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Abstract

This paper is concerned with a 2nth-order nonlinear di¤erence equation. By

making use of the critical point method, we establish various sets of su‰cient conditions

for the nonexistence and existence of solutions for Dirichlet boundary value problem and

give some new results. The existing results are generalized and significantly comple-

mented.

1. Introduction

The theory of nonlinear di¤erence equations has been widely used to study
discrete models appearing in many fields such as computer science, economics,
neural networks, ecology, cybernetics, etc. For the general background of
di¤erence equations, one can refer to monographs [1, 29, 36]. Since the last
decade, there has been much progress on the qualitative properties of di¤erence
equations, which included results on stability and attractivity and results on
oscillation and other topics, see [9–14, 16–18, 23–25, 28, 30, 35, 41–43].

Below N, Z and R denote the sets of all natural numbers, integers and real
numbers respectively. k is a positive integer. For any a; b A Z, define ZðaÞ ¼
fa; aþ 1; . . .g, Zða; bÞ ¼ fa; aþ 1; . . . ; bg when a < b. Besides, * denotes the
transpose of a vector.

The present paper considers the 2nth-order nonlinear di¤erence equation

Dnðgi�nþ1D
nui�nÞ ¼ ð�1Þnf ði; uiþ1; ui; ui�1Þ; n A Zð1Þ; i A Zð1; kÞ;ð1:1Þ
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with boundary value conditions

u1�n ¼ u2�n ¼ � � � ¼ u0 ¼ 0; ukþ1 ¼ ukþ2 ¼ � � � ¼ ukþn ¼ 0;ð1:2Þ
where D is the forward di¤erence operator Dui ¼ uiþ1 � ui, D

nui ¼ Dn�1ðDuiÞ, gi is
nonzero and real valued for each i A Zð2� n; k þ 1Þ, f A CðR4;RÞ.

We may think of (1.1) as a discrete analogue of the following 2nth-order
functional di¤erential equation

d n

dtn
gðtÞ d

nuðtÞ
dtn

� �
¼ ð�1Þnf ðt; uðtþ 1Þ; uðtÞ; uðt� 1ÞÞ; t A ½a; b�;ð1:3Þ

with boundary value conditions

uðaÞ ¼ u 0ðaÞ ¼ � � � ¼ uðn�1ÞðaÞ ¼ 0; uðbÞ ¼ u 0ðbÞ ¼ � � � ¼ uðn�1ÞðbÞ ¼ 0:ð1:4Þ
Equations similar in structure to (1.3) arise in the study of the existence of
solitary waves [38] of lattice di¤erential equations and periodic solutions [20, 22]
of functional di¤erential equations.

In recent years, the study of boundary value problems for di¤erential equations
develops at relatively rapid rate. By using various methods and techniques, such
as Schauder fixed point theory, topological degree theory, coincidence degree
theory, a series of existence results of nontrivial solutions for di¤erential equations
have been obtained in literatures, we refer to [2, 5, 8, 26, 39, 40]. And critical
point theory is also an important tool to deal with problems on di¤erential
equations [15, 21, 31, 34]. Only since 2003, critical point theory has been
employed to establish su‰cient conditions on the existence of periodic solutions
of di¤erence equations. By using the critical point theory, Guo and Yu [23–25]
and Shi et al. [37] have successfully proved the existence of periodic solutions
of second-order nonlinear di¤erence equations. We also refer to [41, 42] for the
discrete boundary value problems. Compared to first-order or second-order
di¤erence equations, the study of higher-order equations, and in particular,
2nth-order equations, has received considerably less attention (see, for example,
[6, 10–14, 16–19, 27, 30, 43] and the references contained therein). Ahlbrandt
and Peterson [3] in 1994 studied the 2nth-order di¤erence equation of the form,Xn

j¼0

D jðgjði � jÞD juði � jÞÞ ¼ 0ð1:5Þ

in the context of the discrete calculus of variations, and Peil and Peterson
[33] studied the asymptotic behavior of solutions of (1.5) with gjðiÞ1 0 for
1a ja n� 1. In 1998, Anderson [4] considered (1.5) for i A ZðaÞ, and obtained
a formulation of generalized zeros and ðn; nÞ-disconjugacy for (1.5). Migda [32]
in 2004 studied an mth-order linear di¤erence equation. In 2007, Cai and Yu [7]
have obtained some criteria for the existence of periodic solutions of a 2nth-order
di¤erence equation

Dnðgi�nD
nui�nÞ þ f ði; uiÞ ¼ 0; n A Zð3Þ; i A Z;ð1:6Þ

for the case where f grows superlinearly at both 0 and y.
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The boundary value problem (BVP) for determining the existence of solutions
of di¤erence equations has been a very active area of research in the last twenty
years, and for surveys of recent results, we refer the reader to the monographs
by Agarwal et al. [1, 29, 36]. However, to the best of our knowledge, the results
on solutions to boundary value problems of higher-order nonlinear di¤erence
equations are very scarce in the literature. Furthermore, since (1.1) contains
both advance and retardation, there are very few manuscripts dealing with this
subject. As a result, the goal of this paper is to fill the gap in this area.

Motivated by the above results, we use the critical point theory to give some
su‰cient conditions for the nonexistence and existence of solutions for the BVP
(1.1) with (1.2). We shall study the superlinear and sublinear cases. The main
idea in this paper is to transfer the existence of the BVP (1.1) with (1.2) into the
existence of the critical points of some functional. The proof is based on the
notable Mountain Pass Lemma in combination with variational technique. The
purpose of this paper is two-folded. On one hand, we shall further demonstrate
the powerfulness of critical point theory in the study of solutions for boundary
value problems of di¤erence equations. On the other hand, we shall complement
existing results. The motivation for the present work stems from the recent
papers in [12, 15].

Let

g ¼ maxfgi : i A Zð2� n; k þ 1Þg; g ¼ minfgi : i A Zð2� n; k þ 1Þg:
Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:
ðgÞ for any i A Zð2� n; k þ 1Þ, gi < 0;
ðF1Þ there exists a functional Fði; �Þ A C 1ðZ � R2;RÞ with Fð0; �Þ ¼ 0 such that

qF ði � 1; v2; v3Þ
qv2

þ qF ði; v1; v2Þ
qv2

¼ f ði; v1; v2; v3Þ; Ei A Zð1; kÞ;

ðF2Þ there exists a constant M0 > 0 such that for all ði; v1; v2Þ A Zð1; kÞ � R2

qFði; v1; v2Þ
qv1

����
����aM0;

qF ði; v1; v2Þ
qv2

����
����aM0:

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.1. Assumption ðF2Þ implies that there exists a constant M1 > 0
such that

ðF 0
2Þ jF ði; v1; v2ÞjaM1 þM0ðjv1j þ jv2jÞ, Eði; v1; v2Þ A Zð1; kÞ � R2:

Theorem 1.2. Suppose that ðF1Þ and the following hypotheses are satisfied:
ðg 0Þ for any i A Zð2� n; k þ 1Þ, gi > 0;
ðF3Þ there exists a functional F ði; �Þ A C1ðZ � R2;RÞ such that

lim
r!0

Fði; v1; v2Þ
r2

¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
; Ei A Zð1; kÞ;
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ðF4Þ there exists a constant b > 2 such that for any i A Zð1; kÞ,

0 <
qF ði; v1; v2Þ

qv1
v1 þ

qF ði; v1; v2Þ
qv2

v2 < bFði; v1; v2Þ; Eðv1; v2Þ0 0:

Then the BVP (1.1) with (1.2) possesses at least two nontrivial solutions.

Remark 1.2. Assumption ðF4Þ implies that there exist constants a1 > 0 and
a2 > 0 such that

ðF 0
4Þ Fði; v1; v2Þ > a1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
Þb � a2, Ei A Zð1; kÞ:

Theorem 1.3. Suppose that ðg 0Þ, ðF1Þ and the following assumption are
satisfied:

ðF5Þ there exist constants R > 0 and 1 < a < 2 such that for i A Zð1; kÞ andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
bR,

0 <
qFði; v1; v2Þ

qv1
v1 þ

qF ði; v1; v2Þ
qv2

v2 a aFði; v1; v2Þ:

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.3. Assumption ðF5Þ implies that for each i A Zð1; kÞ there exist
constants a3 > 0 and a4 > 0 such that

ðF 0
5Þ Fði; v1; v2Þa a3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
Þa þ a4, Eði; v1; v2Þ A Zð1; kÞ � R2:

Theorem 1.4. Suppose that ðgÞ, ðF1Þ and the following assumption are
satisfied:

ðF6Þ v2 f ði; v1; v2; v3Þ > 0, for v2 0 0, Ei A Zð1; kÞ.
Then the BVP (1.1) with (1.2) has no nontrivial solutions.

Remark 1.4. In the existing literature, results on the nonexistence of solu-
tions of discrete boundary value problems are very scarce. Hence, Theorem 1.4
complements existing ones.

The remainder of this paper is organized as follows. First, in Section 2, we
shall establish the variational framework for the BVP (1.1) with (1.2) and transfer
the problem of the existence of the BVP (1.1) with (1.2) into that of the existence
of critical points of the corresponding functional. Some related fundamental
results will also be recalled. Then, in Section 3, we shall complete the proof
of the results by using the critical point method. Finally, in Section 4, we shall
give three examples to illustrate the main results.

About the basic knowledge for variational methods, we refer the reader to
[31, 34, 44].

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corre-
sponding variational framework for the BVP (1.1) with (1.2) and give some

495discrete dirichlet boundary value problem



lemmas which will be of fundamental importance in proving our main results.
First, we state some basic notations.

Let Rk be the real Euclidean space with dimension k. Define the inner
product on Rk as follows:

hu; vi ¼
Xk
j¼1

ujvj; Eu; v A Rk;ð2:1Þ

by which the norm k � k can be induced by

kuk ¼
Xk
j¼1

u2j

 !1=2
; Eu A Rk:ð2:2Þ

On the other hand, we define the norm k � ks on Rk as follows:

kuks ¼
Xk
j¼1

jujjs
 !1=s

;ð2:3Þ

for all u A Rk and s > 1.
Since kuks and kuk2 are equivalent, there exist constants c1, c2 such that

c2 b c1 > 0, and

c1kuk2 a kuks a c2kuk2; Eu A Rk:ð2:4Þ

Clearly, kuk ¼ kuk2. For the BVP (1.1) with (1.2), consider the functional

J defined on Rk as follows:

JðuÞ ¼ 1

2

Xk
i¼1�n

giþ1ðDnuiÞ2 �
Xk
i¼1

Fði; uiþ1; uiÞ; Eu ¼ ðu1; u2; . . . ; ukÞ� A Rk;ð2:5Þ

where

qF ði � 1; v2; v3Þ
qv2

þ qF ði; v1; v2Þ
qv2

¼ f ði; v1; v2; v3Þ;

u1�n ¼ u2�n ¼ � � � ¼ u0 ¼ 0; ukþ1 ¼ ukþ2 ¼ � � � ¼ ukþn ¼ 0:

It is easy to see that J A C1ðRk;RÞ and for any u ¼ fuigk
i¼1 ¼ ðu1; u2; . . . ; ukÞ�,

by using u1�n ¼ u2�n ¼ � � � ¼ u0 ¼ 0, ukþ1 ¼ ukþ2 ¼ � � � ¼ ukþn ¼ 0, we can com-
pute the partial derivative as

qJ

qui
¼ ð�1ÞnDnðgi�nþ1D

nui�nÞ � f ði; uiþ1; ui; ui�1Þ; Ei A Zð1; kÞ:

Thus, u is a critical point of J on Rk if and only if

Dnðgi�nþ1D
nui�nÞ ¼ ð�1Þnf ði; uiþ1; ui; ui�1Þ; Ei A Zð1; kÞ:
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We reduce the existence of the BVP (1.1) with (1.2) to the existence of critical
points of J on Rk. That is, the functional J is just the variational framework
of the BVP (1.1) with (1.2).

Let D be the ðk þ nÞ � ðk þ nÞ matrix defined by

D ¼

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � 2 �1

0 0 0 � � � �1 2

0
BBBBBBBB@

1
CCCCCCCCA
:

Clearly, D is positive definite. Let l1�n; l2�n; . . . ; lk be the eigenvalues of
D. Applying matrix theory, we know lj > 0, j ¼ 1� n; 2� n; . . . ; k. Without
loss of generality, we may assume that

0 < l1�n a l2�n a � � �a lk:ð2:6Þ

Let E be a real Banach space, J A C1ðE;RÞ, i.e., J is a continuously Fréchet-
di¤erentiable functional defined on E. J is said to satisfy the Palais-Smale
condition (P.S. condition for short) if any sequence fuðlÞgHE for which fJðuðlÞÞg
is bounded and J 0ðuðlÞÞ ! 0 ðl ! yÞ possesses a convergent subsequence in E.

Let Br denote the open ball in E about 0 of radius r and let qBr denote its
boundary.

Lemma 2.1 (Mountain Pass Lemma [34]). Let E be a real Banach space and
J A C1ðE;RÞ satisfy the P.S. condition. If Jð0Þ ¼ 0 and

ðJ1Þ there exist constants r, a > 0 such that JjqBr
b a, and

ðJ2Þ there exists e A EnBr such that JðeÞa 0.
Then J possesses a critical value cb a given by

c ¼ inf
g AG

max
s A ½0;1�

JðgðsÞÞ;ð2:7Þ

where

G ¼ fg A Cð½0; 1�;EÞ j gð0Þ ¼ 0; gð1Þ ¼ eg:ð2:8Þ

Lemma 2.2. Suppose that ðg 0Þ, ðF1Þ, ðF3Þ and ðF4Þ are satisfied. Then the
functional J satisfies the P.S. condition.

Proof. Let uðlÞ A Rk, l A Zð1Þ be such that fJðuðlÞÞg is bounded. Then
there exists a positive constant M2 such that

�M2 a JðuðlÞÞaM2; El A N:

By ðF 0
4Þ, we have
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�M2 a JðuðlÞÞ ¼ 1

2

Xk
i¼1�n

giþ1ðDnu
ðlÞ
i Þ2 �

Xk
i¼1

F ði; uðlÞiþ1; u
ðlÞ
i Þ

a
g

2
ðxðlÞÞ�DxðlÞ � a1

Xk
i¼1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðlÞiþ1Þ

2 þ ðuðlÞi Þ2
q

�b þ a2k

a
g

2
lkkxðlÞk2 � a1c

b
1kuðlÞk

b þ a2k;

where xðlÞ ¼ ðDn�1u
ðlÞ
1�n;D

n�1u
ðlÞ
2�n; . . . ;D

n�1u
ðlÞ
k Þ�. Since

kxðlÞk2 ¼
Xk
i¼1�n

ðDn�2u
ðlÞ
iþ1 � Dn�2u

ðlÞ
i Þ2 a lk

Xk
i¼1�n

ðDn�2u
ðlÞ
i Þ2 a ln�1

k kuðlÞk2;

we have

JðuðlÞÞa g

2
ln
kkuðlÞk

2 � a1c
b
1 kuðlÞk

b þ a2k:

That is,

a1c
b
1kuðlÞk

b � g

2
ln
kkuðlÞk

2
aM2 þ a2k:

Since b > 2, there exists a constant M3 > 0 such that

kuðlÞkaM3; El A N:

Therefore, fuðlÞg is bounded on Rk. As a consequence, fuðlÞg possesses a con-
vergence subsequence in Rk. Thus the P.S. condition is verified. r

3. Proof of the main results

In this Section, we shall prove our main results by using the critical point
theory.

3.1. Proof of Theorem 1.1

Proof. By ðF 0
2Þ, for any u ¼ ðu1; u2; . . . ; ukÞ� A Rk, we have

JðuÞ ¼ 1

2

Xk
i¼1�n

giþ1ðDnuiÞ2 �
Xk
i¼1

F ði; uiþ1; uiÞ

a
g

2
x�DxþM0

Xk
i¼1

ðjuiþ1j þ juijÞ þM1k

a
g

2
l1�nkxk2 þ 2M0

Xk
i¼1

juij þM1k;
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where x ¼ ðDn�1u1�n;D
n�1u2�n; . . . ;D

n�1ukÞ�. Since

kxk2 ¼
Xk
i¼1�n

ðDn�2uiþ1 � Dn�2uiÞ2 b l1�n

Xk
i¼1�n

ðDn�2uiÞ2 b ln�1
1�nkuk

2;

we have

JðuÞa g

2
ln
1�nkuk

2 þ 2M0

ffiffiffi
k

p
kuk þM1k ! �y as kuk ! þy:

The above inequality means that �JðuÞ is coercive. By the continuity of JðuÞ, J
attains its maximum at some point, and we denote it �uu, that is,

Jð�uuÞ ¼ maxfJðuÞ j u A Rkg:

Clearly, �uu is a critical point of the functional J. This completes the proof of
Theorem 1.1. r

3.2. Proof of Theorem 1.2

Proof. By ðF3Þ, for any e ¼
g

4
ln
1�n (l1�n can be referred to (2.6)), there

exists r > 0, such that

jF ði; v1; v2Þja
g

4
ln
1�nðv21 þ v22Þ; Ei A Zð1; kÞ;

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
a

ffiffiffi
2

p
r.

For any u ¼ ðu1; u2; . . . ; ukÞ� A Rk and kuka r, we have juija r, i A Zð1; kÞ.
From the proof of the Theorem 1.1, for any u A Rk,

JðuÞ ¼ 1

2

Xk
i¼1�n

giþ1ðDnuiÞ2 �
Xk
i¼1

F ði; uiþ1; uiÞ

b
g

2
ln
1�nkuk

2 �
g

4
ln
1�n

Xk
i¼1

ðu2iþ1 þ u2i Þ

b
g

2
ln
1�nkuk

2 �
g

4
ln
1�nkuk

2

¼
g

4
ln
1�nkuk

2:

Take a ¼
g

4
ln
1�n r

2 > 0: Therefore,

JðuÞb a > 0; Eu A qBr:

At the same time, we have also proved that there exist constants a > 0 and
r > 0 such that JjqBr

b a. That is to say, J satisfies the condition ðJ1Þ of the
Mountain Pass Lemma.
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For our setting, clearly Jð0Þ ¼ 0. In order to exploit the Mountain Pass
Lemma in critical point theory, we need to verify all other conditions of the
Mountain Pass Lemma. By Lemma 2.2, J satisfies the P.S. condition in Lemma
2.2. So it su‰ces to verify the condition ðJ2Þ.

From the proof of the P.S. condition, we know

JðuÞa g

2
ln
kkuk

2 � a1c
b
1kuk

b þ a2k:

Since b > 2, we can choose u large enough to ensure that JðuÞ < 0.
By the Mountain Pass Lemma, J possesses a critical value cb a > 0, where

c ¼ inf
h AG

sup
s A ½0;1�

JðhðsÞÞ;

and

G ¼ fh A Cð½0; 1�;RkÞ j hð0Þ ¼ 0; hð1Þ ¼ ug:

Let ~uu A Rk be a critical point associated to the critical value c of J, i.e.,
Jð~uuÞ ¼ c. Similar to the proof of the P.S. condition, we know that there exists
ûu A Rk such that

JðûuÞ ¼ cmax ¼ max
s A ½0;1�

JðhðsÞÞ:

Clearly, ûu0 0. If ~uu0 ûu, then the conclusion of Theorem 1.2 holds.
Otherwise, ~uu ¼ ûu. Then c ¼ Jð~uuÞ ¼ cmax ¼ maxs A ½0;1� JðhðsÞÞ. That is,

sup
u ARk

JðuÞ ¼ inf
h AG

sup
s A ½0;1�

JðhðsÞÞ:

Therefore,

cmax ¼ max
s A ½0;1�

JðhðsÞÞ; Eh A G:

By the continuity of JðhðsÞÞ with respect to s, Jð0Þ ¼ 0 and JðuÞ < 0 imply
that there exists s0 A ð0; 1Þ such that

Jðhðs0ÞÞ ¼ cmax:

Choose h1; h2 A G such that fh1ðsÞ j s A ð0; 1ÞgV fh2ðsÞ j s A ð0; 1Þg is empty,
then there exists s1; s2 A ð0; 1Þ such that

Jðh1ðs1ÞÞ ¼ Jðh2ðs2ÞÞ ¼ cmax:

Thus, we get two di¤erent critical points of J on Rk denoted by

u1 ¼ h1ðs1Þ; u2 ¼ h2ðs2Þ:

The above argument implies that the BVP (1.1) with (1.2) possesses at least two
nontrivial solutions. The proof of Theorem 1.2 is finished. r
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3.3. Proof of Theorem 1.3

Proof. We only need to find at least one critical point of the functional J
defined as in (2.5).

By ðF 0
5Þ, for any u ¼ ðu1; u2; . . . ; ukÞ� A Rk, we have

JðuÞ ¼ 1

2

Xk
i¼1�n

giþ1ðDnuiÞ2 �
Xk
i¼1

Fði; uiþ1; uiÞ

b
g

2
ln
1�nkuk

2 � a3
Xk
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2iþ1 þ u2i

q
Þa � a4k

b
g

2
ln
1�nkuk

2 � a3
Xk
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2iþ1 þ u2i

q
Þa

" #1=a8<
:

9=
;
a

� a4k

b
g

2
ln
1�nkuk

2 � a3c
a
2

Xk
i¼1

ðu2iþ1 þ u2i Þ
" #1=28<

:
9=
;
a

� a4k

b
g

2
ln
1�nkuk

2 � 2aa3c
a
2kuk

a � a4k

! þy as kuk ! þy

By the continuity of J, we know from the above inequality that there exist lower
bounds of values of the functional. And this means that J attains its minimal
value at some point which is just the critical point of J with the finite norm.

r

3.4. Proof of Theorem 1.4

Proof. Assume, for the sake of contradiction, that the BVP (1.1) with (1.2)
has a nontrivial solution. Then J has a nonzero critical point u?. Since

qJ

qui
¼ ð�1ÞnDnðgi�nþ1D

nui�nÞ � f ði; uiþ1; ui; ui�1Þ;

we get

Xk
i¼1

f ði; u?iþ1; u
?
i ; u

?
i�1Þu?i ¼

Xk
i¼1

½ð�1ÞnDnðgi�nþ1D
nu?i�nÞ�u?ið3:1Þ

¼
Xk
i¼1�n

giþ1ðDnu?i Þ
2
a 0:
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On the other hand, it follows from ðF6Þ that

Xk
i¼1

f ði; u?iþ1; u
?
i ; u

?
i�1Þu?i > 0:ð3:2Þ

This contradicts (3.1) and hence the proof is complete. r

4. Examples

As an application of Theorems 1.2, 1.3 and 1.4, we give three examples to
illustrate our main results.

Example 4.1. For i A Zð1; kÞ, assume that

D3ðgi�2D
3ui�3Þ ¼ �bui½jðiÞðu2iþ1 þ u2i Þ

b=2�1 þ jði � 1Þðu2i þ u2i�1Þ
b=2�1�;ð4:1Þ

with boundary value conditions

u�2 ¼ u�1 ¼ u0 ¼ 0; ukþ1 ¼ ukþ2 ¼ ukþ3 ¼ 0;ð4:2Þ
where gi is real valued for each i A Zð�1; k þ 1Þ and gi > 0, b > 2, j is continu-
ously di¤erentiable and jðiÞ > 0, i A Zð1; kÞ with jð0Þ ¼ 0.

We have

f ði; v1; v2; v3Þ ¼ bv2½jðiÞðv21 þ v22Þ
b=2�1 þ jði � 1Þðv22 þ v23Þ

b=2�1�
and

Fði; v1; v2Þ ¼ jðiÞðv21 þ v22Þ
b=2:

It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then the
BVP (4.1) with (4.2) possesses at least two nontrivial solutions.

Example 4.2. For i A Zð1; kÞ, assume that

D5ð9 i�4D5ui�5Þ ¼ �aui½cðiÞðu2iþ1 þ u2i Þ
a=2�1 þ cði � 1Þðu2i þ u2n�1Þ

a=2�1�;ð4:3Þ
with boundary value conditions

u�4 ¼ u�3 ¼ u�2 ¼ u�1 ¼ u0 ¼ 0; ukþ1 ¼ ukþ2 ¼ ukþ3 ¼ ukþ4 ¼ ukþ5 ¼ 0;ð4:4Þ
where 1 < a < 2, c is continuously di¤erentiable and cðiÞ > 0, i A Zð1; kÞ with
cð0Þ ¼ 0.

We have

gi ¼ 9 i; f ði; v1; v2; v3Þ ¼ av2½cðiÞðv21 þ v22Þ
a=2�1 þ cði � 1Þðv22 þ v23Þ

a=2�1�
and

Fði; v1; v2Þ ¼ cðiÞðv21 þ v22Þ
a=2:

It is easy to verify all the assumptions of Theorem 1.3 are satisfied and then the
BVP (4.3) with (4.4) possesses at least one solution.
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Example 4.3. For i A Zð1; kÞ, assume that

�D8ui�4 ¼
12

7
ui½ðu2iþ1 þ u2i Þ

�1=7 þ ðu2i þ u2i�1Þ
�1=7�;ð4:5Þ

with boundary value conditions

u�3 ¼ u�2 ¼ u�1 ¼ u0 ¼ 0; ukþ1 ¼ ukþ2 ¼ ukþ3 ¼ ukþ4 ¼ 0:ð4:6Þ
We have

gi 1�1; f ði; v1; v2; v3Þ ¼
12

7
v2½ðv21 þ v22Þ

�1=7 þ ðv22 þ v23Þ
�1=7�

and

F ði; v1; v2Þ ¼ ðv21 þ v22Þ
6=7:

It is easy to verify all the assumptions of Theorem 1.4 are satisfied and then the
BVP (4.5) with (4.6) has no nontrivial solutions.
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