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ON COMPLEX 7-FOLDS POLARIZED BY AN AMPLE LINE
BUNDLE L WITH Bs|L| =0, g(X,L) = ¢(X)+m AND A°(L) =n+m — 1*

YOsHIAKI FUKUMA

Abstract

Let (X,L) be a polarized manifold with dim X =»n >3 and Bs|L| =0. In this
paper, we classify (X, L) with g(X,L) = ¢(X)+m and h°(L) =n+m— 1.

1. Introduction

This is a continuation of [13]. Let X be a smooth projective variety over
the field of complex numbers C, and let L be an ample (resp. a nef and big) line
bundle on X. Then we call the pair (X,L) a polarized (resp. quasi-polarized)
manifold. The sectional genus g(X,L) of (X,L) is defined as follows:

1
g(X,L) =1+ 5(KX +(n—1)L)L" ",

where Ky is the canonical line bundle of X. A classification of (X, L) with small
value of sectional genus was obtained by several authors. On the other hand,
as a problem of a lower bound for the sectional genus, Fujita proposed the
following conjecture:

CoNJECTURE 1.1 (Fujita). Let (X,L) be a polarized manifold. Then
g(X,L) > q(X), where q(X) = h'(Ox) is the irregularity of X.

This conjecture is very difficult and it is unknown even for the case in which
X is a surface.

If dim Bs|L| < 1, then we can prove that g(X,L) > ¢(X) (see [9, Theorem
3.2] and [20, Theorem 3.3]). Furthermore the author proved that if (X,L) is
a quasi-polarized manifold with dim X =3 and h°(L) :=dim H°(L) > 2, then
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g(X,L) = q(X) (see [11, Theorem 2.1]). Moreover the author obtained the
classification of polarized 3-folds (X, L) with the following types:

(1) g(X,L) = ¢q(X) and h°(L )23 (11

(2) 9(X,L) =¢q(X) +1 and (L) =4 ([8]).

(3) 9(X,L) =q(X)+2 and A°(L) > 5 ([12]).
On the other hand, if |L| is base point free, then we can get the classification of
polarized n-folds (X L) with g(X,L) 7q(X) g(X,L)y=q(X)+1, or g(X,L) =
q(X)+2 (see [8], [11], and [12]).

By considering the result of 3-dimensional case, it is natural to consider the
following problem:

ProBLEM 1.1. Let (X,L) be a polarized manifold with dim X =n and
g(X,L) = q(X) +m, where m is a nonnegative integer. Assume that 4°(L) >
n+m. Then classify (X,L) with these properties.

In [13], we obtained an answer of this problem if dim Bs|L| < 0.

The next problem it might be considered is a classification of (X, L) with
h°(L) =n+m—1. In this paper, under the assumption that Bs|L| = 0, we get
a classification of (X, L) with #°(L) = n+m — 1, that is, we obtain the following
main theorem.

THEOREM 1.1. Let (X,L) be a polarized manifold with dim X =n > 3.
Assume that Bs|L| =0, h°(L)=n-+m—1, where m=g(X,L)—q(X). Let
(M, A) be a reduction of (X,L) (see Definition 2.1 (2)). Then (X,L) is one
of the following types:

(1) (X,L) is a hyperquadric fibration over a smooth projective curve with
3 2m—1

+ .

X)< =
9X) < 3+—,

(2) (X,L) is a classical scroll over a smooth projective surface Y with
K(Y) =
If g(X ) O and Y is relatively minimal, then
2m—n—+1
X)<l+=5—-—.
q(X) = +112—3n+4
If ¢q(X) >0 and Y is not relatively minimal, then
4m — 1
X)<l4+—5—7——.
1) < e o 1 16

(3) (M, A) = (P*,0ps(2)) and (X, L) is obtained by 7 times simple blowing
ups of (M,A). In this case m=>5.

4) (M, A) = (Q3,0Q3(2)) and (X, L) is obtained by T times simple blowing
ups of (M,A). In this case m=>5.

(5) (M, A) = (P*,0ps(3)) and (X,L) is obtained by 8 times simple blowing
ups of (M,A). In this case m = 10.
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(6) M is a P*-bundle over P with (F,A|;) = (P?, 0p2(2)) for any fiber F of
it, and (X,L) is obtained by 7 times simple blowing ups of (M, A). In
this case m > 6.

(7) (X,L) is a Mukai manifold with L" =2m —2 and A(X,L)=m — 1.

Remark 1.1.  In general, m > 2 holds because L is ample and Bs|L| = () with
L)y =n+m—1.

By using Theorem 1.1, we can classify polarized manifolds (X, L) such that L is
very ample and 3 < g(X,L) —¢(X) <5. We are planning to write a paper on
this.

The author would like to thank the referee for giving a lot of valuable
comments and suggestions.

Notation and conventions

In this paper, we shall study mainly a smooth projective variety X over the
field of complex numbers C. We will use the customary notation in Algebraic
Geometry.

2. Preliminaries

DerFINITION 2.1. (1) Let (X,L) and (X',L’) be polarized manifolds with
dim X =dim X' =n. Then (X,L) is called a simple blowing up of
(X',L") if X is the blowing up of X’ at a point of X’ and L =
n*(L") — E, where n:X — X' denotes its blowing up and E is the
exceptional divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and L (resp.
A) an ample line bundle on X (resp. M). Then we say that (M, 4) is a
reduction of (X, L) if there exists a birational morphism g : X — M such
that u is a composition of simple blowing ups and (M, 4) is not obtained
by a simple blowing up of any polarized manifold. In this case the map
u is called the reduction map.

Remark 2.1. Let (X,L) be a polarized manifold and let (M,A4) be a
reduction of (X,L). Then the following hold.

(1) g(XaL) = g(MvA)'

(2) A" — L" =1t, where ¢t is the number of simple blowing ups of (M, A4).

ProOPOSITION 2.1.  Let X and M be smooth projective varieties with dim X =
dim M =n >3, and let L and A be ample line bundles on X and M respectively
such that (X, L) is obtained by a finite number of simple blowing ups of (M, A) and
Ky + (n—2)A is nef. Let u: X — M be its birational morphism. Assume that
Bs|L| =0. Then dim Bs|A| <0 holds and for any general member D € |L| we
have Bs|Lp| =0, w(D) € |A| is smooth, (D,Lp) is obtained by a finite number of
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simple blowing ups of (u(D),Ayp)) via ulp: D — u(D), dim Bs|4,p)| <0 and
Kypy + (n—3)A,p) is nef.

Proof. We note that dim Bs|4| < 0 since Bs|L| =0 and (X, L) is obtained
by a finite number of simple blowing ups of (M, 4). By [19, Proposition 2.1] we
see that u(D) € |4| is smooth, (D,Lp) is obtained by a finite number of simple
blowing ups of (u(D), A,p)) via u|, : D — u(D). Because Bs|Lp| = 0, we have
dim Bs|4,p)| <0. Since Ky + (n—2)A4 is nef, so is K,p) + (n—3)A4,p) by
adjunction formula. O

ProposITION 2.2. Let (X,L) and (M, A) be polarized manifolds with n =
dim X =dim M > 3. Assume that Bs|L| =0, (X,L) is obtained by a finite
number of simple blowing ups of (M, A), and Ky + (n— 2)A is nef. Then there
exists a polarized surface (S,H) such that S is smooth, A" = H?, dim Bs|H| <0,
g(S,H) = g(XvL)> q(X) = q(S)a Ky is }’l@f; and hO(H) = hO(A) - (I’l - 2)

Proof. By Proposition 2.1 we see that there exist smooth projective varieties
X; and M; of dimension n —i for 1 <i <n — 2 and ample line bundles L; and 4;
on X; and M; respectively such that X;e|L;,_;| and M; €|4;-1|, and (X;,L;) is
obtained by a finite number of simple blowing ups of (M;, A;), where Xj := X,
M() = M, LO = L, A() = A, Li = Li—llX[ and A[ = Ai—l‘M,»' We set S := Mn_z
and H := A, ;. Then we see from Proposition 2.1 that S is smooth, A" = H?,
dim Bs|H| <0, ¢g(X,L)=g(M,A)=g(S,H) and ¢(X)=¢q(M)=¢(S) hold.
Finally we see from the exact sequence

0—>(9xi—>A,'—>A,'+1—>O

that
WOH) = h"(A,2) = h°(A4,3) =1 = h%(A,4) =2 > --- = h%(4y) — (n—2)
=h%(4) — (n—2).
So we get the assertion. 0

ProposITION 2.3. Let (X,L) and (M,A) be polarized manifolds with n =
dim X =dim M >3. Assume that Bs|L| =0, (X,L) is obtained by a finite
number of simple blowing ups of (M,A), and Ky + (n—2)A is nef. Then
(X, L) = y(M,A) > 1, where y(X,L) (resp. x5 (M, A)) denotes the second
sectional H-arithmetic genus of (X,L) (resp. (M, A)) (see [17, Definition 2.1]).

Proof. Since Ky + (n —2)A4 is nef, we have x(Ky + (n —2)A4) > 0 by the
nonvanishing theorem [26, (0.2)].

If 0<wk(Ky+(n—2)4)<1, then by [17, Theorem 3.2.1] we get
2(M,A) = 1.

Next we consider the case of x(Ky + (n—2)4) > 2. By the argument in
[17, Remark 2.2] and the proof of Proposition 2.2, there exists a smooth
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projective surface S such that x4/ (M, A) = y(Os). Furthermore we see from [17,

Proposition 2.1 (1)] that x(S) =2. Hence by Castelnuovo’s theorem y(0s) > 1
holds. Therefore we have y3(M,A4) > 1.

Since y(X,L) = (M, A) by [17, Remark 2.1 (5)], we get the assertion.

O

DeriNITION 2.2, Let (X, L) be a polarized manifold of dimension n.

(1) We say that (X,L) is a scroll (resp. quadric fibration) over a normal
projective variety Y of dimension m with 1 <m < n if there exists a
surjective morphism with connected fibers f: X — Y such that Ky +
(n—m+1)L=f*A (resp. Ky + (n—m)L = f*A4) for some ample line
bundle 4 on Y.

(2) (X,L) is called a classical scroll over a normal variety Y if there exists a
vector bundle & on Y such that X =~ Py(&) and L = H(&), where H(&)
is the tautological line bundle.

(3) We say that (X,L) is a hyperquadric fibration over a smooth projective
curve C if (X, L) is a quadric fibration over C such that the morphism
f:X — C is the contraction morphism of an extremal ray. In this
case, if n >3, then (F,Lr) = (Q"", Og»1(1)) for any general fiber F* of
£, every fiber of f is irreducible and reduced (see [22] or [5, Claim (3.1)])
and h*(X,C) = 2.

THEOREM 2.1. Let (X,L) be a polarized manifold with n=dim X > 3.
Then (X,L) is one of the following types:

(1) (P",Opr(1)).
(2) 4 croll over a smooth projective curve.
(3) (Q", Gor(1))-
(4) Ky ~—(n—1)L, that is, (X,L) is a Del Pezzo manifold.
(5) A hyperquadric fibration over a smooth projective curve.
(6) A classical scroll over a smooth projective surface.
(7) Let (M,A) be a reduction of (X,L).
(7.1) 1= 4, (M, A) = (P*,Cpa(2)).
(7.2) n=3, (M, A) = (Q@())
(7.3) n =3, (M A) = (P @P3(3))
(74) n=3, M is a P? -bundle over a smooth projective curve C with
( 7A| ) = (P%,0p2(2)) for any fiber F of it.

(7.5) Ku +F(n —2)A4 is nef.

Proof. See [2, Proposition 7.2.2, Theorem 7.2.3, Theorem 7.2.4, Theorem
7.3.2, and Theorem 7.3.4]. See also [6, (11.2), (11.7) and (11.8) in Chapter 1I] or
[22, Theorem in Section 1]. O

Remark 2.2. (1) A polarized manifold (X, L) in the case 2 in [2, Theorem
7.3.2] is a quadric fibration over a smooth curve. If (X, L) is a quadric
fibration over a smooth curve C with dim X > 3, then by [2, Theorem
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14.2.1] and the proof of [22, Lemma (c) in Section 1], we see that (X, L)
is one of the following:

(a) A hyperquadric fibration over C.

(b) A classical scroll over a smooth surface with dim X = 3.

(2) A polarized manifold (X, L) in the case 3 in [2, Theorem 7.3.2] is a scroll
over a normal surface. If (X,L) is a scroll over a normal surface S,
then we can prove that S is smooth and (X, L) is a classical scroll over S
(see [2, Theorem 11.1.1]).

(3) In the case 4 in [2, Theorem 7.3.4], the reduction (M, A) of (X,L) has
the property that there exist a smooth curve C and a surjective morphism
f+ M — C with connected fibers such that (F, 4|;) = (P?, 0p2(2)) for a
general fiber F. However, in this case we see from [6, (11.8.5), (5-i) in
the proof of (11.8) Theorem] that (F, 4|) = (P*, Op2(2)) for any fiber F
and (M, A) is the case (7.4) in Theorem 2.1 (see also [6, (13.10)]).

DEerNITION 2.3 (See [7, Definition 1.9].).

(1) Let (X, L) be a quasi-polarized surface. Then (X, L) is called L-minimal
if LE >0 for any (—1)-curve E on X.

(2) For any quasi-polarized surface (X, L), there is a quasi-polarized surface
(S,4) and a birational morphism u: X — S such that L = u*(A4) and
(S, A4) is A-minimal. Then we call (S, A) an L-minimalization of (X,L).

Remark 2.3. If (X,L) is a polarized surface, then (X, L) is L-minimal.

TueoreM 2.2. Let (X,L) be a quasi-polarized surface with h°(L) > 2 and
k(X) =2 Assume that g(X,L) = q(X)+m for m>0. Then L*> <2m. More-
over if L?> =2m and (X,L) is L-minimal, then X = C; x C, and L = C; 4 2C,,
where Ci and C, are smooth curves with g(Cy) =2 and g(C,) = 2.

Proof. We obtain this assertion by using [10, Theorem 3.1] and the fact that
L? <2m is equivalent to KyL > 2q(X) — 2. O

THEOREM 2.3. Let (X,L) be a quasi-polarized surface with k(X) =0 or 1.
Assume that g(X,L) = q(X)+m. Then L* <2m+2.
If this equality holds and (X,L) is L-minimal, then (X,L) is one of the
following;
(1) The case where k(X) = 0.
X is an Abelian surface and L is any nef and big divisor.
(2) The case where k(X) = 1.
X=FxCand L=C+ (m+ 1)F, where F and C are smooth projective
curves with g(C) =2 and g(F) = 1.

Proof. We get the assertion by using [10, Theorem 2.1] and the fact that
L? <2m+2 is equivalent to KyL >2q(X) — 4. O
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THEOREM 2.4. Let X be a smooth projective surface, and let & be an ample
and spanned vector bundle of rank r>2 on X.

(1) If c2(6) =1, then (X,8) = (P?, 0p(1)®?).

(2) If c2(8) =2, then r=2 and (X, &) is one of the following pairs:

(21) (X7 5) = (P27 @Pz(l) @ (OPZ(2>>

(22) (X.6) = (Q% Cp(1) @ (e (1),

(2.3) X is isomorphic to a geometrically ruled surface Pc(F) over an
elliptic curve C with the projection 7 :Pc(F)— C and with the
tautological line bundle H(F), and & = n*(9) ® H(F), where F
and 9 are indecomposable rank two vector bundles on C of degree 1.

(2.4) There exists a finite morphism f : X — P? of degree 2 and & ~

[ (Op(1)%).
Proof. (1) See [2, Theorem 11.1.3].
(2) See [25, Theorem 6.1] and [23, Corollary]. O

Lemma 2.1. Let (X,L) be a polarized manifold with dim X =n > 3,
Bs|L| =0, g(X,L)=q(X)+m, and h°(L)=n+m—1. If L" <2m—2, then
qX)=0, gX,L)y=m=A(X,L)+1 and L"=2A(X,L)=2m—2, where
A(X,L) is the A-genus of (X,L) (see [06]).

Proof. Then AX,L)=n+L"—h(L)<n+2m—-2—(n+m—1)=m—1,
Hence we get

(1) g(X,L) > q(X)+AX,L)+1>A(X,L).
We set 1:=m —1—A(X,L), where ¢ is a non-negative integer. Then

m—t=AX,L)+1=n+L"—h"(L)+1
=n+L"—n—m+2
=L"—m+2.

So we obtain L" =2m—2 —t=2A(X,L) +t>2A(X,L).

If t>0, then L" > 2A(X,L)+ 1 and we get ¢(X) =0 and m =g(X,L)
A(X, L) by [6, (I.3.5)], but this is a contradiction by (1). Hence t =0, A(X, L)
m—1, and L" =2A(X,L) =2m — 2.

Next we prove that ¢(X)=0. If ¢(X) >0, then g(X,L)>=m+1=
A(X,L)+2. Hence by [4, Corollary (1.10)] (X, L) is a hyperelliptic polarized
manifold. By [4, (6.1) Table II] we see that (X,L) is a scroll over a smooth
curve. Then m = 0 holds because g(X,L) = ¢(X). However, since L is ample
and spanned with #°(L) =n+m—1, we have m >2 and this is impossible.

O

LemmaA 2.2. Let (X,L) be a polarized manifold of dimension n > 3. Let
m=g(X,L)—q(X) and let (M,A) be a reduction of (X,L). Assume that
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Pic(M)~Z, Bs|L| =0, h°(L)=n+m—1 and L" <2m—2. Then (X,L)=
(M, A).

Proof. By Lemma 2.1 we see that ¢(X) =0, g(X,L)=AX,L)+1=m
and L" =2m —2=2A(X,L). Then we see from [4, (1.4) Theorem]| that (X, L)
is either a Mukai manifold® or a hyperelliptic polarized manifold.

Assume that (X, L) # (M, A). Then there exist polarized manifolds (X;, L;)
and birational morphisms g, : X;-1 — X; for i=1,...,s such that (Xy,Lo) =
(X,L), (X5,Ls) =(M,A) and y; is a simple blowing up of (X;,L;). We set
wi=p,o---ou. Let E; be the exceptional divisor of y;.

(A) If (X,L) is a Mukai manifold, then Ox(Ky + (n —2)L) = Ox. Since
Ky =p{(Kx,)+(n—1)E; and L=yu{(L;)—E;, we have Ky+ (n—2)L =
Ui (Kx, + (n—2)L;) + E;. So we get

(2) i (Ky, + (n—2)Ly) = —E)

by assumption. Since 0 < 7°(u;(Ky, + (n—2)Ly) + E1) = hi°(Ky, + (n — 2)Ly),
we infer that u;(Ky, + (n —2)L;)H""! >0 for any ample line bundle H on X.
On the other hand, since H is ample and E; is a nonzero effective divisor, we
have (—E;)H"! <0. So we get a contradiction from (2). Therefore the case
where (X, L) is a Mukai manifold is impossible.

(B) Next we consider the case where (X,L) is a hyperelliptic polarized
manifold. First we note that b(X) > 2 since we assume that (X, L) # (M, A4).
So by [4, (6.1) Table 1I] we see that (X,L) is the type (21”(5)+ ).

In this case, X is a double covering of a projective bundle Ppl(é’) over P!,
where & is a vector bundle on P'. Let 7: X — Ppi(&) be the morphism of the
double covermg and let p:Ppi(6) — P! be the pr0]ect10n Then f:=pomn:
X — P! is a surjective morphism. Since E; =« X and P"! @ E|, we see that
f(E) is a point. Therefore by using [2, Lemma 4.1.13] we infer that there
exists a surjective morphism f; : X; — P! such that f = fj oy,. By iterating this
process, there exists a surjective morphism f; : X; — P! with connected fibers such
that f; = fis1 0u;yq for each i. In particular there exists a surjective morphism
fi: M = X, — P! with connected fibers such that f = fyou,o---ou = fiopu,
but this is impossible because Pic(M) =~ Z. Therefore we get the assertion.

U

Lemma 2.3. Let a polarized manifold (X,L) be a classical scroll over a
smooth projective surface Y with n=dim X >3 and g(X) > 0. Assume that
Bs|L| =0, g(X,L)=q(X)+m, i°(L)=n+m—1, and x(Y) = —oo. Then

(i) If Y is relatively minimal, then

2m—n+1

X)<1 .
O B P

YA polarized manifold (X,L) is called a Mukai manifold if Oy(Ky + (n—2)L) = Oy. In [4]
Fujita used the terminology “Fano-K3 variety”.
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(i) If Y is not relatively minimal, then

dm — 1
<l4e—om—"
1) < Tt g o 1 16

Proof (See also [8, Lemma 1.21] and [13, Lemma 1.7].). Let & be an
ample vector bundle of rankn —1 on Y such that X =Py(&) and L = H(&),
where H(&) is the tautological line bundle on Py(&). Let N =¢(&). We note
that N is ample and spanned. Since (Y, N) is not scroll over a smooth curve,
we have g(Y,N) >2¢(Y) by k(Y) = —oo0 and [8, Lemma 1.16]. Moreover we
note that ¢,(&) > 1 holds since & is ample.

(a) The case in which Y is relatively minimal.

(a.1) The case in which ¢;(&) > 3.

Since ¢(Y) > 0 by assumption, we see that Y is a P!-bundle over a smooth curve
C with g(C) >0. Let & be a vector bundle of rank two on C such that
Y =Pc(#). Let n:Y — C be the projection and let Cy be a minimal section
of = with e = —Cg. Let F, be a fiber of 7. We put N =aCy+ bF,. Then

(3) n—1=rank(é) < a = NF;.
On the other hand, we get
KyN =2¢(Y) =2+ (a—1)(2¢(Y) — 2) + ae — 2b.

Cramm 2.1. 2b—ae = (a—1)(2q(Y) —2)+2 holds.

Proof. 1f 2b—ae < (a—1)(2q(Y) —2) + 1, then KyN >2¢(Y) —3 by the
above equality, that is, N> <2m+1. (We note that g(Y,N)=g(X,L)=
g(X) +m = g(¥) +m)

On the other hand, since (&) >3 and L" = N2~ (&), we get L" <
2m—2. By Lemma 2.1, we get ¢(Y) =¢(X) =0 and this is a contradiction.

O

Therefore by (3) and Claim 2.1 we get the following:

4) N? =2ab — d’e
=a(2b — ae)
>ala—1)2¢(Y) —2)+2a
>2n—1)(n-2)(g(Y)=1)+2(n—-1).

Furthermore since ¢(Y) > 0 and (Y, N) is not scroll, Ky + N is nef. Hence we
have the following:

(5) 0<(Ky+N)?=
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By the inequalities (4) and (5) we get

2m—n+1
= < .

(a.2) The case in which (&) < 2.

Then by (&) <2 we get ¢(Y) <1 by Theorem 2.4. Since ¢(Y) > 0, we
have ¢(Y) =1, and by Theorem 2.4 we have n = 3. On the other hand since L
is ample with Bs|L| = 0 and 42°(L) =n+m — 1, we get m>2. So in this case
we obtain

2m—2 2m—n+1

=1+

1= g(¥) = q(X) < 1 m—n+l
9(Y) = q(X) <1+, 72 —3n+4

(b) The case in which Y is not relatively minimal.

Let Y’ be the relatively minimal model of Y and let 4: ¥ — Y’ be its birational
morphism. Since ¢(¥)=¢(X)>0, Y’ is a P!'-bundle over a smooth curve
C. Let n/:Y" — C be the projection. Here we note that ¢(Y)=q(Y’).
We put u=py,0---opuy, where ; : Y-y — Y; is one point blowing up, Yy :=Y
and Y,:=Y'. Let E; be the p-exceptional curve. Let Ny:=N and N; =
(4),(Ni—1). Then N, = (;)"(N;) — mE; for some positive integer n;. We put
N':=N,. Let N' =aCy+ bF,, where Cy is a minimal section of ' and Fy is
a fiber of #/. Then we obtain

t
KyN =Ky N'+> n;
i=1
and
Ky N'=2q(Y') =2+ (a—1)(2¢(Y") — 2) + ae — 2b.
CLamM 22, 2b—ae > (a—1)(2¢(Y') —2) + 3L, n; holds.

Proof. If 2b—ae+1<(a—1)2q(Y')=2)+> 7 ,m, then KyN >
2q(Y') —1=2¢q(Y)—1, that is, N> <2m—1 because ¢g(Y,N)=q(Y)+m.
So we get

L"+1<L"+c(6)=N><2m—1.

Hence L" < 2m —2. By Lemma 2.1 we get ¢(X) = 0 and this is a contradiction
by hypothesis. ]

By Claim 2.2 we get

(N')? = a(2b —ae) = a(a— 1)(2q(Y') - 2) + az,:n[.
i=1
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On the other hand, we get a = NF = N;_F;_1 > N, E; = n; for each i, where F
(resp. Fi—1) isafiberof ' op: Y — C (resp. n’ oy, 0---op;: Yioy — C). Hence

(6) (N')? > ala—1)(2g(Y") = 2) + > _n?.
i=1

Furthermore since ¢(Y) > 0 and (Y, N) is not scroll, Ky + N is nef and we have

0<(Ky+N)>

13

=(Ky +N)* =Y (m— 1)

i=1
=4(g(Y'\N') = 2q(Y) + 1) = (N')* = (= 1)’
i=1

= (V) + 1)~ (V)Y 2l 1) = 3~ 1)
i=1

P
because ¢(Y')+m=¢q(Y)+m=g(Y ,N)=g(Y',N') =3 ini(n;—1). Hence

() (N)? <4(m—q(Y") + 1)+ _(n] - 1).
i=1

Since Y is not minimal, we get a = N'Fp = NF > 2 rank(&) = 2(n — 1), where F
is a fiber of #’ou: Y — C. Hence by (6) we get

(8) (N >2(n—1)2n—3)(2¢(Y") = 2) + an.

Therefore by the above inequalities (8) and (7), we see that
2n—1)(2n=3)(2q(Y")=2) <4(m—q(Y')+1)—1¢
<4m+3—4q(Y").
So we obtain
Lo Am-1
8n% —20n + 16
This completes the proof of Lemma 2.3. O

3. The proof of Theorem 1.1

In this section we are going to give a proof of Theorem 1.1.

Proof. (A) The case in which (X,L) is not any type from (1) to (7.4)
in Theorem 2.1.
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Let (M, A) be a reduction of (X,L). In this case, we see from the assump-
tion that Ky + (n—2)A4 is nef (see Theorem 2.1). Then by Proposition 2.2
there exists a polarized surface (S, H) such that S is smooth, dim Bs|H| <0,
q(X) =4q(S), 9(S,H) = g(X,L) = q(X) + m = ¢q(S) + m, Ks is nef and h°(H) >
h(4)—(n—2)>h°(L)— (n—2)=m+1. Since Kg is nef, we see that S is
minimal with #(S) > 0.

(A.1) The case in which 4A°(H)=m+ 1.

We use [14, Theorem 2.1]. Then (S, H) is one of the types from (M-1) to
(M-3-6) in [14, Theorem 2.1].

First we consider the case where (S, H) is the type (M-1) in [14, Theorem
2.1]. In this case, A" = 1 because H> = 1. Hence (M, A4) = (X,L) and L" = 1.
Since Bs|L| =0, we have A(X,L) =0 and Ky + (n —2)L is not nef. However,
this is impossible by the assumption in (A).

Next we consider the case where (S, H) is the type (M-3-6) in [14, Theorem
2.1]. Then S is an abelian surface, but this is impossible because any abelian
surface cannot be an ample divisor of a smooth projective 3-fold (see [3,
Proposition (2.2)]).

Next we consider the case where (S, H) is the types from (M-2-1) to (M-2-6)
in [14, Theorem 2.1]. Then S is a relatively minimal elliptic fibration over a
smooth curve C with y(0s) =0. On the other hand, by the argument in [17,
Remark 2.2] we see that y(Os) = ¥ (M, A), and by Proposition 2.3 we have
(M, 4) > 1. So we get y(Cs) > 1, but this is a contradiction.

Next we consider the case where (S, H) is the types from (M-3-1) to (M-3-5)
in [14, Theorem 2.1]. Then x(S) = 0. By using results in [4], we get 1°(Ks) = 1.
(For example, see [4, (6.1)].) Since S is minimal, we have Ks = 0s. By the
Lefschetz theorem for Picard groups (see e.g. [6, (7.1) Theorem 5)]) we see
that Ky + (n —2)A4 = Oy, that is, (M, A) is a Mukai manifold. In particular,
g(X)=¢q(M)=0 and g(X,L)=g(M,A)=1+(1/2)A". So we get L" < 4"
=2m—2. We see from h°(L)=n+m—1 and Bs|L| =0 that L" =2m—2
holds by Lemma 2.1. Hence L" = A" and so (X,L) = (M, A). This is the type
(7) in Theorem 1.1.

(A.2) The case where h°(H) = m+ 2.

Since dim Bs|H| <0 and ¢(S,H) = ¢q(S) + m, we get x(S) =—oo by [I5,
Theorem 2.1], but this is impossible because Ks is nef.

(B) The case in which (X, L) is one of the types from (1) to (7.4) in Theorem
2.1.

(B.1) If (X, L) is one of the types (1), (2), (3) in Theorem 2.1, then we have
g(X,L)=¢q(X). Hence h°(L) =n+m—1=n— 1by our hypothesis. However,
since L is ample with Bs|L| =0, we get h°(L) >n+1 and this is impossible.

(B.2) If (X, L) is the type (4) in Theorem 2.1, then m = g(X,L) — ¢(X) =
1-0=1and hi°(L) =n+m—1=n. However, this is impossible because L is
ample and Bs|L| = 0.

(B.3) Assume that (X, L) is the type (5) in Theorem 2.1. Let f: X — W
be a hyperquadric fibration over a smooth curve W. We put & := f.(L). Then
& is a locally free sheaf of rank n+1 on W. Let n:Py (&) — W be the
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projective bundle map. Then there exists an embedding 7: X — Py (&) such
that X € |2H (&) + n*B| for some B € Pic(W), where H(&) is the tautological line
bundle on Py (&). Let b:=deg B, e :=ci(8), d:=L", and s:=2e+ (n+ 1)b.
Then by easy calculations we get d =2e¢+b and g(X)=m+1—e—b. So we
have

9) (n—1)d+s+2ng(X) =2n(m+1).

By [5, (3.3)], we have s > 0. 3 om—1
If d <2m—2, then we see from Lemma 2.1 that ¢(X)=0< §+ >
If d >2m — 1, then by (9) we get "

(2m—1)(n—=1) +s42nq(X) < 2n(m+1).

Since s > 0, we obtain
2ng(X) <2n(m+1)— 2m—1)(n—1)
=3n+2m—1.
Therefore
2m—1

3
X)<2 .
1X) < 3+—,

This case is the type (1) in Theorem 1.1.

(B.4) Assume that (X, L) is the type (6) in Theorem 2.1. Letzn:X — Y be
its P""2-bundle, where Y is a smooth projective surface. Let & be an ample
vector bundle on Y of rank n— 1 such that X = Py(&) and L = H(&), where
H(&) is the tautological line bundle on Py(&). Then we can prove the
following.

CrLamm 3.1. x(Y) = —o0 holds.

Proof. Here we put B:=c(&).

(o) The case in which (&) = 3.

(2.1) The case in which x(Y) = 2.

Then B? <2m by Theorem 2.2 because ¢(Y,B) =g(X,L) =
q(Y)+m. Since L"+ cy(&) = B%, we have L" = B> — ¢y(&) < 2m
Lemma 2.1 this is impossible.

(2.2) The case in which x(Y) =10 or 1.

In this case B> <2m +2 by Theorem 2.3.

(0.2.1) If B> <2m + 1, then L" = B> — ¢,(&) < 2m — 2 and so by Lemma 2.1
we have g(X,L) =m and L" = 2m — 2. In particular, (Ky + (n —2)L)L""' =0
holds. So we get

Then B is ample and spanned.

q(X) +m =
—3. So by

0

(Kx + (n—2)L)L"!
= (—H(&) + 7" (Ky + c1(6)) H(6)"
= Cz(g) + Kycl(g).



COMPLEX n-FOLDS POLARIZED BY AN AMPLE LINE BUNDLE 47

Since k(Y) > 0, we have Kyc;(£) > 0. On the other hand ¢;(&) > 0 because &
is ample. Hence ¢,(&) + Kyci(£) > 0 and this is impossible.

(¢.2.2) Next we consider the case where B> =2m + 2.

(2.2.2.1) First we assume that x(Y)=1. Then Theorem 2.3 (2) we have
Y=FxCand B=C+ (m+ 1)F, where F is a smooth elliptic curve and C is
a smooth projective curve of genus g(C) > 2. Then BF = 1. Moreover since B
is generated by its global sections, so is Br. Hence we see that F ~ P!, but this
is a contradiction. Therefore this case cannot occur.

(2.2.2.2) Next we consider the case where x(Y)=0. Then we see from
Theorem 2.3 (1) that Y is an Abelian surface. In this case, h°(B) =m+1
because 1°(B) = B?/2. We note that Ky + B is ample. Hence (X, L) is a scroll
over Y in the sense of Definition 2.2 (1) because Ky + (n — 1)L = n*(Ky + B).
Since L is base point free, there exists a ladder X =: Xy > X; > --- o X,,_» such
that X; is a smooth projective variety of dimension n —i with X;e [L|y | for
1 <i<n-—2. Then we note that

(10) R(Lly )=>m+1

because h°(L) =n+m—1 from the assumption. By [2, Theorem 11.1.2] and
the proof of [2, Theorem 11.1.1], we see that (Y,B) is a reduction of
(Xy—2,L|y ). Since B is spanned by its global sections, we have /°(L|y )<
h°(B )—m+1 but this contradicts to (10). Therefore this case also cannot
occur.

We see from (a.1) and (2.2) that x(Y) = —co holds if ¢2(&) = 3.

(f) The case in which (&) < 2.

Assume that x(Y) > 0. Then by Theorem 2.4, we have rank(&) =2, n = 3,
and (Y, B) is the following type: There exists a finite morphism f: Y — P? of
degree 2 such that & =~ f*(@],z(l)@z). Since x(Y) >0, we see that the branch
locus is an element of the complete linear system of (p:(2a), where a is an
integer with @ > 3. So in particular we get

(11) RO(L) = 10(&) = K (/" (Cp2(1)®?)
= 2(h°(Op2(1)) + 1°(Op2(1) ® Cp2(~a)))
=0.

On the other hand, since ¢(X) =¢(Y) =0,

m:q(X)+m:g(X,L):g(Y,B)
= L3 (K + Ops(a) £ £ (Cpa(2))S ()
=1+ (Op2(=3) + Op2(a) + Op2(2)) Op2(2)
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However, since /(L) =n+m—1=m+2=2a+1, by (11) we have a =5/2
and this is a contradiction. Hence x(Y) = —oo holds if ¢,(&) < 2.
By (x) and (), we get the assertion of Claim 3.1. O

Hence we get the type (2) in Theorem 1.1 by Claim 3.1 and Lemma 2.3.

(B.5) Next we consider the types from (7.1) to (7.4) in Theorem 2.1. Let ¢
be the number of simple blowing ups of (M,A4). For 1 <i<t, let (X;,L;) be a
polarized manifold, let g, : X;—1 — X; be the birational morphism of a simple
blowing up of (Xj, L;), and let E; be the exceptional divisor of y;. Here we set
(X07L0) = (XaL) and (X;th) = (M’A)

(B.5.1) Assume that (M, A) is the types (7.1) (resp. (7.2), (7.3)) in Theorem
2.1, that is, (M,A)=(P* 0ps(2)) (resp. (Q°,C43(2)), (P*,0ps(3))). Then
g(M,A) =5 (resp. 5, 10), A* =16 (resp. 4° =16, A3 =27). Since g(M) =0
(resp. 0, 0), we have m = 5 (resp. 5, 10). Hence by assumption we have h°(L) =
n+m—1=38 (resp. 7, 12). On the other hand 4°(4) = 15 (resp. 14, 20). Here
we note that we have h°(L;) — 1 < h°(L;_;) < h%(L;) for each i by the following
exact sequence

(12) 0— Ly — p' (L) = O — 0.

Hence ¢ > 7 (resp. t > 7, t > 8) because h°(4) — h°(L) =7 (resp. 7, 8).

If t>8 (resp. t>8, t>9), then L*=A4% -1 <8=2m—2 (resp. L3 =
A} —1<8=2m—-2, L3’=A4°—-t<18=2m—2). However, by Lemma 2.2,
this case cannot occur. Hence we have t=7 (resp. t=7, t =8). Therefore
we get the type (3) (resp. (4), (5)) in Theorem 1.1.

(B.5.2) Assume that (M, A) is the type (7.4) in Theorem 2.1. Let H =
Ky +2A. Then (M,H) is a scroll over C. So there exists an ample vector
bundle & of rank three on C such that M = Pc(&) and H = H(&). Further-
more there exists a line bundle B on C such that 4 =2H(&) + f*(B), where
f M =Pc(8) — C is the projection. We set e :=deg & and b := deg B. Then
we get the following equations (see e.g. [6, (13.10)]).

(13) g(X, L) =g(M,A) =1+ 2e+ 2b,
(14) A3 = 8e + 12b,
(15) 2q(M) =2+ e+2b=0.

We see from (13) and (15) that
g X, L)=g(M,A)=1+2e+2b
:q(M)+%(e+2b)+2(e+b)
:q(X)+§e+3b.
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Therefore
5
and by (15) we have
(17) (X)—l—l( —i—2b)—1—l —&-1
q(X) = 5 (e = 3tz

that is, m = 3(1 — ¢(X)) +e. Noting that
e=deg& = H(&)' = (Ky +24)°,
we have

(18) m

31 —¢q(X)) +e
3(1— (X)) + (K +24)°.
By (14), (15), (16) and (18), we have
(19) A3 =8e+12b
=3(e+2b) + (5e+ 6b)
=3(2—-2q(M))+2m
= 4m — 2(Ky + 24)°.
We note that
A(M, Ky +24) = 3 + (Kyy + 24)° — h°(Kyy + 24),
and by [18, Corollary 3.1]> we have
HO(Ky +24) = g(M, 4) — g(M) = g(X, L) — g(X) = m.
Hence we have
(20) (Kpr +24)° =m =3+ A(M, Ky + 24).
By (19) and (20) we have
(21) A =dm — 2(Ky +24)°
=2m+6—2A(M,Ky +24).
Since 2m —2 < L3 by Lemma 2.1, we see from (21) that
(22) 2m—2<L* < A° =2m+6—2A(M,Ky +24).

49

2In this case, g2(M, A) = 0, h*(Op) = 0 and g3(M, A) = h*(0);) = 0, where g;(M, A) denotes the

ith sectional geometric genus of (M, A) (see [16, Example 2.10 (11)] for details).
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Namely we have A(M,Ky +24)<4. On the other hand, we have
AM,Ky +2A4) >0 since Ky +2A4 is ample. Therefore A(M,Ky +24) =
0,1,2,3,4.

Next we study (M, A) for each value of A(M, Ky +2A4). Before that, we
note the following.

Lemma 3.1. If g(M) =0, then t="1.
Proof. First we prove the following claim.
CLamm 3.2. 0<t<7 holds.

Proof. Since g(M) =0, we have g(M,A) = gq(M) +m =m and by (13) we
have

(23) 1 +2e+2b=m.

On the other hand, by (15) we have

(24) e+2b=2.
By (23) and (24) we have

(25) e=m-—3,
(26) b:%(S—m).

Therefore A> =8¢+ 12b =2m+6. Since L> >2m —2 and t = A% — L3, we see
that 0 <7 < 8.

Assume that t+=8. In particular (X,L) # (M,A4). In this case L3 =
2m—2. So by Lemma 2.1 we have L*®=2A(X,L)=2m~—2 and ¢(X)=0.
We note that g(X,L) =m > A(X,L). Hence by [4, (1.4) Theorem] we see that
(X, L) is either a Mukai manifold or a hyperelliptic polarized manifold. Since
(X,L) # (M,A), we see from the proof of Lemma 2.2 that (X,L) is not a
Mukai manifold but a hyperelliptic polarized manifold of type (2”(5)2})). In
particular X is a double covering of a projective bundle Ppi(#) over P!,
where 7 is a vector bundle of rank three on P'. Let 7: X — Ppi(#) be the
double covering map and let p: Ppi(F) — P! be the projection. Here we note
that L = n*(H(#)). Since ¢ =8, there exists a divisor £ on X such that E is
the exceptional divisor of a simple blowing up x; : X — X; and L = L, — E,
where X; is a smooth projective variety and L; is an ample line bundle on
Xi. Because E =~ P?, we have (pon)(E) is a point. Therefore E is contained
in a fiber of pon. Let F,=(pon) '((pon)(E)). Then F, has at least two
components because E* =1. We note that 7| r, + Fr — F, is surjective, where
F,=p '((pon)(E)). Since n is a double covering and F, ~P? F, has two
components and n|; : E — F, is birational. Since E and F, are isomorphic to
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P? and 7| is a finite morphism, we see that 7| is an isomorphism by the Zariski
Main Theorem. Note that

(27) KyE* = (uf (Ky,) +2E)E* = 2.
Here we note that Ky = n*(Kp,, (#) + D) for some divisor D on Ppi(#). Hence
(28) KXEZ :ﬂ*(KPPl(y> +D)E2

= (7T|E)*(KF,, +D|Fp)E|E
= (Kg, + Dl ) Up2(—1)
= Ops(=3 4 D)pa(-1)
=3-b,

where we set Up:(b) = D|. Therefore (27) and (28) imply b =1. Hence
Ky = n*(=2H(F) + f*(P)) for some P ePic(P'). So we get Ky +2L =nr*0
f*(P), but then Ky + 2L is not big and this is impossible because Ky + 2L =
W (Ky +24) and Ky + 24 is ample®. Therefore the case where ¢ =8 cannot
occur, and we get the assertion of Claim 3.2. O

Next we prove the following.
Cram 3.3. h%(A) =m+9.

Proof. We note that deg(S*(6) ® B) =4de+6b=m+3 by (25) and (26).
Hence by the Riemann-Roch theorem we have

h'(4) = h°2H(&) + [*(B)) = h°(S*(6) ® B)
> deg(S?(&) ® B) + rank(S%(&) @ B)(1 — ¢(C))
= deg(S*(6) ® B) + 6

=m+9. N
Note that we see from the exact sequence (12) that
(29) ho(A4) — (L) <t
holds. Since A°(L) =m +2, by (29) and Claims 3.2 and 3.3 we have t=7.
Therefore we get the assertion of Lemma 3.1. O

(B.5.2.i) The case where A(M, Ky +2A4) =4. Then by (22) we have L3 =
A3 =2m—2. So by Lemma 2.1 we get ¢(M) = q(X) =0. Since (M, Ky +2A)
is a scroll over C, we have g(M, Ky +2A4) =q(M)=0. Hence by [6, (12.1)
Theorem] we infer that A(Ky +24) =0 and this is impossible.

3Here u: X — M denotes the reduction map.
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(B.5.2.ii) The case where A(M,Ky +24)=0. Then we see from
A(M,Ky +24) =0 that ¢(M)=0 by [6, (5.10) Theorem]. So by Lemma
3.1 we see that t=7.

(B.5.2.1ii) The case where A(M,Kjy +24)=1. Then by (21) we have
A3 =2m+4. Since L* >2m —2 by Lemma 2.1 we see that 1= 4> — L3 <6,
and by Lemma 3.1 we have ¢(M) >1. So we have

(30) g(M,KM+2A) :q(M) >1 ZA(M,KM+2A)

Here we note that e is a positive even integer by (15). Moreover since
A(M,Ky +24) =1, we see that (M, Ky +2A4) has a ladder by [6, Theorems
(4.2) and (4.15)].

CLaM 3.4. The case (B.5.2.iil) cannot occur.

Proof. (a) Assume that e >4. Then
(Ky +24)° = e > 4 = 2A(M, Ky +24) +2.

However, then by [6, (3.5) Theorem 3)] we have ¢(M) = 0 and this is impossible.
(b) Assume that e =2. Then by (15) we have b = —¢(M), and by (14) we
get

0< A®=8e+12b =16 — 12¢(M),

that is, (M) < 1. So we get g(M) =1, b= —q(M) = —1 and 4> =4. On the
other hand, since L?>2m —2, we have 2m —2 < L3 < 43> =4. Namely we
get m <3. We note that m > 2 since L is ample and spanned with 4°(L) =
n+m—1. Hence m=2 or 3. By (16) we get (e,b,m) = (2,—1,2) because b
is an integer. Then we note that L3> =23 or 4 because 2=2m—-2< L3 <
A3 =4. Since q(X)=qM) =1, g(X,L)=g(M,A) =q(M)+m=3 and L is
generated by its global sections, we see from the classification of polarized
manifolds with sectional genus three [21] that this case cannot occur.
Therefore these complete the proof of Claim 3.4. O

(B.5.2.iv) The case where A(M,Ky +2A4)=2. Then by (21) we have
A3 =2m+2. Since L’ >2m —2 by Lemma 2.1 we see that t = 43 — L? < 4,
and ¢(M) > 1 by Lemma 3.1. Moreover since h°(Ky; +24) = g(M, A) — q(M)
=m and A(M,Ky +2A4) =2 in this case, we have

(31) (K 424)° =m—1.
CLAaM 3.5. L3> 5 holds.

Proof. Assume that L3> <4. Then A3 <8 because <4 in this case.
Hence by (19) and (31) we have

8> A% =dm —2(Ky +24)° =2m +2,
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that is, m < 3. Because L is ample and spanned with h°(L) =n+m—1, we
get m > 2. Therefore m =2 or 3.
If m=2, then 4> =6 and by (14) and (16) we get
5
2=m= 7€ +3b

6=A>=8e¢+ 12b.

So we get e=1 and b = —%, but this is impossible becaue b is an integer.
If m=3, then 4> =8 and by (14) and (16) we get

5

8 = A3 =8¢+ 12b.

So we get e=2 and b = —% and this is also impossible. Therefore we get the
assertion of Claim 3.5. O

CLAM 3.6. K, +2A is generated by its global sections.

Proof. Since L is generated by its global sections with L3 > 5 and g(X, L)
=q(X)+m > q(X), we see from [2, Theorem 9.2.1] that Ky + 2L is generated
by its global sections. Since Ky + 2L = n*(Kys + 24), where n: X — M is the
reduction map, we infer that Ky + 24 is also generated by its global sections.

O
CLamm 3.7. m >4 holds.

Proof. First we note that h°(Ky +24) =g(M,A) —q(M)=m. Since
Ky +24 is ample, we see from Claim 3.6 that h°(Kjs +2A4) > 4. Therefore
we get the assertion. 0

CLamM 3.8. The case (B.5.2.iv) cannot occur.

Proof. (a) Assume that e > 6.
(a.l) If g(M) =2, then g(M,Ky+24)=q(M)=>2=A(M,Ky +24).
By Claim 3.6 (M,Ky +2A) has a ladder. Moreover

(K +24)° = e> 6 =2A(M, Ky +24) + 2.

Hence by [6, (3.5) Theorem 3)] we have g(M) =0 and this is impossible.
(a.2) If g(M) =1, then by (15) we have e +2b=0. Furthermore by (13)
we have

l+m=g(X,L)=gM,A)=1+2e¢+2b=1+e.
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Namely m =e. Thereore by (14)
2e+2=2m+2=A"=8e+12b.

However, then 6e + 12b = 2 and this is impossible because e and b are integer.
(b) Assume that e =4. Then
A(M, Ky +2A4) =3+ (Kys +24)° — h°(Kys + 24)
=34+e—-m=T7—m.
Here we note that 4 <m by Claim 3.7.
(b.1) If m > 6, then A(M,Kj; +24) < 1, but this contradicts the assumption

that A(M, Ky +24) = 2.
(b.2) If m =S5, then by e =4 and (16) we have

5:m:§e+3b:10+3b.

However, this is impossible because b is an integer.
(b.3) If m =4, then by e =4 and (16) we have

Hence we have b= —2. By (14) we have 4° =8¢+ 12h=38. On the other
hand 4% =2m+2 =10 and this is impossible.
(c) Assume that ¢ =2. Then

AM, Kpr +24) = 3+ (Kyr +24)° — h°(Kyr +24)
=3+e—-m=5-—m.

So by Claim 3.7 we have A(M,Ky +24) <1, but this contradicts the
assumption that A(M, Ky + 24) = 2.
These complete the proof of Claim 3.8. O

(B.5.2.v) The case where A(M, Ky +2A4) =3. By (21) we have A3 =2m.
Since L* > 2m — 2 by Lemma 2.1 we see that t = 4> — L3 <2, and ¢(M) > 1 by
Lemma 3.1. First we prove the following.

Cramm 39. 0<tr<1 holds.

Proof. 1f t =2, then L3> =2m —2 and by Lemma 2.1 we have ¢(M) =0,
but this is impossible. O

Moreover since h°(Ky +2A4) = g(M, A) — q(M) = m and A(M, Ky +2A4) =3 in
this case, we have

(32) (Kyr +24)° = m.
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Cram 3.10. L* > 5 holds.
Proof. Assume that L°> <4. Then 4% <5 because 0 <7< 1 holds by
Claim 3.9. Hence by (19) and (32) we have
5> A% =4m —2(Ky +24)° = 2m,

that is, m < 2. Because L is ample and spanned with A°(L) =n+m — 1, we
get m > 2. Therefore m =2 and A° =2m = 4.
Then by (16) and (14) we get

5
2:m:§e—|—3b

4=A%=8e+ 12b.

So we get e=2 and b= —1. By (15) we have ¢(M) =1. Therefore g(X,L)
=g(M,A) =q(M)+m=3. Here we note that L> =3 or 4 because 7 < 1.
Since L is ample and spanned, by the classification of polarized manifolds with
sectional genus three, this case cannot occur (see [21, (3) Case (C) (3-2) or the
proof of (5-1-2)]). Therefore we get the assertion. O

By the same argument as the proof of Claims 3.6 and 3.7 we get the
following.

Cram 3.11. Ky +2A4 is generated by its global sections and m > 4.
Here we prove the following.
Cramm 3.12. The case (B.5.2.v) cannot occur.

Proof. (a) Assume that e > 8.
(a.1) If g(M) =3, then g(M,Ky+24)=q(M)=>3=A(M,Ky +24).
Moreover

(Kyr +24)° = e> 8 =2A(M, Ky +24) + 2.

Hence by Claim 3.11 and [6, (3.5) Theorem 3)] we have g(M) =0, but this is
impossible.
(a.2) If g(M) =2, then by (15) we have

(33) e+2b=-2.
Furthermore by (13) we have
24m=qX)+m=g(X,L)=g(M,A)=1+2e+2b=e— 1.
Namely m = e — 3. Therefore by (14)
2e—6=2m=A>=8e+12b.
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Namely
(34) e+2b=—1.

However, by (33) and (34) we get a contradiction.
(a.3) If g(M) =1, then by (15) we have

(35) e+2b=0.
Furthermore by (13) we have
l+m=g(X,L)y=g(M,A)=14+2e+2b=1+e.

Namely m =e. So we get ¢(M) =1 and m =e = —2b by (35).
(b) Assume that e =6. Then

A(M, Ky +24) =3+ (Ky + 24)° — i°(Kys + 24)
=34+e—-m=9—m.

Since A(M, Ky +2A4) >0, we have m <9. Here we note that 4 < m by Claim
3.11. By using (16) we get the following types.

mlel| b | AM,Ky+24)
6 |6|-3 3
916| -2 0

If m=9, then g¢(M) =0 by [6, (5.10) Theorem], but this is impossible. If
m =6, then by (15) we have ¢(M) = 1.
(c) Assume that e =4. Then
A(M, Ky +24) =3+ (Ky + 24)° — i°(Kys + 24)
=34+e—-m=T7—m.

By A(M, Ky +2A4) = 0 and Claim 3.11, we have 4 <m < 7. By (16) we get the
following types.

mlel| b | A(M,Ky+24)
4141 =2 3
7141 -1 0

If m=7, then ¢(M) =0 by [6, (5.10) Theorem], but this is impossible. If
m =4, then by (15) we have ¢(M) = 1.
(d) Assume that e =2. Then

A(M, Ky +24) =3+ (Ky + 24)° — i°(Kyy + 24)

=3+e—-m=5—-—m.
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By A(M, Ky +2A4) > 0 and Claim 3.11, we have 4 <m < 5. By (16) we get the
following types.

m|el|b|AMKy+24)

51210 0
However, if m =15, then ¢(M) =0 by [6, (5.10) Theorem|, and this is
impossible.
We see from the above argument that the following type possibly occurs.
(36) q(M) =1, e is even with e >4 and m =e = —2b.

(e) Finally we will prove that (36) cannot occur.

First we calculate /#°(4). We note that h%(4) = h°(2H(&) + f*(B)) =
h°(S*(&) ® B). Since 2H(&) + f*(B) is ample, so is &(3B) by the definition
of ampleness of &(}B) (see [24, Definition 6.2.3]), where &(3B) denotes a
Q-twisted bundle (see [24, Definition 6.2.1]). By [24, Lemma 6.2.8] we infer that
S2(6(3B)) is ample. On the other hand, S?(&)® B ~qS*(6(1B)), we see
that S*(&) ® B is ample, where ~q denotes Q-isomorphism (see [24, Definition
6.2.2]). Since g(C) =1, we see from [I, Lemma 15] that

h°(S*(6) ® B) = deg(S*(6) ® B) = 4e + 6b = e.

Therefore 71°(A4) =e. Since h°(L) =n+m —1=e+2, we have h°(L) > h°(A),
but this is impossible because (M, A) is a reduction of (X,L). Hence we get the
assertion of Claim 3.12. 0

Therefore the case where A(M, Ky + 2A4) = 0 possibly occurs, and then g(M) = 0,
that is, g(C) =0 and t =7 if (M, A) is the type (7.4) in Theorem 2.1. In this
case by (17) we have m =e+ 3. Since & is an ample vector bundle of rank
three on P!, we have ¢ > 3. Hence we get m > 6. So we get the type (6) in
Theorem 1.1.

These complete the proof of Theorem 1.1. O
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