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Abstract

This paper is concerned with the existence of local (in time) positive solutions to the

Cauchy-Neumann problem in a smooth bounded domain of RN for some fully nonlinear

parabolic equation involving the positive part function r A R 7! ðrÞþ :¼ r40. To show

the local solvability, the equation is reformulated as a mixed form of two di¤erent sorts

of doubly nonlinear evolution equations in order to apply an energy method. Some

approximated problems are also introduced and the global (in time) solvability is proved

for them with an aid of convex analysis, an energy method and some properties peculiar

to the nonlinearity of the equation. Moreover, two types of comparison principles are

also established, and based on these, the local existence and the finite time blow-up of

positive solutions to the original equation are concluded as the main results of this

paper.

1. Introduction

Let W be a bounded domain in RN with smooth boundary qW. In this
paper, we discuss the local (in time) existence and the finite time blow-up of
positive solutions of the Cauchy-Neumann problem for a fully nonlinear par-
abolic equation,

qtu ¼ gðuÞðl2Duþ uÞþ; x A W; t > 0;ð1:1Þ
qnu ¼ 0; x A qW; t > 0;ð1:2Þ
u ¼ f; x A W; t ¼ 0;ð1:3Þ

where qt ¼ q=qt, gðuÞ is a positive continuous function in ð0;þyÞ, ðsÞþ :¼ s40
stands for the positive part of s A R, l > 0 is a fixed constant, D is the standard
Laplacian, and qn denotes the normal derivative. The one dimensional version
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(i.e., N ¼ 1 and W ¼ ð0; 1Þ) of Equation (1.1) was originally proposed by
Barenblatt and Prostokishin in the context of Damage Mechanics as a model
of damage accumulation processes taking account of microstructural e¤ects in
[2] (see also [3, §2]), where a typical choice of gðuÞ is given by a power
function,

gðuÞ ¼ ua; ab 0:ð1:4Þ

One of peculiarities of the problem is found in the unidirectional evolution of
solutions; more precisely, u ¼ uðx; tÞ is non-decreasing in time due to the non-
negativity of the right-hand side of (1.1). This feature plays a crucial role in the
model of damage accumulation as a natural hypothesis on the unidirectional
evolution of an internal variable called a damage factor. It is also worth
mentioning that solutions of (1.1)–(1.3) may blow up in finite time. Indeed,
one can obtain a spatially uniform explicit solution that blows up in finite time
for the case (1.4) with a > 0 (see also the proof of Lemma 5.1 below).

The main purpose of this paper is to prove the local (in time) existence
and the finite time blow-up of positive solutions to (1.1)–(1.3) in an L2ðWÞ
framework.

For the one-dimensional case, Bertsch and Bisegna [3] proved the local
existence and the finite time blow-up of classical solutions under the assumptions
that

fb d in ½0; 1�; f A C 1ð½0; 1�Þ; f 0 is Lipschitz continuous in ½0; 1�;
f 0ð0Þ ¼ f 0ð1Þ ¼ 0; ðl2f 00 þ fÞþ A Cð½0; 1�Þ

)
ð1:5Þ

for some d > 0 and some structural conditions on gðuÞ. Moreover, they also
investigated qualitative properties of blow-up phenomena; in particular, regional
blow-up phenomena may occur, that is, the blow-up set is an interval of nonzero
measure (but not the whole of W) under a suitable initial configuration. In order
to take account of chemical aggression, Natalini et al. [9] extended the one-
dimensional model as a system of nonlinear parabolic equations and also studied
it in view of numerical analysis. Furthermore, Nitsch [10] proved the local well-
posedness of the system and investigated blow-up properties of solutions (see
also [11]).

In this paper, we shall treat Equation (1.1) on the basis of an energy method,
that is a totally di¤erent way from the previous studies. Generally speaking,
energy methods are not so e¤ective for fully nonlinear equations, and therefore,
such a severe nonlinearity often prevents us to construct solutions in a suitable
energy class. We shall reformulate (1.1) as a mixed form of two di¤erent sorts
of doubly nonlinear evolution equations, for which energy methods are more
e¤ective, with an aid of convex analysis. In the next section, we actually
reformulate Equation (1.1) and state a main result of the paper. Moreover, an
outline of a proof is also exhibited. Sections 3–5 are devoted to a proof of the
main result. In Appendix §A, we give a brief exposition of the relevant material
on convex analysis for the convenience of the reader.
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2. Reformulation of the equation and main result

Define a strictly increasing function b A C 1
locðð0;þyÞÞ by

bðsÞ ¼
ð s
s0

ds

gðsÞ þ C0 for s > 0ð2:1Þ

for some constants s0;C0 A R (the following reformulation will not depend on the
choice of s0, C0, because we shall treat the derivative of b only, i.e., b 0 or qtbðuÞ
for u ¼ uðx; tÞ). Particularly, in the case of (1.4), the function b can be given as

bðsÞ ¼
s1�a

1� a
if a0 1;

log s if a ¼ 1

8><
>: for s > 0:ð2:2Þ

Then since qtbðuÞ ¼ b 0ðuÞqtu ¼ qtu=gðuÞ, Equation (1.1) is equivalently rewritten
as

qtbðuÞ ¼ ðl2Duþ uÞþ; x A W; t > 0:ð2:3Þ

Moreover, let us define the indicator function I½0;þyÞ : R ! ½0;þy� over the set
½0;þyÞ by

I½0;þyÞðsÞ :¼
0 if sb 0;

þy otherwise

�
ð2:4Þ

and let qI½0;þyÞ : R ! 2R be the subdi¤erential operator of I½0;þyÞ given by

qI½0;þyÞðsÞ :¼ fx A R : I½0;þyÞðsÞ � I½0;þyÞðsÞb xðs� sÞ for all s A Rgð2:5Þ

for s A R

with domain DðqI½0;þyÞÞ ¼ ½0;þyÞ (see also §Appendix A). One can observe
that

qI½0;þyÞðsÞ ¼
f0g if s > 0;

ð�y; 0� if s ¼ 0:

�

Hence sþ qI½0;þyÞðsÞ is the (multivalued) inverse function of ðsÞþ ¼ s40. There-
fore (2.3) is transformed into the inclusion,

qtbðuÞ þ qI½0;þyÞðqtbðuÞÞ C l2Duþ u; x A W; t > 0:

Since b is a strictly increasing function, so we observe that qtbðuÞ > 0 if and only
if qtu > 0; therefore, we have

qI½0;þyÞðqtbðuÞÞ ¼ qI½0;þyÞðqtuÞ:ð2:6Þ

Thus (1.1)–(1.3) has been reformulated as the Cauchy-Neumann problem (denoted
by (P) below) for

qtbðuÞ þ qI½0;þyÞðqtuÞ C l2Duþ u; x A W; t > 0;ð2:7Þ
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equipped with the Neumann boundary condition (1.2) and the initial condition
(1.3).

Equation (2.7) now falls within the scope of an energy method and it can
be regarded as a mixed form of two sorts of doubly nonlinear problems; one is a
sort of nonlinear di¤usion equations (e.g., porous medium/fast di¤usion equation)
in the form

qtbðuÞ ¼ Du; x A W; t > 0;ð2:8Þ
and the other one is a sort of generalized gradient flows, e.g., the unidirectional
heat flow (see [1]),

qI½0;þyÞðqtuÞ ¼ Du; x A W; t > 0:ð2:9Þ
The former one has been vigorously studied so far; however, to the best of the
author’s knowledge, the mixed form such as (2.7) has not yet been fully pursued.

Prior to stating the main result of this paper, let us introduce the following
assumptions ðbÞd for general b and a constant d > 0: There exists a constant
Cd > 0 such that

b A C1ð½d;þyÞÞ and 0 < b 0ðsÞaCd for all sb d;

b 0 is non-increasing on ½d;þyÞ;

)
ðbÞd

which implies

jbðsÞjaCdsþ jbðdÞj for all sb dð2:10Þ

and the strict increase of b on ½d;yÞ. We note that ðbÞd holds true in the case of
(1.4) for any ab 0.

Here and henceforth, Cw�ð½0;T �;LyðWÞÞ denotes the set of all LyðWÞ-valued
weakly star continuous functions on ½0;T �. Moreover, we refer the reader to
Definition 2.3 below for the precise definition of strong solutions of (P).

Now, our main result reads,

Theorem 2.1 (Local solvability of (P) and finite time blow-up of positive
solutions). Assume that

f A H 2ðWÞVLyðWÞ; qnf ¼ 0 on qW; ðl2Dfþ fÞ� A LyðWÞ;
fb d a:e: in W; for some constant d > 0;

)
ð2:11Þ

where ðsÞ� :¼ s50a 0 is the negative part of s A R. Moreover, suppose that
ðbÞd is satisfied. Then the Cauchy-Neumann problem ðPÞ ¼ fð2:7Þ; ð1:2Þ; ð1:3Þg
admits at least one strong solution u on ½0;T0� for some T0 > 0 such that u A
Cw�ð½0;T0�;LyðWÞÞ and

kðl2Duþ uÞ�kLyðW�ð0;T0ÞÞ a kðl2Dfþ fÞ�kLyðWÞ:ð2:12Þ

Moreover, let u A Cw�ð½0;S�;LyðWÞÞ be a strong solution of (P) on some
interval ½0;S� for some data f A LyðWÞ satisfying fb d a.e. in W. Let Tmax > 0
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be the supremum of tbS > 0 for which u can be extended onto ½0; t� such that
u A Cw�ð½0; t�;LyðWÞÞ. In addition, define

T̂TðsÞ :¼
ðþy

s

b 0ðzÞ
z

dz A ð0;þy� for s > 0:

Then it follows that

Tmax a T̂TðdÞ:
Moreover, if Tmax < þy, then it holds that

lim
t%Tmax

kuðtÞkLyðWÞ ¼ þy:ð2:13Þ

Remark 2.2. (i) The function t 7! kuðtÞkLyðWÞ is left-continuous on ½0;T �.
Indeed, since u A Cw�ð½0;T �;LyðWÞÞ and uðx; tÞ is non-decreasing in
ð0;TÞ, we observe that

kuðtÞkLyðWÞ a lim inf
s%t

kuðsÞkLyðWÞ a lim sup
s%t

kuðsÞkLyðWÞ a kuðtÞkLyðWÞ

for each t A ½0;T �.
(ii) The local existence time T0 can be represented as follows:

T0 ¼ lðkfkLyðWÞ þ kðl2Dfþ fÞ�kLyðWÞ þ Cd þ 1Þ;
where lð�Þ is a positive strictly decreasing function depending only on b 0

(see Remark 5.2 below for more details).
(iii) In case gðuÞ ¼ ua for a > 0 (see also (2.2)), one can check T̂TðdÞ < þy

for any d > 0. Hence Tmax is always finite. As for the case a ¼ 0, we
shall further exhibit a global (in time) existence result under weaker
assumptions on initial data f (see Theorem 3.8 and Remark 3.9 below
for details).

(iv) This result is still new even for the case N ¼ 1. Indeed, the assumption
(2.11) is slightly weaker than (1.5) assumed in [3]. Assumption (1.5)
requires f 0 to be Lipschitz continuous on ½0; 1�, and hence, we partic-
ularly have f A W 2;yðWÞHH 2ðWÞ, since every Lipschitz continuous
function belongs to W 1;yðWÞ. On the other hand, the non-increase of
b 0 is assumed in Theorem 2.1 (cf. [3]), and the uniqueness of (general)
solutions (cf. Corollary 4.6) and qualitative properties of blow-up solu-
tions are not discussed in this paper.

An outline of a proof is as follows: We first construct global (in time)
solutions to the Cauchy-Neumann problem ðPÞm, m > 0, for the following approxi-
mated equations,

mqtuþ qtbðuÞ þ qI½0;þyÞðqtuÞ C l2Duþ u; x A W; t > 0ð2:14Þ

along with (1.2) and (1.3) under milder assumptions. Thanks to the additional
time derivative of u in the left-hand side, one may expect the existence of global
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(in time) solutions. Indeed, we construct a global solution um ¼ umðx; tÞ, which
is unbounded in time, by using a time-discretization technique and an energy
method (see Section 3).

Before going on to the limiting procedure as m ! 0, we establish an LyðWÞ
estimate for umð�; tÞ uniform in t on some interval and m A ð0; 1Þ. To this end,
we prove a comparison principle for strictly increasing subsolutions and general
supersolutions of ðPÞm (see Section 4). However, one cannot directly apply the
principle to um due to the assumption of the strict increase of subsolutions, which
is more restrictive than those of usual comparison principles and arising from a
peculiar nonlinearity of ðPÞm. To overcome this defect, we introduce an auxiliary
subsolution of ðPÞm which is greater than um and strictly increasing. Constructing
an appropriate spatially uniform supersolution of ðPÞm, we derive a uniform
estimate for kumðtÞkLyðWÞ locally in time (see Section 5).

Furthermore, we establish uniform estimates and pass to the limit as m ! 0
in order to prove the local (in time) existence of solutions for the original
problem (P). The finite time blow-up of solutions for (P) is also verified by using
a comparison principle for (P) (see Theorem 4.5) and a strictly increasing explicit
subsolution (see Section 5).

Let us close this section by giving a definition of strong solutions for (P) and
ðPÞm and some remarks. From now on, Cwð½0;T �;H 1ðWÞÞ stands for the space
of all weakly continuous functions on ½0;T � with values in H 1ðWÞ.

Definition 2.3 (Strong solutions of (P) and ðPÞm). For T > 0 and mb 0, a
positive function u A W 1;2ð0;T ;L2ðWÞÞ is called a strong solution (or a solution
for short) of ðPÞm (¼ (P) if m ¼ 0) on ½0;T �, if the following (i)–(iii) hold true:

(i) u A Cwð½0;T �;H 1ðWÞÞ, bðuÞ A W 1;2ð0;T ;L2ðWÞÞ, Du A L2ð0;T ;L2ðWÞÞ,
(ii) qnu ¼ 0 on qW and uð�; tÞ A H 2ðWÞ for a.e. t A ð0;TÞ,
(iii) qtuðx; tÞb 0 for a.e. ðx; tÞ A W� ð0;TÞ, and there exists x A L2ð0;T ;

L2ðWÞÞ such that

mqtuþ qtbðuÞ þ x ¼ l2Duþ u; x A qI½0;þyÞðqtuÞð2:15Þ
for a.e. ðx; tÞ A W� ð0;TÞ.

Solutions of ðPÞm (or (P)) are also denoted by ðu; xÞ in order to specify the section
x of qtI½0;þyÞðqtuÞ as in (2.15).

Furthermore, a solution u of ðPÞm (or (P)) on ½0;T � is said to be strictly
increasing if qtuðx; tÞ > 0 for a.e. ðx; tÞ A W� ð0;TÞ.

Remark 2.4. Let ðu; xÞ be a strong solution of ðPÞm (or (P)) on ½0;T �. One
may obtain a representation of x,

x ¼ ðl2Duþ uÞ� for a:e: ðx; tÞ A W� ð0;TÞ:ð2:16Þ
Indeed, let ðx; tÞ A W� ð0;TÞ be such that (2.15) holds there. In case when xðx; tÞ
¼ 0, one has 0a mqtuþ qtbðuÞ ¼ l2Duþ u at ðx; tÞ. Hence ðl2Duþ uÞ�ðx; tÞ ¼ 0.
In case when xðx; tÞ < 0, noting by (2.6) that qtuðx; tÞ ¼ qtbðuÞðx; tÞ ¼ 0, we
deduce that 0 > x ¼ l2Duþ u at ðx; tÞ. Therefore in both cases, (2.16) follows.
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Here and henceforth, for simplicity, we use the same notation I½0;þyÞ for the
indicator function over ½0;þyÞ defined on R as well as for that over the set
fu A L2ðWÞ : ub 0 a:e: in Wg defined on L2ðWÞ, unless any confusion may arise.
Moreover, the subdi¤erential operators (in L2ðWÞ) of the both indicator functions
are also denoted by qI½0;þyÞ (see also Proposition A.2 for their equivalence).

3. Solvability of the approximated problems ðPÞm
In this section, we construct strong solutions for the approximate problems

ðPÞm for m > 0 under a milder assumption,

f A H 2ðWÞ; qnf ¼ 0 on qW; fb d a:e: in W; for some constant d > 0ð3:1Þ

without assuming (2.11). Then one can remove the singularity of bðsÞ at s ¼ 0
(e.g., see (2.2)) by replacing b with a proper non-decreasing smooth function
which coincides with b on ½d;þyÞ without any loss of generality, since solutions
u of ðPÞm are always supposed to be not less than d under (3.1). Throughout this
section, we always assume that b A C 1ð½0;yÞÞ.

We start with a time-discretization. Let N A N, t ¼ tN :¼ T=N > 0 and
consider the following discretized problems:

m
unþ1 � un

t
þ bðunþ1Þ � bðunÞ

t
þ xnþ1 ¼ l2Dunþ1 þ unþ1 in L2ðWÞ;ð3:2Þ

xnþ1 A qI½0;þyÞ
unþ1 � un

t

� �
; u0 ¼ f in L2ðWÞð3:3Þ

for n ¼ 0; 1; . . . ;N � 1. We then claim

Lemma 3.1. For each t A ð0; mÞ, the discretized problems (3.2), (3.3) admit
solutions ðunþ1; xnþ1Þ A H 2ðWÞ � L2ðWÞ for n ¼ 0; 1; . . . ;N � 1.

Proof. Let n A f0; 1; . . . ;N � 1g and let un A Dð�DÞ :¼ fv A H 2ðWÞ : qnv ¼
0 on qWg be such that un b d a.e. in W. Define functionals Jnþ1 : H

1ðWÞ !
ð�y;þy� by

Jnþ1ðuÞ :¼
m

2t
kuk2L2ðWÞ þ

1

t
cðuÞ þ I½0;þyÞ

u� un

t

� �
þ l2

2
k‘uk2L2ðWÞ

� 1

2
kuk2L2ðWÞ �

bðunÞ
t

þ m
un

t
; u

� �
H 1ðWÞ

for u A H 1ðWÞ;

where c is a functional of class C 1 defined on H 1ðWÞ by

cðuÞ :¼
ð
W

b̂bðuÞ dx for u A H 1ðWÞ with b̂bðsÞ :¼
ð s
0

bðsÞ ds
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and h� ; �iH 1ðWÞ stands for the duality pairing between H 1ðWÞ and ðH 1ðWÞÞ�.
Then Jnþ1 is well defined on H 1ðWÞ, since we see that bðunÞ A L2ðWÞ by ðbÞd
along with the assumptions of un. For t A ð0; mÞ, each functional Jnþ1 is coercive,
strictly convex and lower semicontinuous in H 1ðWÞ. Hence employing the Direct
Method, one can verify that Jnþ1 admits a unique minimizer unþ1 A H 1ðWÞ, and
then, unþ1 solves the Euler-Lagrange equation,

m
unþ1 � un

t
þ bðunþ1Þ � bðunÞ

t
þ xnþ1 ¼ l2Dunþ1 þ unþ1 in ðH 1ðWÞÞ�;ð3:4Þ

xnþ1 A qH 1ðWÞI½0;þyÞ
unþ1 � un

t

� �
in ðH 1ðWÞÞ�;ð3:5Þ

where qH 1ðWÞI½0;þyÞ denotes the subdi¤erential operator from H 1ðWÞ to 2ðH
1ðWÞÞ�

of the functional I½0;þyÞ restricted onto H 1ðWÞ (see (A.1) of §Appendix A below).
Note that

qH 1ðWÞI½0;þyÞ
u� un

t

� �
¼ qH 1ðWÞI½�bun�ðuÞ;

where qH 1ðWÞI½�bun� stands for the subdi¤erential of the indicator function I½�bun�
over the set ½�b un� :¼ fu A H 1ðWÞ : uðxÞb unðxÞ for a:e: x A Wg. Then one can
rewrite (3.4), (3.5) as the variational inequality of obstacle type,

m

t
� 1

� �
unþ1 � l2Dunþ1 þ qH 1ðWÞI½�bun�ðunþ1Þð3:6Þ

C
m

t
un �

bðunþ1Þ � bðunÞ
t

in ðH 1ðWÞÞ�:

Here we shall exploit a regularity theory for variational inequalities of
obstacle type. Let K :¼ fu A H 1ðWÞ : ubc a:e: in Wg for some c A L2ðWÞ and
let A : H 1ðWÞ ! ðH 1ðWÞÞ� be the homeomorphism defined by

hAu; fiH 1ðWÞ ¼ g

ð
W

uf dxþ l2
ð
W

‘u � ‘f dx for u; f A H 1ðWÞ

for some g > 0 (i.e., Au ¼ gu� l2Du). Concerning the variational inequality
with f A ðH 1ðWÞÞ�,

u A K ; hAu; v� uiH 1ðWÞ b h f ; v� uiH 1ðWÞ for all v A K ;ð3:7Þ

which can be equivalently rewritten as

Auþ qH 1ðWÞIKðuÞ C f in ðH 1ðWÞÞ�

(here IK stands for the indicator function over the set K), we recall the following
proposition (see [1] or [7] with a proper modification):
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Proposition 3.2 ([1], [7]). Suppose that c A W 2;pðWÞ, qnc ¼ 0 on qW and
f A LpðWÞ for some pb 2. Then the unique weak solution u of (3.7) belongs to
W 2;pðWÞ, qnu ¼ 0 a.e. on qW, and

f aAua f4Ac a:e: in W;

where Ac ¼ gc� l2Dc.

Due to the fact that un A Dð�DÞ, by applying Proposition 3.2 to (3.6), one
can verify that unþ1 A Dð�DÞ and

m

t
un �

bðunþ1Þ � bðunÞ
t

a
m

t
� 1

� �
unþ1 � l2Dunþ1

a
m

t
un �

bðunþ1Þ � bðunÞ
t

� �

4
m

t
� 1

� �
un � l2Dun

� �
for a:e: x A W;

which implies

0a m
unþ1 � un

t
þ bðunþ1Þ � bðunÞ

t
� l2Dunþ1 � unþ1

a 04 �l2Dun � un þ
bðunþ1Þ � bðunÞ

t

� �
for a:e: x A W:

Since un A H 2ðWÞ and bðunÞ; bðunþ1Þ A L2ðWÞ (by (2.10)), we can verify from (3.4)
that xnþ1 A L2ðWÞ and xnþ1 A qI½0;þyÞððunþ1 � unÞ=tÞ. Moreover, from the fact
that xnþ1ðxÞ0 0 only if unþ1ðxÞ ¼ unðxÞ, we also deduce that

0a�xnþ1 a�ðl2Dun þ unÞ� for a:e: x A W;ð3:8Þ
where ðsÞ� ¼ s50a 0.

By virtue of (3.1), starting from n ¼ 0 and u0 ¼ f, one can iteratively obtain
solutions unþ1 A Dð�DÞ and xnþ1 A L2ðWÞ of (3.2), (3.3) for n ¼ 0; 1; . . . ;N � 1.

r

We next establish a priori estimates for un and xn.

Lemma 3.3. There exists a constant Cb 0 depending on m, l and f such that

max
n

ðkunk2L2ðWÞ þ k‘unk2L2ðWÞÞ þ
XN�1

n¼0

t
unþ1 � un

t

���� ����2
L2ðWÞ

aC;ð3:9Þ

max
n

kbðunÞk2L2ðWÞ aC;ð3:10Þ

XN�1

n¼0

t
bðunþ1Þ � bðunÞ

t

����
����2
L2ðWÞ

aC:ð3:11Þ
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Proof. Test (3.2) by ðunþ1 � unÞ=t to get

m
unþ1 � un

t

���� ����2
L2ðWÞ

þ bðunþ1Þ � bðunÞ
t

;
unþ1 � un

t

� �
L2ðWÞ

ð3:12Þ

þ xnþ1;
unþ1 � un

t

� �
L2ðWÞ

þ l2

2t
k‘unþ1k2L2ðWÞ �

l2

2t
k‘unk2L2ðWÞ

a unþ1;
unþ1 � un

t

� �
L2ðWÞ

a
m

2

unþ1 � un

t

���� ����2
L2ðWÞ

þ Ckunþ1k2L2ðWÞ;

where ð� ; �ÞL2ðWÞ stands for the inner product in L2ðWÞ, for n ¼ 0; 1; . . . ;N � 1.
Moreover, we note that

kunþ1k2L2ðWÞ � kunk2L2ðWÞ
2t

a
1

2
kunþ1k2L2ðWÞ þ

1

2

unþ1 � un

t

���� ����2
L2ðWÞ

and

xnþ1;
unþ1 � un

t

� �
L2ðWÞ

¼ 0:

Hence exploiting the monotonicity of b and summing both sides of (3.12) for
n ¼ 0; 1; . . . ; k A f2; 3; . . . ;N � 1g, we derive

m

2
kukþ1k2L2ðWÞ þ

l2

2
k‘ukþ1k2L2ðWÞ

a
m

2
kfk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ þ

m

2
þ C

� �Xkþ1

j¼0

tkujk2L2ðWÞ:

Exploiting the discrete Gronwall inequality, one has

max
n

ðkunk2L2ðWÞ þ k‘unk2L2ðWÞÞaCðkfk2L2ðWÞ þ k‘fk2L2ðWÞÞ;

which together with (2.10) also yields (3.10). Furthermore, recalling (3.12), we
obtain (3.9).

By ðbÞd and the Mean-Value Theorem, we observe that

bðunþ1Þ � bðunÞ
t

����
����¼ 1

t
jb 0ðð1� ynÞunþ1 þ ynunÞj junþ1 � unjaCd

unþ1 � un

t

���� ����
for some yn ¼ ynðxÞ A ð0; 1Þ, a.e. x A W. Thus (3.11) follows from (3.9). r

We further prove:

Lemma 3.4. If ðl2Dfþ fÞ� A LpðWÞ for some p A ½2;þy�, it follows that

kxnþ1kLpðWÞ a kxnkLpðWÞ a kðl2Dfþ fÞ�kLpðWÞ for n ¼ 1; 2; . . . ;N � 1:ð3:13Þ
In particular, (3.13) follows with p ¼ 2 from the fact that f A H 2ðWÞ by (3.1).
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Moreover, there exists a constant Cb 0 depending on m, l and f such that

XN�1

n¼0

tkDunþ1k2L2ðWÞ aC:ð3:14Þ

Proof. By subtraction of equations, we have

m
unþ1 � un

t
� un � un�1

t

� �
þ bðunþ1Þ � bðunÞ

t
� bðunÞ � bðun�1Þ

t
þ xnþ1 � xnð3:15Þ

¼ l2Dðunþ1 � unÞ þ unþ1 � un

for n ¼ 1; 2; . . . ;N � 1. Assume that ðl2Dfþ fÞ� A LpðWÞ for some p A ½2;þyÞ.
Let R > 0 and let gR A C1ðRÞ be a smooth monotone function satisfying

gRðuÞ ¼
jujp�2

u if jujaR;

sgnðuÞðRþ 1Þp�1 if jujbRþ 2;

(

where sgnð�Þ denotes the sign function. Test (3.15) by hnþ1 :¼ gRðxnþ1Þ A LyðWÞ.
Here we note that hnþ1 also belongs to qI½0;þyÞððunþ1 � unÞ=tÞ and that

ð�Du; hÞL2ðWÞ b 0 for all h A qI½0;þyÞðuÞ and u A Dð�DÞ satisfying ub 0

by (iii) of Proposition A.2 in Appendix. Furthermore, by definitions of the
indicator function I½0;þyÞ and its subdi¤erential, we observe that

unþ1 � un

t
� un � un�1

t
; hnþ1

� �
L2ðWÞ

b I½0;þyÞ
unþ1 � un

t

� �
� I½0;þyÞ

un � un�1

t

� �
¼ 0;

since funðxÞg is non-decreasing in n a.e. x A W. Noting that

hnþ1 A qI½0;þyÞ
unþ1 � un

t

� �
¼ qI½0;þyÞ

bðunþ1Þ � bðunÞ
t

� �
;

one can similarly derive

bðunþ1Þ � bðunÞ
t

� bðunÞ � bðun�1Þ
t

; hnþ1

� �
L2ðWÞ

b 0:

Moreover, we also note that

ðunþ1 � un; hnþ1ÞL2ðWÞ ¼ 0;

since hnþ1ðxÞ0 0 only if unþ1ðxÞ ¼ unðxÞ. Combining all these facts, we haveð
W

ĝgRðxnþ1Þ dxa
ð
W

ĝgRðxnÞ dx for n ¼ 1; 2; . . . ;N � 1;

where ĝgR stands for the primitive function of gR satisfying ĝgRð0Þ ¼ 0. Moreover,
letting R ! þy and recalling (3.8) with n ¼ 0, we find by iteration that

kxnkLpðWÞ a kx1kLpðWÞ a kðl2Dfþ fÞ�kLpðWÞ for n ¼ 2; 3; . . . ;N:
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As for the case ðl2Dfþ fÞ� A LyðWÞ, passing to the limit as p ! þy in both
sides, we conclude that (3.13) holds true for p ¼ y.

Finally, (3.14) follows by comparison of both sides in (3.2). r

Now, let us move on to the limiting procedure. To this end, we first intro-
duce the piecewise forward constant interpolants utðtÞ :¼ unþ1 and xtðtÞ :¼ xnþ1 for
t A ½tn; tnþ1Þ and the piecewise linear interpolants

utðtÞ :¼
tnþ1 � t

t
un þ

t� tn

t
unþ1 if t A ½tn; tnþ1Þ;

vtðtÞ :¼
tnþ1 � t

t
bðunÞ þ

t� tn

t
bðunþ1Þ if t A ½tn; tnþ1Þ

for n ¼ 0; 1; . . . ;N � 1. Then (3.2) is rewritten as

mqtut þ qtvt þ xt ¼ l2Dut þ ut; xt A qI½0;þyÞðqtutÞ:ð3:16Þ

From the preceding a priori estimates, we can derive the following con-
vergences by taking a (non-relabeled) subsequence of t ! 0 (equivalently,
N ! þy):

Lemma 3.5. It holds, up to a subsequence, that

ut ! u weakly star in Lyð0;T ;H 1ðWÞÞ;ð3:17Þ

strongly in Cð½0;T �;L2ðWÞÞ;ð3:18Þ

ut ! u weakly star in Lyð0;T ;H 1ðWÞÞ;ð3:19Þ

strongly in Lyð0;T ;L2ðWÞÞ;ð3:20Þ

qtut ! qtu weakly in L2ð0;T ;L2ðWÞÞ;ð3:21Þ

vt ! v weakly star in Lyð0;T ;L2ðWÞÞ;ð3:22Þ

bðutÞ ! v weakly star in Lyð0;T ;L2ðWÞÞ;ð3:23Þ

qtvt ! qtv weakly in L2ð0;T ;L2ðWÞÞ;ð3:24Þ

xt ! x weakly star in Lyð0;T ;L2ðWÞÞ;ð3:25Þ

Dut ! Du weakly in L2ð0;T ;L2ðWÞÞð3:26Þ

for some u A W 1;2ð0;T ;L2ðWÞÞVLyð0;T ;H 1ðWÞÞ, u A Lyð0;T ;H 1ðWÞÞ and v A
W 1;2ð0;T ;L2ðWÞÞ and v; x A Lyð0;T ;L2ðWÞÞ. In particular, it follows that
uð�; 0Þ ¼ f. Moreover, it holds that u ¼ u, v ¼ v ¼ bðuÞ and

mqtuþ qtbðuÞ þ x ¼ l2Duþ u:ð3:27Þ
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Proof. By Lemmas 3.3 and 3.4, we immediately obtain (3.17)–(3.26) except
for (3.18) and (3.20). Moreover, (3.18) follows from Ascoli’s compactness lemma
(see, e.g., [12]) along with (3.9) and Rellich’s compact embedding H 1ðWÞ ,!
L2ðWÞ. Then we also observe uð�; 0Þ ¼ f. By (3.9), we find that, for t A ½tn; tnþ1Þ,

kutðtÞ � utðtÞk2L2ðWÞ ¼
tnþ1 � t

t

� �2
kunþ1 � unk2L2ðWÞ a

ð3:9Þ
Ct ! 0;

which gives u ¼ u and (3.20). One can similarly derive by (3.11) that v ¼ v.
Since the operator u 7! bðuÞ is maximal monotone in L2ðWÞ, thanks to the
demiclosedness of maximal monotone operators (see Proposition A.1), one can
verify that v ¼ bðuÞ. Finally, (3.27) follows from these facts along with (3.16).

r

Remark 3.6. Due to ðbÞd, i.e., b is Lipschitz continuous in R, and
(3.20), one can also directly derive the strong convergence of bðutÞ to bðuÞ in
Lyð0;T ;L2ðWÞÞ.

By virtue of the relation Cð½0;T �;L2ðWÞÞVLyð0;T ;H 1ðWÞÞHCwð½0;T �;
H 1ðWÞÞ (see [8]), we obtain u A Cwð½0;T �;H 1ðWÞÞ.

The next lemma identifies the limit x as a section of qI½0;þyÞðqtuÞ.

Lemma 3.7. It follows that qtub 0 a.e. in W� ð0;TÞ and x A qI½0;þyÞðqtuÞ.

Proof. The proof given below basically relies on Minty’s trick. However,
compared to usual doubly nonlinear evolution equations such as (2.8) and (2.9),
some additional di‰culty may arise from the coexistence of two sorts of non-
linearities, qtbðuÞ and qI½0;þyÞðqtuÞ. Noting that xt A qI½0;þyÞðqtutÞ, by Lemma
3.5, we first derive

lim sup
t!0

ðT
0

ðxt; qtutÞL2ðWÞ dtð3:28Þ

¼ð3:16Þ lim sup
t!0

ðT
0

ðut þ l2Dut � mqtut � qtvt; qtutÞL2ðWÞ dt

a lim
t!0

ðT
0

ðut; qtutÞL2ðWÞ dt�
l2

2
lim inf
t!0

k‘utðTÞk2L2ðWÞ þ
l2

2
k‘fk2L2ðWÞ

� m lim inf
t!0

ðT
0

kqtutk2L2ðWÞ dt� lim inf
t!0

ðT
0

ðqtvt; qtutÞL2ðWÞ dt

a

ðT
0

ðu; qtuÞL2ðWÞ dt�
l2

2
k‘uðTÞk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ

� m

ðT
0

kqtuk2L2ðWÞ dt� lim inf
t!0

ðT
0

ðqtvt; qtutÞL2ðWÞ dt:
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Here the last inequality follows from the weak lower semicontinuity of norms and
the fact that

utðTÞ ! uðTÞ weakly in H 1ðWÞ:

Moreover, we emphasize that the last term of (3.28) arises from the mixed double
nonlinearity of Equation (2.14).

We claim that

lim inf
t!0

ðT
0

ðqtvt; qtutÞL2ðWÞ dtb

ðT
0

ðqtbðuÞ; qtuÞL2ðWÞ dt:ð3:29Þ

To prove this, by using the Mean-Value Theorem, we observe that

ðT
0

ðqtvt; qtutÞL2ðWÞ dt ¼
XN�1

n¼0

t
bðunþ1Þ � bðunÞ

t
;
unþ1 � un

t

� �
L2ðWÞ

¼
XN�1

n¼0

t

ð
W

b 0ðztÞ
unþ1 � un

t

���� ����2 dx
for some zt ¼ ztðx; tÞ A ðutðx; t� tÞ; utðx; tÞÞ. Here, as in the proof of Lemma
3.5, one can verify that

utð� � tÞ ! u strongly in Lyð0;T ;L2ðWÞÞ;

which also yields that

zt ! u strongly in Lyð0;T ;L2ðWÞÞ:

Since b 0ðsÞ is continuous on ½d;þyÞ by ðbÞd, we have

b 0ðztðx; tÞÞ ! b 0ðuðx; tÞÞ for a:e: ðx; tÞ A W� ð0;TÞ:ð3:30Þ

Moreover, noting by ðbÞd that

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 0ðztðx; tÞÞ

q
jaC

1=2
d for a:e: ðx; tÞ A W� ð0;TÞ

and applying the Lebesgue dominated convergence theorem, we obtainffiffiffiffiffiffiffiffiffiffiffiffi
b 0ðztÞ

q
!

ffiffiffiffiffiffiffiffiffiffiffi
b 0ðuÞ

q
strongly in LqðW� ð0;TÞÞ

for any q A ½1;þyÞ. Here we particularly take q > 2.
For any j A Lyð0;T ;LrðWÞÞ with r A ð1;þyÞ su‰ciently large (e.g., r ¼

2q=ðq� 2Þ > 2), it follows thatðT
0

ð
W

j

ffiffiffiffiffiffiffiffiffiffiffiffi
b 0ðztÞ

q
qtut dxdt !

ðT
0

ð
W

j

ffiffiffiffiffiffiffiffiffiffiffi
b 0ðuÞ

q
qtu dxdt
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as t ! 0. Hence we deduce thatffiffiffiffiffiffiffiffiffiffiffiffi
b 0ðztÞ

q
qtut !

ffiffiffiffiffiffiffiffiffiffiffi
b 0ðuÞ

q
qtu weakly in L1ð0;T ;Lr 0 ðWÞÞ;

where r 0 :¼ r=ðr� 1Þ < 2. Moreover, note by (3.9) thatðT
0

ð
W

b 0ðztÞjqtutj2 dxdtaCd

ðT
0

kqtutk2L2ðWÞ dtaC;

which implies ffiffiffiffiffiffiffiffiffiffiffiffi
b 0ðztÞ

q
qtut !

ffiffiffiffiffiffiffiffiffiffiffi
b 0ðuÞ

q
qtu weakly in L2ð0;T ;L2ðWÞÞ:

From the weak lower semicontinuity of a norm, we conclude that

lim inf
t!0

ðT
0

ð
W

b 0ðztÞjqtutj2 dxdtb
ðT
0

ð
W

b 0ðuÞjqtuj2 dxdt ¼
ðT
0

ðqtbðuÞ; qtuÞL2ðWÞ dt;

which implies the desired assertion (3.29).
Now, we obtain

lim sup
t!0

ðT
0

ðxt; qtutÞL2ðWÞ dta

ðT
0

ðu; qtuÞL2ðWÞ dt�
l2

2
k‘uðTÞk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ

� m

ðT
0

kqtuk2L2ðWÞ dt�
ðT
0

ðqtbðuÞ; qtuÞL2ðWÞ dt

¼
ðT
0

ðuþ l2Du� mqtu� qtbðuÞ; qtuÞL2ðWÞ dt

¼ð3:27Þ
ðT
0

ðx; qtuÞL2ðWÞ dt;

which together with the maximal monotonicity of qI½0;þyÞ : L
2ðWÞ ! L2ðWÞ gives

qtub 0 a.e. in W� ð0;TÞ and x A qI½0;þyÞðqtuÞ (see Proposition A.1). The proof
is completed. r

Finally, let us derive an energy inequality to be used later. Recall (3.13)
and (3.25). Due to the weak star lower semicontinuity of a norm, we can obtain

ess supt A ð0;TÞ kxðtÞkLpðWÞ a kðl2Dfþ fÞ�kLpðWÞ if p A ½2;þyÞ;
kxkLyðW�ð0;TÞÞ a kðl2Dfþ fÞ�kLyðWÞ if p ¼ y;

(

if ðl2Dfþ fÞ� belongs to LpðWÞ for some p A ½2;þy�. Therefore we conclude
that

Theorem 3.8 (Solvability of ðPÞm). Let m > 0 and assume (3.1) and ðbÞd for
some constant d > 0. Then the Cauchy-Neumann problem ðPÞm ¼ fð2:14Þ; ð1:2Þ;
ð1:3Þg admits at least one strong solution ðu; xÞ satisfying

x A Lyð0;T ;LpðWÞÞ; ess sup
t A ð0;TÞ

kxðtÞkLpðWÞ a kðl2Dfþ fÞ�kLpðWÞð3:31Þ
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with p ¼ 2. In addition, if ðl2Dfþ fÞ� belongs to LqðWÞ for some q A ½2;þyÞ,
then (3.31) holds for any p A ½2; q�. If ðl2Dfþ fÞ� A LyðWÞ, then x belongs to
LyðW� ð0;TÞÞ, and it holds that

kxkLyðW�ð0;TÞÞ a kðl2Dfþ fÞ�kLyðWÞ:

Remark 3.9. In the case of (1.4) with a ¼ 0, by virtue of a scaling
argument, Theorem 3.8 also ensures the existence of a global (in time) solution
for (P) under the milder assumption (3.1). Furthermore, the non-increase of b 0

(see ðbÞd) is not used in the proof of Theorem 3.8.

4. Comparison principle for strictly increasing subsolutions

We first define the notions of a subsolution and a supersolution for (2.14)
and (2.7), respectively.

Definition 4.1 (Sub- and supersolution). For m > 0, a positive function
u A W 1;2ð0;T ;L2ðWÞÞ is called a subsolution of (2.14) if the following (i)–(iii) hold
true:

(i) bðuÞ A W 1;2ð0;T ;L2ðWÞÞ,
(ii) uð�; tÞ A H 2ðWÞ for a.e. t A ð0;TÞ,
(iii) qtuðx; tÞb 0 for a.e. ðx; tÞ A W� ð0;TÞ, and there exist xð�; tÞ A L2ðWÞ for

a.e. t A ð0;TÞ such that

mqtuþ qtbðuÞ þ xa l2Duþ u; x A qI½0;þyÞðqtuÞð4:1Þ
for a.e. ðx; tÞ A W� ð0;TÞ.

A positive function u A W 1;2ð0;T ;L2ðWÞÞ is called a supersolution of (2.14) if the
conditions (i)–(iii) hold with the inequality of (4.1) replaced by the inverse one,
i.e., mqtuþ qtbðuÞ þ xb l2Duþ u in W� ð0;TÞ.

A positive function u A Cð½0;T �;L2ðWÞÞ is called a subsolution of (2.7) if
the conditions (i)–(iii) are satisfied with m ¼ 0. The notion of a supersolution of
(2.7) is also analogously defined.

Let us next state a comparison principle for (2.14).

Theorem 4.2 (Comparison principle for (2.14)). Let m > 0 be fixed and
assume that

b is strictly increasing in ð0;yÞ:ð4:2Þ

Let u be a subsolution of (2.14) and let v be a supersolution of (2.14) such that
uðx; 0Þa vðx; 0Þ for a.e. x A W and qnua qnv for a.e. ðx; tÞ A qW� ð0;TÞ. Sup-
pose that

qtu > 0 a:e: in W� ð0;TÞ:ð4:3Þ
Then it holds that ua v for a.e. x A W and all t A ½0;T �.
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Proof. Set w ¼ u� v. By subtraction of equations, we have

mqtwþ qtbðuÞ � qtbðvÞ þ x� ha l2Dwþ w; x A qI½0;þyÞðqtuÞ; h A qI½0;þyÞðqtvÞ:

By assumption, we find that x1 0. Test it by z :¼ sgnðwÞ40 ¼ sgnðbðuÞ�
bðvÞÞ40b 0. Then we have

m
d

dt

ð
W

ðwÞþ dxþ d

dt

ð
W

ðbðuÞ � bðvÞÞþ dxþ
ð
W

�hz dxa

ð
W

ðwÞþ dx:

Here we used the fact that ð�Dw; zÞL2ðWÞ b 0 by qnwa 0 and the monotonicity of
the mapping s 7! sgnðsÞ40. Noting that �hzb 0, wðx; 0Þa 0 and bðuðx; 0ÞÞ�
bðvðx; 0ÞÞa 0 for a.e. x A W, we have

m

ð
W

ðwÞþðx; tÞ dxþ
ð
W

ðbðuÞ � bðvÞÞþðx; tÞ dxa
ð t
0

ð
W

ðwÞþðx; sÞ dxds:

By exploiting Gronwall’s inequality, we deduce that

m

ð
W

ðwÞþðx; tÞ dx1 0 for all t A ½0;T �;

which concludes that ua v for a.e. x A W and all t A ½0;T �. r

One can immediately obtain the following corollaries:

Corollary 4.3. Let m > 0 and assume in addition to (4.2) that f A L2ðWÞ
satisfies fb 0 a.e. in W. Then strictly increasing solutions u ¼ uðx; tÞ of ðPÞm are
unique.

Corollary 4.4. Let m > 0 and assume that ðbÞd holds and f A L2ðWÞ satisfies
fb d a.e. in W for some constant d > 0. Then any solution u ¼ uðx; tÞ of ðPÞm on
½0;þyÞ diverges to þy as t ! þy.

Proof. Let z be a solution of the Cauchy problem,

mz 0ðtÞ þ d

dt
bðzðtÞÞ ¼ zðtÞ for t > 0; zð0Þ ¼ z0 :¼ d:

Define a function Fm by

FmðzÞ ¼
ð z
z0

mþ b 0ðzÞ
z

dz for zb z0 > 0:

Then one can observe that

FmðzÞ < y; F 0
mðzÞ > 0 for all z A ½z0;þyÞ;

lim
z!þy

FmðzÞb lim
z!þy

ð z
z0

m

z
dz ¼ þy:
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Hence the inverse function F�1
m : ½0;þyÞ ! ½z0;þyÞ of t ¼ FmðzÞ exists, and

moreover, F�1
m ðtÞ is strictly increasing on ½0;þyÞ, F�1

m ð0Þ ¼ z0, and F�1
m ðtÞ !

þy as t ! þy.
Now, zðtÞ is explicitly written as

zðtÞ ¼ F�1
m ðtÞ for tb 0:

Moreover, since qtz > 0 and zðtÞ is uniform in W, z becomes a strictly increasing
(sub)solution of ðPÞm on ½0;þyÞ. Hence applying Theorem 4.2, we have

uðx; tÞb zðtÞ for a:e: x A W and all tb 0;

which implies the desired conclusion. r

The next theorem provides a comparison principle for (2.7), which will be
used to verify the blow-up in finite time of positive solutions for (P) in Section 5.

Theorem 4.5 (Comparison principle for (2.7)). Assume ðbÞd for some con-
stant d > 0 and let u be a subsolution of (2.7) and let v be a supersolution of
(2.7) such that da uðx; 0Þa vðx; 0Þ for a.e. x A W and qnua qnv for a.e. ðx; tÞ A
qW� ð0;TÞ. Suppose that

qtu > 0 a:e: in W� ð0;TÞ and kukLyðW�ð0;TÞÞ4kvkLyðW�ð0;TÞÞ aMð4:4Þ

for some constant Mb 0. Then it holds that ua v for a.e. x A W and all
t A ½0;T �.

Proof. Repeating the same argument as in the proof of Theorem 4.2, we
have ð

W

ðbðuÞ � bðvÞÞþðx; tÞ dxa
ð t
0

ð
W

ðwÞþðx; sÞ dxds for all t A ½0;T �;

where w ¼ u� v. Here letting z be a function defined as in the proof of
Theorem 4.2, we observe that

ðbðuÞ � bðvÞÞz ¼
ð1
0

b 0ðð1� yÞvþ yuÞðwÞþ dyb cMðwÞþ

for some constant cM > 0, which is given as the minimum of b 0 on ½d;M� by ðbÞd.
Thus it yields

ðwÞþ a
1

cM
ðbðuÞ � bðvÞÞz ¼ 1

cM
ðbðuÞ � bðvÞÞþ:

Therefore we obtainð
W

ðbðuÞ � bðvÞÞþðx; tÞ dxa
1

cM

ð t
0

ð
W

ðbðuÞ � bðvÞÞþðx; sÞ dxds for all t A ½0;T �;
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which implies ð
W

ðbðuÞ � bðvÞÞþðx; tÞ dx1 0 for all t A ½0;T �:

Thus ua v for a.e. x A W and all t A ½0;T �. r

We close this section by an immediate consequence of the theorem stated
above.

Corollary 4.6. Assume that ðbÞd holds and f A L2ðWÞ satisfies fb d a.e. in
W for some constant d > 0. Then bounded strictly increasing solutions of (P) are
unique.

5. Local solvability of (P) and finite time blow-up of solutions

This section is devoted to proving Theorem 2.1. Throughout this section,
we assume (2.11) and also suppose that b A C1ð½0;yÞÞ without any loss of gen-
erality as in §3.

To construct a solution of (P), we employ strong solutions ðum; xmÞ of ðPÞm on
½0;T � constructed in §3 as approximated solutions for (P). However, in contrast
with ðPÞm for m > 0, solutions of (P) may blow up in finite time (see an explicit
solution blowing up in finite time given by (5.2) below). So it is a key step to
establish a local (in time) estimate for um. To this end, we shall apply the
comparison principle (see Theorem 4.2) to um (as a subsolution) and an explicit
supersolution. However, in Theorem 4.2, subsolutions are supposed to be strictly
increasing (see (4.3)), and this assumption is somewhat restrictive to directly apply
the principle to um, whose time derivative may vanish. Hence it is crucial how to
apply the principle and obtain a local (in time) uniform estimate of um.

Lemma 5.1. For each M > kfkLyðWÞ, there exists TM > 0 independent of
m > 0 such that

da umðx; tÞaM for a:e: x A W and all t A ½0;TM �:

Proof. We start with constructing an explicit supersolution of (2.14). Let
z ¼ zðtÞ be a solution of the Cauchy problem of the following ODE:

d

dt
bðzðtÞÞ ¼ zðtÞ; zð0Þ ¼ z0 > 0:ð5:1Þ

Here as in the proof of Corollary 4.4, define a function F : ½z0;yÞ ! ½0; T̂Tðz0ÞÞ
by

FðzÞ :¼
ð z
z0

b 0ðzÞ
z

dz; T̂Tðz0Þ :¼
ðy
z0

b 0ðzÞ
z

A ð0;y�:
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Then z is explicitly given by

zðtÞ ¼ F�1ðtÞ for t A ½0; T̂Tðz0ÞÞ:ð5:2Þ
Here we remark that z solves (P) with f1 z0. We find that z 0ðtÞ > 0 for all t
and zðtÞ ! þy as t % T̂Tðz0Þ. Moreover, since z is constant in W and
qI½0;þyÞðz 0ðtÞÞ ¼ f0g for t > 0, it follows that

mqtzþ qtbðzÞ þ qI½0;þyÞðqtzÞb l2Dzþ z in W� ð0; T̂Tðz0ÞÞ;

qnz ¼ 0 on qW� ð0; T̂Tðz0ÞÞ:

Hence z is a supersolution of (2.14) on ½0;S� for any S A ð0; T̂Tðz0ÞÞ.
Let ðum; xmÞ be a strong solution of ðPÞm and define a positive function

ûum A W 1;2ð0;T ;L2ðWÞÞ by

ûum :¼ um þ tþ k;

where kb 0 is a constant to be determined later. Then we observe that qnûum ¼ 0
on qW� ð0;TÞ and qtûum ¼ qtum þ 1 > 0 in W� ð0;TÞ, which implies qI½0;þyÞðqtûumÞ
¼ f0g. Moreover, we note that

qtbðûumÞ ¼ b 0ðûumÞqtûum a b 0ðumÞðqtum þ 1Þa b 0ðumÞqtum þ Cd

by the non-increase and the boundedness of b 0 (see ðbÞd). Therefore we have

mqtûum þ qtbðûumÞa mqtum þ b 0ðumÞqtum þ mþ Cd

¼ l2Dum þ um � xm þ mþ Cd

a l2Dûum þ ûum � ðk� kxmkLyðW�ð0;TÞÞ � m� CdÞ:

Here we recall by Theorem 3.8 and (2.11) that

kxmkLyðW�ð0;TÞÞ a kðl2Dfþ fÞ�kLyðWÞ:

Hence choosing k ¼ kðl2Dfþ fÞ�kLyðWÞ þ 1þ Cd, we conclude that, for any

m A ð0; 1Þ, ûum is a subsolution of (2.14) such that qtûum > 0 in W� ð0;TÞ.
Let us take z0 :¼ kfkLyðWÞ þ kb ûumð�; 0Þ and apply Theorem 4.2 to the

strictly increasing subsolution ûum and the supersolution z. Then we obtain

ûumðx; tÞa zðtÞ for all t A ½0; T̂Tðz0ÞÞ;
which implies

umðx; tÞa zðtÞ � t� k for all t A ½0; T̂Tðz0ÞÞ:
Therefore for each M > kfkLyðWÞ, one can choose TM A ð0; T̂Tðz0ÞÞ such that
zðTMÞ ¼ M þ k, and hence, umðx; tÞaM for all t A ½0;TM �. r

Now, fix M ¼ kfkLyðWÞ þ 1 and take T0 :¼ TM > 0 such that

sup
t A ½0;T0�

kumðtÞkLyðWÞ aM:ð5:3Þ
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Remark 5.2. One may also obtain

T0 ¼ lðkfkLyðWÞ þ kðl2Dfþ fÞ�kLyðWÞ þ Cd þ 1Þð5:4Þ

with a strictly decreasing positive function lð�Þ depending only on the choice of
b 0. Indeed, let z be a solution of (5.1) with zð0Þ ¼ z0 and let l ¼ lðz0Þ > 0 be
such that zðlðz0ÞÞ ¼ z0 þ 1. Then by (5.1),

lðz0Þ ¼
ð z0þ1

z0

b 0ðzÞ
z

dz;

which implies

l 0ðz0Þ ¼
b 0ðz0 þ 1Þ
z0 þ 1

� b 0ðz0Þ
z0

:

Since b 0 is non-increasing and positive (see ðbÞd), l is strictly decreasing in z0.
Hence by the choice of T0 in (5.3), putting z0 ¼ kfkLyðWÞ þ k, we obtain (5.4).

Then we are in position to derive uniform estimates.

Lemma 5.3. There exist constants Cb 0 and cM > 0 independent of m > 0
such that

m

ðT0

0

kqtumk2L2ðWÞ dtþ cM

ðT0

0

kqtumk2L2ðWÞ dtþ
l2

2
sup

t A ½0;T0�
k‘umðtÞk2L2ðWÞ aC;ð5:5Þ

sup
t A ½0;T0�

kbðumð�; tÞÞkLyðWÞ aC;ð5:6Þ

kxmkLyðW�ð0;T0ÞÞ a kðl2Dfþ fÞ�kLyðWÞ;ð5:7Þ ðT0

0

kqtbðumÞk2L2ðWÞ dtaC;ð5:8Þ
ðT0

0

kDumk2L2ðWÞ dtaC:ð5:9Þ

Proof. Test (2.14) by qtum to get

mkqtumk2L2ðWÞ þ ðqtbðumÞ; qtumÞL2ðWÞ þ
d

dt

l2

2
k‘umk2L2ðWÞ �

1

2
kumk2L2ðWÞ

 !
¼ 0;ð5:10Þ

from the fact that xmqtum ¼ 0 by xm A qI½0;þyÞðqtumÞ. Here by virtue of (5.3), we
find that

ðqtbðumÞ; qtumÞL2ðWÞ ¼
ð
W

b 0ðumÞjqtumj2 dxb cM

ð
W

jqtumj2 dx;

722 goro akagi



where cM :¼ inf s A ½d;M� b
0ðsÞ ð¼ b 0ðMÞÞ > 0 by ðbÞd. Hence integrating both

sides of (5.10) over ð0; tÞ, we deduce that

m

ð t
0

kqtumk2L2ðWÞ dtþ cM

ð t
0

kqtumk2L2ðWÞ dtþ
l2

2
k‘umðtÞk2L2ðWÞ

a
1

2
kumðtÞk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ a

M 2jWj
2

þ l2

2
k‘fk2L2ðWÞ

for any t A ½0;T0�. Thus (5.5) follows. Moreover, it follows from (2.10) and
(5.3) that

sup
t A ½0;T0�

kbðumð�; tÞÞkLyðWÞ aCdM þ jbðdÞj;

which gives (5.6). Moreover, (5.7) has already been derived by Theorem 3.8 and
(2.11). Estimate (5.8) follows from (5.5) and the fact that

jqtbðumÞj ¼ jb 0ðumÞj jqtumjaCdjqtumj:
Finally, by comparison, we get (5.9). r

Let us proceed to passing to the limit as m ! 0.

Lemma 5.4. By taking a (non-relabeled) subsequence of m ! 0, one can
derive

mqtum ! 0 strongly in L2ð0;T0;L
2ðWÞÞ;ð5:11Þ

um ! u weakly star in Lyð0;T0;H
1ðWÞÞ;ð5:12Þ

weakly star in LyðW� ð0;T0ÞÞ;ð5:13Þ

weakly in W 1;2ð0;T0;L
2ðWÞÞ;ð5:14Þ

strongly in Cð½0;T0�;L2ðWÞÞ;ð5:15Þ
xm ! x weakly star in LyðW� ð0;T0ÞÞ;ð5:16Þ

bðumÞ ! v weakly star in LyðW� ð0;T0ÞÞ;ð5:17Þ

qtbðumÞ ! qtv weakly in L2ð0;T0;L
2ðWÞÞ;ð5:18Þ

Dum ! Du weakly in L2ð0;T0;L
2ðWÞÞð5:19Þ

for some u A W 1;2ð0;T0;L
2ðWÞÞVLyð0;T0;H

1ðWÞÞVLyðW� ð0;T0ÞÞ, v A
W 1;2ð0;T0;L

2ðWÞÞVLyðW� ð0;T0ÞÞ and x A LyðW� ð0;T0ÞÞ. In particular,
one has uð0Þ ¼ f. Moreover, it holds that v ¼ bðuÞ and qtbðuÞ þ x ¼ l2Duþ u.

Proof. The weak (star) convergences follow immediately from the uniform
estimates established so far. Since

ffiffiffi
m

p
qtum is bounded in L2ð0;T0;L

2ðWÞÞ, (5.11)
follows. Moreover, (5.15) can be verified by using Ascoli’s compactness lemma
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(see, e.g., [12]) along with the compact embedding H 1ðWÞ ,! L2ðWÞ. Then one
can also assure the initial condition uð0Þ ¼ f. Finally, the demiclosedness of
maximal monotone operators together with (5.15) and (5.17) yields v ¼ bðuÞ,
and hence, qtbðuÞ þ x ¼ l2Duþ u. r

We also deduce that u A Cwð½0;T0�;H 1ðWÞÞ, since u belongs to Cð½0;T0�;
L2ðWÞÞVLyð0;T0;H

1ðWÞÞ. Furthermore, by (5.3) and (5.15), one has

umðtÞ ! uðtÞ weakly star in LyðWÞ for all t A ½0;T0�:

It follows that

kuðtÞkLyðWÞ a lim inf
m!0

kumðtÞkLyðWÞ aM for all t A ½0;T0�;

which along with the fact that u A Cð½0;T0�;L2ðWÞÞ implies the continuity of
t 7! uðtÞ in the weak star topology of LyðWÞ, that is, u A Cw�ð½0;T0�;LyðWÞÞ.
Finally, we identify the limit x of xm as m ! 0.

Lemma 5.5. It holds that qtub 0 a.e. in W� ð0;T0Þ and x A qI½0;þyÞðqtuÞ.

Proof. We use Minty’s trick again to prove this lemma. Observe thatðT0

0

ðxm; qtumÞL2ðWÞ dt ¼
ðT0

0

ðl2Dum þ um � mqtum � qtbðumÞ; qtumÞL2ðWÞ dt

¼ � l2

2
k‘umðT0Þk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ þ

ðT0

0

ðum; qtumÞL2ðWÞ dt

� m

ðT0

0

kqtumk2L2ðWÞ dt�
ðT0

0

ðqtbðumÞ; qtumÞL2ðWÞ dt:

Here we also remark that

lim inf
m!0

ðT0

0

ðqtbðumÞ; qtumÞL2ðWÞ dtb

ðT0

0

ðqtbðuÞ; qtuÞL2ðWÞ dt

by verifying that
ffiffiffiffiffiffiffiffiffiffiffiffi
b0ðumÞ

q
qtum !

ffiffiffiffiffiffiffiffiffiffi
b0ðuÞ

p
qtu weakly in L2ð0;T0;L

2ðWÞÞ (see the

proof of Lemma 3.7). Finally, from (5.14), (5.15) and the weak lower semi-
continuity of norms, we conclude that

lim sup
m!0

ðT0

0

ðxm; qtumÞL2ðWÞ dta� l2

2
k‘uðT0Þk2L2ðWÞ þ

l2

2
k‘fk2L2ðWÞ

þ
ðT0

0

ðu; qtuÞL2ðWÞ dt�
ðT0

0

ðqtbðuÞ; qtuÞL2ðWÞ dt

¼
ðT0

0

ðx; qtuÞL2ðWÞ dt;
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whence follows qtub 0 a.e. in W� ð0;T0Þ and x A qI½0;þyÞðqtuÞ. This completes
the proof. r

By Remark 2.4 along with (5.7) and (5.16), one can also derive the inequality
(2.12). Thus we have proved the existence of a local (in time) strong solution
for (P).

Let us finally verify the finite time blow-up of any solution u ¼ uðx; tÞ to (P)
for any data f A LyðWÞ satisfying fb d > 0 a.e. in W. To this end, suppose on
the contrary that Tmax > T̂TðdÞ, i.e., for some Td > T̂TðdÞ, one can extend u onto
½0;Td� such that

Md :¼ sup
t A ½0;Td�

kuðtÞkLyðWÞ ¼ kuðTdÞkLyðWÞ < þy;ð5:20Þ

where u stands for the extended solution. We recall the explicit solution z ¼ zðtÞ
on ½0; T̂TðdÞÞ of the ODE (5.1) with z0 ¼ d > 0. Then z is a strictly increasing
(sub)solution of (P) on ½0; T̂TðdÞÞ. For each M > d, one can take tM A ð0; T̂TðdÞÞ
such that zðtÞ < M for all t A ½0; tMÞ and zðtMÞ ¼ M, since zðtÞ diverges to þy
as t ! T̂TðdÞ. Set Q :¼ M4Md < þy. We observe that

jzðtÞjaQ and kuðtÞkLyðWÞ aQ for a:e: t A ð0; tMÞ:

Due to Theorem 4.5, we have

zðtÞa uðx; tÞ for a:e: x A W and all t A ½0; tM �:

Now, letting M ! þy, we infer that tM % T̂TðdÞ, and therefore,

zðtÞa uðx; tÞ for a:e: x A W and t A ½0; T̂TðdÞÞ:

Hence we obtain

lim
t%T̂TðdÞ

ess inf
x AW

juðx; tÞj ¼ þy;

which contradicts (5.20). Thus we obtain Tmax a T̂TðdÞ. From the definition of
Tmax and the local existence part, one can prove (2.13) by recalling (5.4) and
(2.12). Thus we have proved Theorem 2.1. r
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Appendix A. Convex analysis

Here we briefly recall several notions and propositions related to convex
analysis for the convenience of the reader.

Let X be a Banach space with norm k � kX and let j : X ! ð�y;þy� be a
proper (i.e., j2þy), lower semicontinuous convex functional with e¤ective do-
main DðjÞ :¼ fu A X : jðuÞ < þyg. The subdi¤erential operator qXj : X ! 2X �

(or simply denoted by qj) is formulated as

qjðuÞ :¼ fx A X � : jðvÞ � jðuÞb hx; v� uiX for all v A Xg;ðA:1Þ

where h� ; �iX is the duality pairing between X and X �, with domain DðqjÞ :¼
fu A DðjÞ : qjðuÞ0jg. It is well known that qj has a maximal monotone graph
in X � X �. In particular, if X is a Hilbert space whose dual space is identified
with itself (e.g., X ¼ L2ðWÞ), then h� ; �iX can be replaced by an inner product
ð� ; �ÞX . Furthermore, if c is a convex functional on X of class C 1 (in the sense
of Fréchet derivatives), then

qðjþ cÞ ¼ qjþ c 0;

where c 0 : X ! X � is the Fréchet derivative of c.
The following proposition is useful to identify the (weak) limit of a sequence

in the graph of a nonlinear maximal monotone operator.

Proposition A.1 (Demiclosedness of maximal monotone operators). Let
A : X ! X � be a (possibly multivalued) maximal monotone operator. Let ½un; xn�
be in the graph of A such that un ! u weakly in X and xn ! x weakly in X �.
Suppose that

lim sup
n!þy

hxn; uniX a hx; uiX :

Then ½u; x� belongs to the graph of A, and moreover, it holds that

lim
n!þy

hxn; uniX ¼ hx; uiX :

Let W be a bounded domain in RN . Let u A L2ðWÞ and let a be a maximal
monotone graph in R2. Since every maximal monotone graph in R2 becomes
cyclic monotone, one can take a proper lower semicontinuous convex potential
y : R ! ð�y;þy� such that qy ¼ a.

Proposition A.2 ([6, 5]). Define Y : L2ðWÞ ! ð�y;þy� by

YðuÞ :¼

ð
W

yðuðxÞÞ dx if u A L2ðWÞ and yðuð�ÞÞ A L1ðWÞ;

þy otherwise:

8<
:

Then the following properties are all satisfied:
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(i) Y is proper, lower semicontinuous and convex in L2ðWÞ.
(ii) For all f ; u A L2ðWÞ, it follows that f A qL2ðWÞYðuÞ if and only if f ðxÞ A

qRyðuðxÞÞ for a.e. x A W.
(iii) Assume that u A Dð�DÞ ¼ fu A H 2ðWÞ : qnu ¼ 0 a:e: on qWg. It then

holds that

�
ð
W

DuðxÞhðxÞ dxb 0 for any section h A qL2ðWÞYðuÞ:
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