
E. FALBEL AND J. M. VELOSO
KODAI MATH. J.
37 (2014), 405–426

A LORENTZ FORM ASSOCIATED TO CONTACT

SUB-CONFORMAL AND CR MANIFOLDS

Elisha Falbel and José Miguel Veloso

Abstract

We construct a bilinear form associated to a sub-conformal structure on a manifold

M. In the case the sub-conformal structure corresponds to a partially-integrable CR

structure we obtain a conformal Lorentz structure which coincides with Fe¤erman’s

construction on a circle bundle over M. The main contribution is the use of invariant

forms with values in a vector space instead of the full information contained in the

Cartan connection in order to simplify the construction.

1. Introduction

Associated to an integrable CR manifold M, that is a contact manifold with
a complex structure defined in the contact distribution satisfying an integrability
condition (see section 2 for definitions), one can define a Lorentz conformal
structure on a circle bundle over M. That structure was first constructed for real
hypersurfaces in Cn in [F] and later for an abstract CR manifold in [BDS].

The construction in [BDS] (see also [Ca] for a generalization) uses a Cartan
connection obtained on a principal bundle canonically associated to a CR
manifold with structure group HCR ¼ CUðnÞyN which is the automorphism
group of the Heisenberg group N (see [C, CM, T2] and section 2.4). The
construction of that connection is not easy and therefore it was natural to look
for other constructions.

In [Fa, L] more elementary constructions are given in the sense that one does
not need to use a connection associated to the CR structure. In particular, [L]
uses Webster’s connection associated to a pseudo-Hermitian structure (see [D] for
a recent survey).

A natural generalization of CR geometry on a contact manifold is sub-
conformal geometry which is a conformal structure defined on the contact
distribution. That structure contains a large class of non-integrable CR mani-
folds called partially-integrable (see section 2).
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The goal of this paper is to construct a canonical bilinear form associated to
a sub-conformal structure without any integrability conditions. In the case of
integrable CR structures the bilinear form coincides with the one defined in [BDS]
(cf. [FV] to compare Chern’s construction and the parallelism defined for a sub-
conformal structure).

The main observation is that only part of the Cartan connection for CR
manifolds is needed to construct the bilinear form giving rise to the Lorentz
structure. All relevant information is contained in an invariant form with values
in a vector space vCR which is a quotient of the Lie algebra suðnþ 1; 1Þ associated
to CR manifolds. Instead of constructing the Cartan connection, we construct
an invariant form with values in vCR (see section 2 for definitions). That
construction is carried through in general for sub-conformal structures and
the exposition is self-contained without any use of the CR connection, except
for comparison purposes. From the construction of that invariant form we are
able to characterize a Lorentzian conformal structure on a circle bundle over
a partially-integrable CR manifold. The main result is Theorem 4.1. We use
moving frames following [CM] which is appropriate for explicit calculations.

The authors thank the University of Paris VI and the University Federal of
Pará (UFPA) for generous support while preparing this work.

The authors were partially supported by the Programa Nacional de Cooper-
ação Acadêmica da Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior—CAPES/Brasil and by the ‘Réseau Franco-Brésilien en Mathématiques’.

2. CR-manifolds, sub-conformal manifolds and fiber bundles

In this section we define the geometric structures we will deal with, namely
CR structures and sub-conformal structures. Let D be a contact distribution on
a manifold M.

Definition 2.1.
1. ðM;D; JÞ is an almost CR structure if J : D! D satisfies J 2 ¼ �I .
2. ðM;D; gÞ is a sub-Riemannian structure if g is a metric on D.
3. ðM;D; ~ggÞ is a sub-conformal structure if ~gg is a conformal class of sub-

Riemannian metrics.

Let p : TM ! TM=D be the quotient map.

Definition 2.2. The Levi form a : D�D! TM=D is the skew-symmetric
form defined as aðX ;Y Þ ¼ �pð½X ;Y �Þ.

Fixing a base v of TM=D defines the Levi form av as a real valued form.
Let yv be the contact form of this distribution such that yvðp�1vÞ ¼ 1, then the
Levi form is given by

dyvðX ;Y Þ ¼ avðX ;YÞ
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If we have a metric on D, define a skew-symmetric operator Hv on the distri-
bution by

avðX ;YÞ ¼ gðHvX ;YÞ
As av is non-degenerate, we can always choose v such that det Hv ¼ 1 and this
determines a unique v ignoring orientation e¤ects. Observe that if we let tg be a
new metric and choose v as above, then

að1=tÞvðX ;Y Þ ¼ tgðHvX ;YÞ
so the definition of Hv does not depend on a metric inside a conformal class of
metrics. Fixing a metric on D, denote by H this operator and obtain its normal
forms in the following lemma.

Lemma 2.1. Let V be a 2n dimensional real vector space with a scalar
product. If H is a nondegenerated skew-symmetric operator, then there exists an
orthonormal basis of V such that the matrix of H is

L ¼

0

l1 0 0

0 . .
.

0

0 0 ln

0
BB@

1
CCA

�l1 0 0

0 . .
.

0

0 0 �ln

0
BB@

1
CCA 0

0
BBBBBBBBB@

1
CCCCCCCCCA

with li > 0, i ¼ 1; . . . ; n.

Lemma 2.2. Suppose that L is such that ld1þ���þdk�1þ1 ¼ � � � ¼ ld1þ���þdk ¼ nk
for 1a ka r, with d1 þ � � � þ dr ¼ n, and n1 < n2 < � � � < nr, where the nk are
real numbers, and that A A SOð2nÞ satisfies ALAT ¼ L. Then A A Uðd1Þ � � � � �
UðdrÞ.

Proof. We write A ¼ ða j
i Þ, and 1a a; ba n. We have

abþn
a lb ¼ �ab

aþnla

ab
a lb ¼ a

bþn
aþnla

a
bþn
aþnlb ¼ ab

a la

a
b
aþnlb ¼ �abþn

a la

then

lalba
bþn
a ¼ �l2aa

b
aþn ¼ �l2ba

b
aþn

lalba
b
a ¼ l2aa

bþn
aþn ¼ l2ba

bþn
aþn

If la 0 lb, we deduce ab
a ¼ a

bþn
aþn ¼ abþn

a ¼ abþn
a ¼ 0. If la ¼ lb then ab

a ¼ a
bþn
aþn ,

abþn
a ¼ �ab

aþn. Therefore A A Uðd1Þ � � � � �UðdrÞ. r
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A special case is when L ¼ J. This clearly relates to CR manifolds and to
be more explicit we introduce the next definitions.

Definition 2.3.
1. An almost CR structure is partially-integrable if the Levi form satisfies the

condition aðX ;YÞ ¼ aðJX ; JYÞ.
2. A partially-integrable CR structure is integrable if Jð½JX ; JY � � ½X ;Y �Þ ¼
½JX ;Y � þ ½X ; JY �.

Essentially, the Levi form of a partially-integrable CR structure is compatible
with the complex structure. Observe that a conformal sub-Riemannian manifold
ðM;D; ~ggÞ such that H 2 ¼ �Id is a partially-integrable CR manifold. In fact,

aðHX ;HY Þ ¼ gðH 2X ;HY Þ ¼ �gðX ;HY Þ ¼ �gðHY ;X Þ ¼ �aðY ;XÞ ¼ aðX ;YÞ:

Remark. The partially-integrable CR manifolds obtained above are strictly
pseudoconvex. If we had started with conformal classes of pseudo-metrics ~gg, we
would have arrived at pseudoconvex CR manifolds. To see that, recall that the
Levi form is extended as a Hermitian form on D1;0, the eigenvectors of H acting
on DnC corresponding to the eigenvalue i. Using an orthonormal basis Xa,
HXa for g which puts H in normal form we have

aðXa � iHXa;Xa þ iHXaÞ ¼ �2iaðHXa;XaÞ ¼ �2igðH 2Xa;XaÞ ¼ 2igðXa;XaÞ;

we see that the signature of g corresponds to the signature of the Levi form. We
will restrict our work to sub-Riemannian metrics for simplicity although the same
results hold for di¤erent signatures.

2.1. SUðnþ 1; 1Þ
We will use Chern’s conventions [CM] (see also [BDS]) where

SUðnþ 1; 1Þ ¼ fg A SLðnþ 2;CÞ j gTQg ¼ Qg

and the Hermitian form Q is given by

Q ¼
0 0 �i=2
0 I 0

i=2 0 0

0
B@

1
CA:

The group SUðnþ 1; 1Þ acts on Cnþ2 on the left preserving the cone

fz A Cnþ2 j zTQz ¼ 0g:

The projectivization of this cone is S2nþ1 HCPnþ1. SUðnþ 1; 1Þ acting on the
sphere S2nþ1 has a finite center K which is a cyclic group of order nþ 2 acting
trivially. We define PUðnþ 1; 1Þ ¼ SUðnþ 1; 1Þ=K.
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The elements of the Lie algebra suðnþ 1; 1Þ are represented by the matrices

u x z

�2i yT A 2ixT

w y �u

0
@

1
A

where A is skew-Hermitian, z;w A R, x; y A Cn, u A C and u� uþ TrA ¼ 0.
Observe that the Lie algebra gCR ¼ suðnþ 1; 1Þ is graded:

gCR ¼ g�2 l g�1 l g0 l g1 l g2

where

g�2 ¼
0 0 z

0 0 0

0 0 0

0
B@

1
CA

8><
>:

9>=
>; g�1 ¼

0 x 0

0 0 2ixT

0 0 0

0
B@

1
CA

8><
>:

9>=
>;

g0 ¼
u 0 0

0 A 0

0 0 �u

0
B@

1
CA

8><
>:

9>=
>; g1 ¼

0 0 0

�2i yT 0 0

0 y 0

0
B@

1
CA

8><
>:

9>=
>; g2 ¼

0 0 0

0 0 0

w 0 0

0
B@

1
CA

8><
>:

9>=
>;

Observe that

g0 ¼ Rl uðnÞ ¼ Rl uð1Þl suðnÞ
where

uð1Þ ¼
�iq=2 0 0

0 iqI=n 0

0 0 �iq=2

0
B@

1
CA

8><
>:

9>=
>;

with q A R and

csuðnÞ ¼ Rl suðnÞ ¼
r 0 0

0 A 0

0 0 �r

0
B@

1
CA

8><
>:

9>=
>;

with TrA ¼ 0 and r A R.

Definition 2.4. We define the subalgebras

hCR ¼ g0 l g1 l g2 h0 ¼ uðnÞl g1 l g2

h1 ¼ csuðnÞl g1 l g2 h2 ¼ suðnÞl g1 l g2

and the vector space

vCR ¼ gCR=h1 F g�2 l g�1 l iR:

The isotropy of the action of SUðnþ 1; 1Þ=K on S2nþ1 at the point ½0; . . . ; 1�T
is the group HCR ¼ CUðnÞyN (whose Lie algebra is hCR), where N is the
Heisenberg group, represented (up to K) by matrices of the form
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a 0 0

�2iaAbT A 0

aðs� ibbTÞ b a�1

0
B@

1
CA

where s A R, A A UðnÞ, b A Cn and aa�1 det A ¼ 1.
We follow the notations in [BDS] to define the following subgroups of HCR;

H1 ¼ CSUðnÞyN (whose Lie algebra is h1), H0 ¼ UðnÞyN (whose Lie algebra
is h0) and H2 ¼ SUðnÞyN (whose Lie algebra is h2). The inclusions between
these groups can be visualized in the following diagrams

HCR

H1 H0

H2

S2nþ1 � C�

S2nþ1 � S1 S2nþ1 � Rþ

S2nþ1

����! ����!

����! ����!���
���

��!  ���
�

 ���
�

 ���
�

 ���
�

 
���

���
��

A geometrical interpretation of SUðnþ 1; 1Þ=H2 is obtained considering the
canonical bundle of the sphere, that is the restriction of Lnþ1Cnþ1 to the sphere,
and deleting from it the zero section. This is a trivial C� bundle over the sphere
(it has a non-zero section given by the restriction of dz15� � �5dznþ1 to the sphere).
We obtain SUðnþ 1; 1Þ=H2 FS2nþ1�C� and also SUðnþ 1; 1Þ=H1FS2nþ1� S1,
SUðnþ 1; 1Þ=H0 FS2nþ1 � Rþ.

We will usually use the same notation for a lift of a subgroup of
PUðnþ 1; 1Þ to SUðnþ 1; 1Þ. In particular we will use the same notation for
HCR as a subgroup of the matrix group SUðnþ 1; 1Þ. The adjoint action of
HCR on gCR is given by

a�1 0 0

2ibT A�1 0

�aðsþ ibbTÞ �abA�1 a

0
B@

1
CA u x z

�2i yT B 2ixT

w y �u

0
B@

1
CA a 0 0

�2iaAbT A 0

aðs� ibbTÞ b a�1

0
B@

1
CA

¼
u� 2ixAbT þ zðs� ibbT Þ a�1xAþ a�1zb ðaaÞ�1z

? 2ib
T
xAþ A�1BAþ 2ib

T
zbþ 2iA�1xTb ?

? ? ?

0
B@

1
CA;

where we didn’t explicit the action in the lower diagonal because this will not be
used in the sequel. The following lemma follows from a simple computation
using the formula above.

Lemma 2.3. Adðh�1Þðh1ÞH h1 for h A HCR.

We have by the previous lemma the following

Lemma 2.4. The adjoint action of HCR on gCR passes to the quotient vCR.
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2.2. A bilinear form
Using left invariant forms we construct the Maurer-Cartan form on

SUðnþ 1; 1Þ with values in the Lie algebra suðnþ 1; 1Þ. That is a gCR-valued
form (we use Chern’s coordinates).

P ¼

� 1

2
f� 1

nþ 2
Trh p 2o

? h� 1

nþ 2
TrhI 2ipT

? ?
1

2
f� 1

nþ 2
Trh

0
BBBBBB@

1
CCCCCCA

where p ¼ ðobÞ, h ¼ ðhb
a Þ and f, o are real forms (the terms under the diagonal

will not be used so we don’t need to name them) and satisfying the following
transformation law

R�hP ¼ Adðh�1ÞP
for h A PUðnþ 1; 1Þ. The Maurer Cartan equation is

dPþP5P ¼ 0:

Observe that one of these equations is 2do ¼ 2ip5pT � 2f5o which will appear
as equation 4 in the general sub-conformal case. Chern’s convention is made in
order that the structure equation 7 be valid.

Definition 2.5. On SUðnþ 1; 1Þ define the form

b ¼ i
2

nþ 2
Trh � oþ p � pT

Proposition 2.1. R�h b ¼ jaj
�2
b for h A HCR.

Proof. We use the adjoint action on P to compute the action on b. r

That bilinear form is well defined, up to a conformal factor, in a quotient of
the group PUðnþ 1; 1Þ di¤eomorphic to the trivial circle bundle over the sphere
S2nþ1.

Proposition 2.2. b defines a conformal Lorentz structure on

PUðnþ 1; 1Þ=H1 ¼ PUðnþ 1; 1Þ=CSUðnÞyNFS2nþ1 � S1

Proof. We have to show that iðX �Þb ¼ 0 for X A csuðnÞyN, where

X �ðgÞ ¼ dgetX

dt
ð0Þ. That is equivalent to showing that b vanishes along vectors

tangent to the orbits of CSUðnÞyN. The vector fields X � are left invariant
and dual to the left invariant forms. In particular they are in the kernel of the
forms Trh, p and o. r
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The bilinear form b is defined on gCR n gCR but, in fact, it uses only part of
the left invariant forms in the group. It is most naturally defined on vCR n vCR.
That is the key observation which allows a more general construction.

2.3. Real representation
In this section we relate complex coordinates used by Chern to the real

coordinates used in sub-conformal geometry. It assures that we are dealing with
the same forms when the sub-conformal geometry gives rise to an integrable CR
structure. A real representation of HCR is given by the following matrices

1 0 0

2hira
k
r v

k ta
j
i 0

s tv j t2

0
B@

1
CA:

Here a
j
i A UðnÞ and ðhirÞ ¼ J where i is the row index and r is the column index of

the matrix. This group is isomorphic to CUðnÞyN, the group of similarities of
the Heisenberg group and an explicit isomorphism is given writing a ¼ t�1eiy and

a ¼ <e�iyA =e�iyA
�=e�iyA <e�iyA

� �
v ¼ ð<e�iyb;=e�iybÞ

by (observe that the kernel of the map is precisely the center of PUðnþ 1; 1Þ)

m :

a 0 0

�2iaAbT A 0

aðs� ibbTÞ b a�1

0
B@

1
CA! 1 0 0

4JavT ta 0

�4s 2tv t2

0
B@

1
CA:

This map is obtained by comparing the right multiplication with the adjoint
action on the algebra.

Proposition 2.3. The map

g0

uðnÞ l g�1 l g�2 ! RlR2n lR

given by

ðf; p;oÞ ! ðf;<p;=p;oÞ

(where f ¼ �<u
2

and o ¼ z

2
in the coordinates of the Lie algebra) is HCR-

equivariant with respect to the adjoint action on
g0

uðnÞ l g�1 l g�2 and right
multiplication on RlR2n lR.

Proof. By the adjoint action on the left hand side we obtain

f 0 ¼ fþ 2ipAbT � 2ipAbT � 4so

p 0 ¼ a�1pAþ 2a�1ob

o 0 ¼ ðaaÞ�1o
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We write

pa�1Aþ 2oa�1b ¼ ð<ðpÞ<ða�1AÞ � =ðpÞ=ða�1AÞ þ 2o<ða�1bÞÞ

þ ið<ðpÞ=ða�1AÞ þ =ðpÞ<ða�1AÞ þ 2o=ða�1bÞÞ

Also,

fþ 2ipAbT � 2ipAbT � 4so

¼ fþ ð<p;=pÞ �4=e
�iyA 4<e�iyA

�<e�iyA �4=e�iyA

 !
<e�iybT

=e�iybT

 !
� 4so r

The Lie algebra of HCR in the real representation is given by matrices of the
form

0 0 0

� td
j
i þ o

j
i 0

� � 2t

0
B@

1
CA;

where ðo j
i Þ A oð2nÞ.

In the next sections we need the equivalent to iTrh using the real repre-
sentation:

Lemma 2.5. iTrh ¼ � 1
2 h

ijo i
j where hijh

jk ¼ dki

Proof. We compute the di¤erential of the homomorphism m:

� 1

2
f� 1

nþ 2
Trh p 2o

? h� 1

nþ 2
TrhI 2ipT

? ?
1

2
f� 1

nþ 2
Trh

0
BBBBBB@

1
CCCCCCA!

0 0 0

� f

2
I þ o i

j 0

� � f

0
BB@

1
CCA

where

o i
j ¼

<h =h
�=h <h

� �

therefore

hijo i
j ¼ Tr �J <h =h

�=h <h

� �� �

¼ Tr
=h 0

0 =h

� �
¼ �2iTrh
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Putting together the various transformations we obtain the following real rep-
resentation corresponding to the adjoint action r of HCR in vCR.

Lemma 2.6. Let vCR ¼ ðo;<p;=p; sÞf g. The representation r of HCR on
vCR is given by

r

1 0 0

2JavT ta 0

s tv t2

0
B@

1
CA

0
B@

1
CAðo;<p;=p; sÞ

¼ ðt2o; ð<p;=pÞtaþ 2tvo; s� 2ð<p;=pÞavT � vvToÞ

2.4. Principal fiber bundles, connections and invariant forms
In this section we give an overview of the relevant bundles to be defined in

detail in the next section. We will consider principal bundles p : P!M with a
right action P�H ! P. We usually denote the right action as Rhp ¼ ph. Let
o be a form defined on P with values in V , a vector space. Let r : H ! GLðVÞ
be a representation of H.

Definition 2.6. o is a r-invariant form with values in V if R�ho ¼ rðh�1Þo
for h A H.

Special cases of that definition include connection forms and Cartan con-
nection forms defined on principal bundles. In the first case V ¼ h, the Lie
algebra of H and in the second case V is the Lie algebra of a group containing
H. In both cases rðhÞv ¼ AdðhÞv.

Given a sub-conformal structure on a manifold M we construct a bundle Y
which factors through a Rþ-bundle denoted by E (see next section). The bundle
Y is not a principal bundle but a reduction of Y which we denote by YCR will
be principal with some extra hypothesis. In particular we will work with a
bundle YCR !M which has HCR ¼ CUðnÞyN as structure group. Here N is
the Heisenberg group of dimension 2nþ 1 and CUðnÞ is the conformal unitary
group, that is, Rþ �UðnÞ. Observe that Uð1Þ ¼ CUðnÞyN=CSUðnÞyN so
we obtain the circle bundle T ¼ YCR=CSUðnÞyN over M. The relevant
bundles can be viewed in the following diagram.

YCR

T E

M

 ���
�

 ���
�

 ���
�

 ���
�

 
���

���
��

In the case that the sub-conformal structure gives rise to an integrable
CR structure, the principal bundle YCR is equipped with a Cartan connection.
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Although we are not going to use the following theorem, we state it for com-
pleteness and for comparison purposes. We won’t state either the conditions
defining uniquely that connection (referring to [CM])

Theorem 2.1 (Cartan-Tanaka-Chern). Over an integrable CR manifold M
there exists a bundle YCR with a canonical gCR-valued Cartan connection. That is
a gCR-valued form P satisfying the following transformation law

R�hP ¼ Adðh�1ÞP
for h A HCR.

From the theorem above and Lemma 2.4 we easily get the following

Corollary 2.1. Over an integrable CR manifold M there exists a bundle
YCR with a canonical vCR-valued invariant form.

The importance of that corollary is that the Lorentz form defined over T is
constructed only using the vCR-valued invariant form. Concretely one uses only
part of the canonical connection to define the bilinear form. That means that
even without a Cartan connection, one might be able to find an appropriate
invariant form which would be enough to construct invariant bilinear forms.
Moreover its construction is simplified, even in the integrable case, because we
don’t need to construct the whole Cartan connection.

In the next sections our goal will be to introduce the bundle YCR and obtain
an invariant bilinear form defined on YCR for a general partially-integrable CR
manifold. The main goal is theorem 4.1.

3. Sub-conformal geometry

This section is based on [FV] where a parallelism is obtained for sub-
conformal geometry. Here we only need part of the forms constructed so we
give a self-contained and simpler version of the forms we need.

Let ðM;D; ~ggÞ be a contact sub-conformal structure. Let ~EE to be the
oriented line bundle of all sub-Riemannian metrics in the conformal class ~gg.
Given a sub-Riemannian metric, there exists a unique, up to sign, contact form y
such that

dy ¼ hijy
i5y j þ hiy

i5y

where y i is a dual basis of an orthonormal basis of D, hij ¼ �hji. and detðhijÞ ¼ 1
(observe that the determinant of a non-degenerate skew-symmetric matrix is
positive so this condition does not depend on the choice of orientation on D).
The matrix ðhijÞ is the matrix of the operator H introduced in section 2 and we
will denote it by the same letter H. We suppose from now on that TM=D is
oriented. We can therefore define the oriented line bundle E of contact forms
over M. ~EE is isomorphic to E.
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We obtain in this way a set of basis of 1-forms adapted to the sub-
Riemannian structure which can be described by all forms

y 0 ¼ y

y 0i ¼ ai
jy

j þ viy

where ai
j are orthonormal matrices and vi are arbitrary. Also, the change of

matrix ðhijÞ is given by

h 0ij ¼ ai
khkla

j
l :ð1Þ

A natural coordinate on the line bundle is given by positive real numbers

l so that g ¼ 1

l
g0 where g0 is a reference metric. The forms corresponding to

the metric g ¼ 1

l
g0 are given by

y 0 ¼ lyð2Þ
y 0i ¼

ffiffiffi
l
p
ðai

jy
j þ viyÞð3Þ

In order to work with the whole class of conformal metrics we consider the
tautological forms defined by the forms above over the line bundle E. We write
again

o 0 ¼ o

o 0i ¼ ai
jo

j þ vio

where we understand that the forms are defined over E. Those forms vanish on
vertical vectors, that is, vectors in the kernel of the map TE ! TM. In order to
define non-horizontal 1-forms we di¤erentiate equation 2 to obtain

do ¼ o5fþ hijo
i5o jð4Þ

where f ¼ � dl

l
� hiy

i. Observe that
dl

l
is a form intrinsically defined on E up

to horizontal forms (the minus sign is just a matter of conventions and makes the
equations compatible with the CR case treated in [CM]). In fact, choosing a
di¤erent reference metric g1 with g0 ¼ g1=m where m is a function over M, we can

write g ¼ 1

l
g0 ¼

1

lm
g1 and obtain

dðlmÞ
lm
¼ dlmþ ldm

lm
¼ dl

l
þ dm

m
;

where
dm

m
is a horizontal form.
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Definition 3.1. We denote by Y the coframe bundle Y ! E given by the
set of 1-forms f, o j, o. Two coframes are related by

ðf 0;o 0i;o 0Þ ¼ ðf;o j;oÞ
1 0 0

�2vkak
r hrj ai

j 0

s vi 1

0
B@

1
CA

where a
j
i is an orthogonal matrix and s; vi A R.

Considered as a bundle over M the change of coframes in a fiber is given by
the following matrix, where t A Rþ,

1 0 0

�2vkak
r hrj tai

j 0

s tvi t2

0
B@

1
CA:ð5Þ

The fact that the bundle Y is not principal prevents us to obtain a simple
description of the bundle.

In section 4 we use a reduction of the bundle Y in a special case. We
suppose that the canonical form L of H ¼ ðhijÞ as in lemma 2.1 is

L ¼ J ¼ 0 Id

�Id 0

� �
:

That case gives rise to partially-integrable CR structures.

Definition 3.2. YCR is the sub-bundle of Y defined by the coframes such
that ðhijÞ ¼ J, where L is the normal form of lemma 2.1.

YCR is a principal bundle over M with structure group HCR ¼ CUðnÞyN,
the group of similarities of the Heisenberg group.

3.1. A distinguished form on subconformal structures
In this section we construct the form we need, in the more general situation

without hypothesis on H. We leave the study of its transformation to section
3.3. Given a sub-conformal manifold M we construct the bundle Y as in the
previous section. We use the same notation o i, o and f for the tautologous
forms in Y corresponding to the coframes defining the bundle.

We will use the following

Lemma 3.1. Let Wa bet a set of 2-forms and oa be a set of 1-forms with the
same number of elements satisfying Wa ¼ ha

bgo
b5og with ha

bg ¼ �ha
gb then we can

write Wa ¼ ob5oa
b with oa

b ¼ �ob
a . If the set oa is linearly independent, the

forms oa
b are unique.
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The lemma follows from a skew-symmetrization:

oa
b ¼ ðha

bg � hb
ag � h

g
abÞo

g:

Observe that in the case oa is a linearly independent set the uniqueness follws from
Cartan’s trick as in the proof of the uniqueness of a Riemannian connection.

3.1.1. The form s
Di¤erentiating equation 3 we obtain

do i ¼ dl

2l
5o i þ a

j
kda

i
k5o j þ 1ffiffiffi

l
p ðdvi � ak

j v
kdai

j Þ5oþ
ffiffiffi
l
p
ðai

j dy
j þ v jdyÞ;ð6Þ

Recall that, as fy j; yg is a basis of the cotangent space, one can write fdy j; dyg
using those forms. Therefore one can write the last term using the tautological
forms, modulo o, as ffiffiffi

l
p
ðai

j dy
j þ v jdyÞ1 hi

kjo
k5o j

with hi
kj ¼ �hi

jk. Therefore, modulo o, we can write formula 6 as

do i 1� 1

2
f5o i þ a

j
kda

i
k5o j þ hi

kjo
k5o j:

As a
j
kda

i
k is skew-symmetric and using Lemma 3.1 we can further write

do i ¼ � 1

2
f5o i � o i

j5o j � f i5oð7Þ

with o i
j ¼ �o

j
i .

Let o i
j , o i

j and f i, f i be forms satisfying the equation 7. Taking the

di¤erence between the equations we obtain

ðo i
j � o i

j Þ5o j þ ðf i � f iÞ5o ¼ 0

and using Cartan’s lemma we obtain

o i
j � o i

j ¼ cijoð8Þ
f i � f i ¼ cijo

j þ cio

with

cij ¼ �c
j
i

Our objective is to define intrinsically and uniquely the form

s ¼ � 1

nþ 2
hijo i

j

(where hijhjk ¼ d ik) by some normalization. Calling W ¼ ðo j
i Þ and H�1 ¼ ðhijÞ

we have s ¼ � 1

nþ 2
TrðH�1WÞ.
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3.1.2. Fixing the form s
Di¤erentiating equation 4 we obtain

ðdhij � hkjo
k
i þ hkio

k
j Þo i5o j � ðdf� 2hijf

i5o jÞ5o ¼ 0ð9Þ
We need now the following simple lemma

Lemma 3.2. Let A be a 2-form and Bij be 1-forms with Bij ¼ �Bij and

A5oþ Bijo
i5o j ¼ 0 then A ¼ �bijo i5o j þ h5o and Bij ¼ bijko

k þ bijo
where bij ¼ �bji, bijk þ bkij þ bjki ¼ 0 and bijk ¼ �bjik.

Applying the lemma to equation 9 we obtain

df� 2hijf
i5o j þ h5o ¼ bijo

i5o jð10Þ
dhij � hkjo

k
i þ hkio

k
j ¼ bijko

k þ bijoð11Þ

If we use 8 in 11 above we obtain

ðhjkcki þ hkic
k
j Þo ¼ ðbijk � bijkÞok þ ðbij � bijÞo

Then

bijk ¼ bijkð12Þ
hjkc

k
i � hikc

k
j ¼ bij � bij

If we di¤erentiate the equation 7 and using 10, 7 and 4, we obtain

df i � 1

2
f5f i � f j5o i

j þ
1

2
h5o i

� �
5o

þ do i
j þ o i

l5o l
j þ hljo

i5f l � 1

2
bljo

l5o i � hljf
i5o l

� �
5o j ¼ 0

It follows that

F i
j5o j 1 0 mod oð13Þ

where

F i
j ¼ do i

j þ o i
l5o l

j þW i
jklo

k5f l þ Bi
jklo

k5o l

with

W i
jkr ¼ d irhkj þ d ikhrj � d j

r hki � d
j
khri þ d rkhij

and

Bi
jkl ¼

1

4
ðblj d ik � bkj d

i
l � bli d

j
k þ bki d

j
l Þ:

Observe that W i
jkr ¼ �W

j
ikr ¼W i

jrk, Bi
jkr ¼ �B

j
ikr ¼ �Bi

jrk and

F i
j þF

j
i ¼ 0:ð14Þ
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From 13 and 14 follows easily the following lemma

Lemma 3.3.

F i
j 1S i

jklo
k5o l mod o

where S i
jkl ¼ �S

j
ikl ¼ �S i

jlk and S i
jkl þ S i

ljk þ S i
klj ¼ 0.

The form F i
j is not well determined. If we consider two sets of forms o i

j , f
i

and o i
j , f i as in 8, with the corresponding F i

j and F i
j then

F i
j �F i

j 1W i
jklo

k5ðf l � f lÞ þ ðcij hkl þ Bi
jkl � Bi

jklÞok5o l modo:

We are not going to determine the form F i
j but only a certain trace of it. In

order to do so let

Skl ¼
X

hijS i
jkl

and

S ¼
X

Sklh
lk:

In [FV] we used a di¤erent definition for S and we show in the following
section that the two definitions give the same normalization in the case of an
integrable CR structure.

Proposition 3.1. The forms o i
j can be chosen so that S ¼ 0 and then the

form

s ¼ � 1

nþ 2
hijo i

j

is independent on the remaining choices.

Proof. The form hijo i
j is determined up to ckl h

lk. Taking into account that

hijW i
jkr ¼ �ð2nþ 4Þdrk, hijBi

jkl ¼ 0 and using the expression of S i
jkl � Si

jkl obtained

by skew-symmetrizing the formula for F i
j �F i

j , that is,

Si
jkl � S i

jkl ¼
1

2
ðW i

jkrc
r
l �W i

jlrc
r
kÞ þ cij hkl þ Bi

jkl � Bi
jkl

we get

S � S ¼ ð4nþ 4Þckl hlk

and this determines uniquely ckl h
lk such that S ¼ 0. r

Using the 1-form s we may now define the bilinear form which will give
rise to a conformal Lorentz structure in the case of a partially integrable CR
structure.
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Definition 3.3. Define on Y the bilinear form

b ¼ o io i þ so

3.2. Relation to integrable CR structures
In [FV] we used a di¤erent definition for S (cf. Lemma 4.4 pg. 462). In this

section we show that the two definitions give the same normalization in the case
of an integrable CR structure. This implies that the form s defined in section 3
coincides with the one defined in [BDS] in that case.

It is shown in [FV] (Proposition 5.1 pg. 472) that the sub-conformal paral-
lelism coincides with the parallelism obtained from the Cartan connection defined
in [CM] in the CR integrable case.

Following formula 41 and Lemma 5.4 in [FV] we may suppose for each fixed
pair k, l, Si

jkl A uðnÞ, that is, S a
bkl ¼ S aþn

bþnkl and S aþn
bkl ¼ �S a

bþnkl , for 0a a; ba n.

Lemma 3.4. If ðhijÞ ¼ J then

hijS i
jklh

kl ¼ 2Si
jij

Proof. We write hijS i
jklh

kl ¼ �hijðS i
klj þ S i

ljkÞhkl . After a permutation of the
indices we obtain

¼ �hijS i
kljh

kl � hklSk
iljh

ji ¼ 2hijS i
kjlh

kl :

Using S i
jkl A uðnÞ we obtain

2ðha aþnS a
b aþn bþnh

b bþn þ ha aþnS a
bþn aþn bh

bþn b

þ haþn aS aþn
b a bþnh

b bþn þ haþn aS aþn
bþn a bh

bþn bÞ

¼ 2ðS a
b aþn bþn � S a

bþn aþn b � S aþn
b a bþn þ S aþn

bþn a bÞ

¼ 2ðS aþn
bþn aþn bþn þ S aþn

b aþn b þ S a
bþn a bþn þ S a

b a bÞ

¼ 2S i
jij r1

Observe that this shows that the normalization hijS i
jklh

kl ¼ 0 is equivalent to
the normalization S i

jij ¼ 0 and therefore that our form s coincides with the one

defined by [BDS] using the Cartan connection.

3.3. Change of Coframe
Our goal is to obtain the transformation of s ¼ � 1

nþ 2
hijo i

j when we
compute it in a new basis of forms

o 0 ¼ t2o

o 0i ¼ tðai
jo

j þ vioÞ

f 0 ¼ f� 2vkak
r hrjo

j þ so
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on Y as given by the right action of the group HCR represented by matrices of
the form 5.

We have the analogous equations

do 0 ¼ o 05f 0 þ h 0ijo
0i5o 0jð15Þ

do 0i ¼ � 1

2
f 05o 0i � o 0ij 5o 0j � f 0i5o 0ð16Þ

dh 0ij � h 0kjo
0k
i þ h 0kio

0k
j ¼ b 0ijko

0k þ b 0ijo
0ð17Þ

Di¤erentiating equation o 0i ¼ tðai
jo

j þ vioÞ we obtain

� 1

2
f 05o 0i � o 0ij 5o 0j � f 0i5o 0

¼ tðai
j do

j þ vidoÞ

¼ tviðo5fþ hklo
k5o lÞ þ tai

j �
1

2
f5o j � o

j
k5ok � f j5o

� �
Using the inverse transformations

o ¼ t�2o 0

ok ¼ ai
kðt�1o 0i � t�2vio 0Þ

f ¼ f 0 þ 2vkt�1h 0kjo
0j � st�2o 0

in the equation above and reorganizing we obtain

0 ¼ o 0ij � ai
lo

l
ka

j
k þ

1

t
vkW 0i

jkro
0r

� �
5o 0j

þ f 0i � 1

t
ðai

jf
j þ 1

2
vif 0 � vlai

jo
j
ka

l
kÞ þ

1

t2
ðvivkh 0kl �

1

2
d il sÞo 0l

� �
5o 0

where W 0i
jkr is the corresponding function to W i

jkr with hij replaced by h 0ij . It
follows from Cartan’s lemma that

o 0ij ¼ ai
lo

l
ka

j
k �

1

t
vkW 0i

jkro
0r þ 1

t2
d i
j o
0ð18Þ

and

f 0i ¼ 1

t
ai
jf

j þ 1

2
vif 0 � vlai

jo
j
ka

l
k

� �
� 1

t2
vivkh 0kl �

1

2
d il s� d i

l

� �
o 0l þ cio 0ð19Þ

with d i
j ¼ �d

j
i : Substituting 18 in 17 and taking into account equatons 11 and 1

we obtain

b 0ijko
0k þ b 0ijo

0 ¼ 1

t
ðai

rbrsta
j
s a

k
t þ vrðh 0sjW 0s

irk � h 0siW
0s
jrkÞÞo 0k

þ 1

t2
ðai

rbrsa
j
s � ai

rbrsta
j
s a

k
t v

k þ h 0kid
k
j � h 0kjd

k
i Þo 0:
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It follows that

b 0ij ¼
1

t2
ðai

rbrsa
j
s � ai

rbrsta
j
s a

k
t v

k þ h 0kid
k
j � h 0kjd

k
i Þð20Þ

and

b 0ijk ¼
1

t
ðai

rbrsta
j
s a

k
t þ vrðh 0sjW 0s

irk � h 0siW
0s
jrkÞÞð21Þ

Let’s now see how Si
jkl changes. Inserting equations 18 and 19 in

F 0ij ¼ do 0ij þ o 0il 5o 0lj þW 0i
jklo

0k5f 0l þ B 0ijklo
0k5o 0l

where B 0ijkl are the corresponding functions Bi
jkl with primes, we get after some

manipulation

S 0ijkl ¼ ai
xa

j
ya

k
r a

l
sS

x
yrs þ

1

2t
vr
�
1

2
d ikðb 0rjl þ b 0rljÞ þ

1

2
d il ðb 0jrk þ b 0krjÞ þ

1

2
d
j
kðb
0
irl þ b 0lriÞ

þ 1

2
d
j
l ðb
0
rik þ b 0rkiÞ þ d irb

0
klj þ d j

r b
0
lki þ dkr b

0
ijl þ d lrb

0
jik

�

þ 1

2t2
vxvy

�
W 0i

rxkW
0j
ryl �W 0i

rxlW
0j
ryk þW 0i

jkrW
0x
ryl �W 0i

jlrW
0x
ryk �W 0i

jkxh
0
yl

þW 0i
jlxh
0
yk þ

1

2
ðW 0r

lxyh
0
rj �W 0r

jxyh
0
rlÞd

i
k þ

1

2
ðW 0r

ixyh
0
rl �W 0r

lxyh
0
riÞd

j
k

� 1

2
ðW 0r

kxyh
0
rj �W 0r

jxyh
0
rkÞd

i
l �

1

2
ðW 0r

ixyh
0
rk �W 0r

kxyh
0
riÞd

j
l

�

þ
�
d i
j h
0
kl þ

1

2
W 0i

jkxd
x
l �

1

2
W 0i

jlxd
x
k þ

1

4
ðd ikd

m
j � d

j
kd

m
i Þðh 0rld r

m � h 0rmd
r
l Þ

� 1

4
ðd il dmj � d

j
l d

m
i Þðh 0rkd r

m � h 0rmd
r
kÞ
�

We analyze now how the form hijo i
j changes with the new referential.

Proposition 3.2.

s 0 ¼ s� 1

nþ 2

2

t
ðnþ 2Þvro 0r þ 1

t2
h 0ijd i

j o
0

� �
where

1

t2
h 0ijd i

j ¼
1

4ðnþ 1Þ ½tv
rð2h 0kjh 0klb 0rjl þ 2h 0rjh 0klb 0kjl þ h 0ijh 0rlb 0ijlÞ

� vxvyðð4n2 þ 14nþ 8Þdxy � h 0klh 0klh 0xrh
0
yrÞ�:
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Proof. It follows from equation 18 and h 0ijW 0i
jkr ¼ �ð2nþ 4Þd rk that

h 0ijo 0ij ¼ hijo i
j þ

2

t
ðnþ 2Þvro 0r þ 1

t2
h 0ijd i

j o
0:

The second equation follows from h 0ijS 0ijklh
0kl ¼ hijS i

jklh
kl ¼ 0. r

4. The bilinear form on YCR

At this point we need to introduce the reduction YCR of the bundle Y
assuming that H ¼ J on YCR throughout this section. The main goal is
Theorem 4.1 which describes a conformal Lorentz structure on a circle bundle
over a partially-integrable CR structure.

Proposition 4.1. On YCR we have

s 0 ¼ s� 2vrar
ko

k � vrvro:

Proof. We first obtain the following formula on YCR:

h 0ijd i
j ¼ �ðnþ 2Þvxvx:

In fact, from equation 11 we obtain that

H�1dH þ dHH�1 þH�1WH �HWH�1

¼ ðH�1Bl þ BlH
�1Þo l þ ðH�1Bþ BH�1Þo;

where W ¼ ðo i
j Þ, Bl ¼ ðbijlÞ, and B ¼ ðbijÞ. It follows from the above for-

mula that H�1Bl þ BlH
�1 ¼ 0, or h 0kjb 0rjl þ h 0rjb 0kjl ¼ 0 and h 0ijb 0ijl ¼ 0. Also

h 0klh 0klh 0xrh
0
yr ¼ �2ndxy .

From the formula above we obtain the transformation properties of s ¼

� 1

nþ 2
hijo i

j and complete the proof. r

Consider the vCR-valued form given by ðo;o i; sÞ, 1a ia 2n. We consider
the action of CUðnÞyN on vCR as defined in section 2. Comparing the previous
transformation laws and Lemma 2.6 we proved

Proposition 4.2. On a partially-integrable YCR the vCR-valued form
ðo;o i; sÞ is r invariant.

We consider the bilinear form b ¼ o io i þ so on YCR. It follows easily
from proposition 4.2 that the form b is invariant up to scalar multiple:

Proposition 4.3. On YCR,

b 0 ¼ t2b:
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Recall that T ¼ YCR=CSUðnÞyN is a circle bundle. We are ready to
prove that the bilinear form defined above descends to that circle bundle.

Theorem 4.1. If M is a partially-integrable CR manifold, the bilinear form
on YCR

b ¼ o io i þ so

descends to a Lorentz conformal structure on T ¼ YCR=CSUðnÞyN.

Proof. A tensor $ on YCR projects to T up to a conformal factor if and
only if

1. R�g$ ¼ f$ for every g A CSUðnÞyN,

2. iðX �Þð$Þ ¼ 0 for every X A h1 ¼ LieðCSUðnÞyNÞ
We have already shown that R�gb ¼ t2b. As X � is vertical and o i and o

are tautological we have o iðX �Þ ¼ oðX �Þ ¼ 0. Then iðX �ÞðbÞ ¼ sðX �Þo. It
remains to show that

hijo i
j ðX �Þ ¼ 0;

for X A h1. From equation 6 and 8 we obtain

o i
j ¼ �a

j
kda

i
k þ cijko

k þ cijo:

If X A h1 then

o i
j ðX �Þ ¼ �a

j
kda

i
kðX �Þ A csuðnÞ;

therefore hijo i
j ðX �Þ ¼ 0. r

References

[BDS] D. Burns, K. Diederich and S. Shnider, Distinguished curves in pseudoconvex boundaries,

Duke Math. J. 44 (1977), 407–431.

[BS] D. Burns and S. Shnider, Real hypersurfaces in complex manifolds, Proc. sympos. pure

math. 30, Amer. Math. Soc., Providence, RI, 1977, 141–168.

[Ca] A. Cap, Parabolic geometries, CR-tractors, and the Fe¤erman construction, Di¤erential

Geom. Appl. 17 (2002), 123–138.
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