly decreasing positive function /(-) depending only on the choice of
B’. Indeed, let z be a solution of (5.1) with z(0) =z and let / = /(zy) > 0 be
such that z(4(z0)) =zo+ 1. Then by (5.1),

(B
/a0 = J ¢

dg,

which implies

£ =t FE),

Since A" is non-increasing and positive (see (f);), / is strictly decreasing in z.
Hence by the choice of Ty in (5.3), putting zo = [|§[| - (q) +*, we obtain (5.4).

Then we are in position to derive uniform estimates.

LemMMa 5.3. There exist constants C =0 and cpr > 0 independent of u>0
such that

Ty 22

Ty
<w>ujnwmamm+m]|mmm@m+7sw|mmwamsa
0 0 te0, To]

(5.6)  sup |[IB(uu(-, D))l o) < C,
tE[O,T()]

(5.7 Ml L= @xo, 7)) < H(/12A¢+¢)J|Lm(n)v

Ty

(58) | 108y 4 < €,
Ty )

(5.9) JO 1A 122 d < C.

Proof. Test (2.14) by 0,u, to get

d (22 1
ww>ummm@+@MWﬁmm@+a<5wm@®—;mﬁmJ=a

from the fact that £,0,u, =0 by &, € Iy +,)(du,). Here by virtue of (5.3), we
find that

((’)lﬁ(uﬂ)7 atu/x)LZ(Q) = Jgﬂ/(uﬂ)‘a[uﬂlz dx > ¢y JQ |0,u#|2 dx,



LOCAL SOLVABILITY OF A FULLY NONLINEAR PARABOLIC EQUATION 723

where ¢y = infyeps a f'(s) (=p'(M)) >0 by (f);. Hence integrating both
sides of (5.10) over (0,¢), we deduce that

t t 12
2 2 2
/lJO 100t 23(y A+ car j ety o+ ||Vuﬂ<r>\|Lz<g)

M2|Q|

1 2 2 2
< EHZ"#(Z)HLZ(Q) +7||V¢||L2(Q) < |V¢||L2

for any ¢€ 0, Tp]. Thus (5.5) follows. Moreover, it follows from (2.10) and
(5.3) that

e 1B(uu( )l L+ () < CM + [BO)],
te|0, 7y

which gives (5.6). Moreover, (5.7) has already been derived by Theorem 3.8 and
(2.11). Estimate (5.8) follows from (5.5) and the fact that

0B (u)| = B (u)] 10,24| < CoOsuay]-
Finally, by comparison, we get (5.9). O

Let us proceed to passing to the limit as u — 0.

LemmA 5.4. By taking a (non-relabeled) subsequence of u— 0, one can
derive

(5.11) wou, — 0 strongly in L*(0, To; L*(Q)),
(5.12) u, —u  weakly star in L*(0, To; H'(Q)),
(5.13) weakly star in L*(Q x (0, Tp)),
(5.14) weakly in W20, Ty; L*(Q)),
(5.15) strongly in C(|0, To; L*(Q)),
(5.16) &, — ¢ weakly star in L”(Q x (0, Ty)),
(5.17) Pluy) — v  weakly star in L*(Q x (0,Tp)),
(5.18) 0B (uy) — o weakly in L*(0, To; L*(Q)),
(5.19) Auy, — Au weakly in L*(0, To; L*(Q))

for  some ue W20, To; L2(Q))N L™ (0, To; H'(Q))NL¥(Q x (0,Tp)), ve
W20, To; L2 (Q)) N L*(Q x (0, Ty)) and &e L*(Q x (0,Ty)). In partlcular
one has u(0) = ¢.  Moreover, it holds that v = B(u) and 0,f(u) + & = J*Au+ u.

Proof. The weak (star) convergences follow immediately from the uniform
estimates established so far. Since \/zdu, is bounded in L2(0, Tp; L*(Q)), (5.11)
follows. Moreover, (5.15) can be verified by using Ascoli’s compactness lemma
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(see, e.g., [12]) along with the compact embedding H'(Q) — L*(Q). Then one
can also assure the initial condition u(0) = ¢. Finally, the demiclosedness of
maximal monotone operators together with (5.15) and (5.17) yields v = f(u),
and hence, 0,8(u) + & = 2*Au + u. O

We also deduce that ue C,([0, To]; H'(Q)), since u belongs to C([0, To);
L*(Q))NL*(0,To; H'(Q)). Furthermore, by (5.3) and (5.15), one has
u,(t) — u(t) weakly star in L*(Q) for all ¢ e [0, Ty].
It follows that
()l ) < 11m1nf||uﬂ( =@ <M for all €0, Tol,

which along with the fact that ue C([0, To); L*(Q)) implies the continuity of
t— u(t) in the weak star topology of L*(Q), that is, u e Cy.([0, To]; L*(Q)).
Finally, we identify the limit ¢ of ¢, as u — 0.

LEMMA 5.5. It holds that du >0 ae. in Qx (0,Ty) and & € 0l 1) (0,u).

Proof. We use Minty’s trick again to prove this lemma. Observe that

To Ty
L (f/“ atuy)LZ(Q) dr = JO (AZAM/I +u, — ﬂatuﬂ - atﬁ(uﬂ)’ atuﬂ)LZ(Q) dz
2

A ) :
—5\|V”ﬂ(TO)||L2<Q) +

To
+ J (Hﬂ, 6,uﬂ)Lz(Q) dr
0

To To
- ﬂL 1outl| 2y j (0uB(t), D) 2y .

Here we also remark that

To Ty
ligliélfj (&ﬁ(uﬂ),é’,uﬂ)y(g) dr > J (0uf(u), ru)LZ () ds
=0 Jo

by verifying that /' (u,)0u, — /B (u)ou weakly in L*(0, To; L*(Q)) (see the
proof of Lemma 3.7). Finally, from (5.14), (5.15) and the weak lower semi-
continuity of norms, we conclude that

2

T
. b p
fim sup L (& Ortt) 2 1 < == Vu(To) | 20 +L ||V¢||L (@)
u—

Ty

Ty
+J (1, 0u1t) () df—J (0f(u), Ortt) 2y dt
0 0

Ty
_ J (&, 0ut) ey 1,
0
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whence follows du > 0 a.e. in Q x (0,Tp) and & € 0y ;o) (0u). This completes
the proof. U

By Remark 2.4 along with (5.7) and (5.16), one can also derive the inequality
(2.12). Thus we have proved the existence of a local (in time) strong solution
for (P).

Let us finally verify the finite time blow-up of any solution u = u(x, ) to (P)
for any data ¢ € L™ (Q) satisfying ¢ >J >0 a.e. in Q. To this end, suppose on
the contrary that T, > 7(9), i.e., for some 75 > T'(J), one can extend u onto
[0, T3] such that

(5.20) Ms = sup |[a(?)l[p- ) = [[a(T5)]

L*(Q) < +o0,
IE[O, T()]

where # stands for the extended solution. We recall the explicit solution z = z(t)
on [0,7(d)) of the ODE (5.1) with zp =0 > 0. Then z is a strictly increasing
(sub)solution of (P) on [0,7(9)). For each M >J, one can take 7 € (0, 7(J))
such that z(#) < M for all t€[0,7y) and z(ty) = M, since z(¢) diverges to +oo
as t — T(0). Set Q:=Mv Ms <+oo. We observe that

z()] < Q and [[u(1)||priq) < Q for ae. t€(0,7n).
Due to Theorem 4.5, we have
z(f) < a(x,t) for a.e. xeQ and all 7€ [0,7y].
Now, letting M — +o0, we infer that 7y, / T(0), and therefore,
2(f) < ii(x,7) for a.e. xeQ and r€[0,T(5)).

Hence we obtain

lim essinf |a@(x, )] = 400,

TE) YeQ
which contradicts (5.20). Thus we obtain Ty, < T 0). From the definition of
Tmax and the local existence part, one can prove (2.13) by recalling (5.4) and
(2.12). Thus we have proved Theorem 2.1. O
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Appendix A. Convex analysis

Here we briefly recall several notions and propositions related to convex
analysis for the convenience of the reader.

Let X be a Banach space with norm | - ||, and let ¢ : X — (—00,+0] be a
proper (i.e., ¢ # +0o0), lower semicontinuous convex functional with effective do-
main D(p) == {ue X : p(u) < +oo}. The subdifferential operator dxp: X — 2%~
(or simply denoted by 0¢) is formulated as

(A)  dp(u) == {Ee X" : p(v) — p(u) = <& v—udy for all ve X},

where {-,-)y is the duality pairing between X and X*, with domain D(dgp) :=
{ue D(p) : 0p(u) # 0}. It is well known that dp has a maximal monotone graph
in X x X*. In particular, if X is a Hilbert space whose dual space is identified
with itself (e.g., X = L?(Q)), then {-,->y can be replaced by an inner product
(,")y. Furthermore, if ¥ is a convex functional on X of class C' (in the sense
of Fréchet derivatives), then

p+)=0p+y/,

where ' : X — X* is the Fréchet derivative of .
The following proposition is useful to identify the (weak) limit of a sequence
in the graph of a nonlinear maximal monotone operator.

ProposITION A.1 (Demiclosedness of maximal monotone operators). Let
A: X — X* be a (possibly multivalued) maximal monotone operator. Let [uy, &,
be in the graph of A such that u, — u weakly in X and &, — & weakly in X*.
Suppose that

limsup <&, u, )y < <& uyy.

n—+o0

Then [u,&] belongs to the graph of A, and moreover, it holds that

Jim Sy unpy = <&y

Let Q be a bounded domain in RY. Let u e L?(Q) and let « be a maximal
monotone graph in R?. Since every maximal monotone graph in R?> becomes
cyclic monotone, one can take a proper lower semicontinuous convex potential
0:R — (—o0,+00] such that 00 = o.

PrOPOSITION A.2 ([6, 5]). Define ® : L*(Q) — (—o0,+w] by

Ou) = Lz O(u(x)) dx if ue L*(Q) and O(u(-)) e L'(Q),
+o0 otherwise.

Then the following properties are all satisfied:



[3]
[4]

(5]

[9]

(10]
(1]

(12]
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(i) © is proper, lower semicontinuous and convex in L*(Q).

(i) For all f,ue L*(Q), it follows that f € 012q)O(u) if and only if f(x) e
OrO(u(x)) for ae. xeQ.

(iii) Assume that ue D(—A) ={ue H*(Q):0,u=0 ae. on 0Q}. It then
holds that

—J Au(x)n(x) dx = 0 for any section 1€ 012q)@(u).
Q
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