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ON COMPLEX n-FOLDS POLARIZED BY AN AMPLE LINE

BUNDLE L WITH BsjLj ¼ j, gðX ;LÞ ¼ qðXÞ þm AND h0ðLÞ ¼ nþm� 1*

Yoshiaki Fukuma

Abstract

Let ðX ;LÞ be a polarized manifold with dim X ¼ nb 3 and BsjLj ¼ j. In this

paper, we classify ðX ;LÞ with gðX ;LÞ ¼ qðXÞ þm and h0ðLÞ ¼ nþm� 1.

1. Introduction

This is a continuation of [13]. Let X be a smooth projective variety over
the field of complex numbers C, and let L be an ample (resp. a nef and big) line
bundle on X . Then we call the pair ðX ;LÞ a polarized (resp. quasi-polarized )
manifold. The sectional genus gðX ;LÞ of ðX ;LÞ is defined as follows:

gðX ;LÞ ¼ 1þ 1

2
ðKX þ ðn� 1ÞLÞLn�1;

where KX is the canonical line bundle of X . A classification of ðX ;LÞ with small
value of sectional genus was obtained by several authors. On the other hand,
as a problem of a lower bound for the sectional genus, Fujita proposed the
following conjecture:

Conjecture 1.1 (Fujita). Let ðX ;LÞ be a polarized manifold. Then
gðX ;LÞb qðXÞ, where qðXÞ ¼ h1ðOX Þ is the irregularity of X.

This conjecture is very di‰cult and it is unknown even for the case in which
X is a surface.

If dim BsjLja 1, then we can prove that gðX ;LÞb qðXÞ (see [9, Theorem
3.2] and [20, Theorem 3.3]). Furthermore the author proved that if ðX ;LÞ is
a quasi-polarized manifold with dim X ¼ 3 and h0ðLÞ :¼ dim H 0ðLÞb 2, then
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gðX ;LÞb qðXÞ (see [11, Theorem 2.1]). Moreover the author obtained the
classification of polarized 3-folds ðX ;LÞ with the following types:

(1) gðX ;LÞ ¼ qðXÞ and h0ðLÞb 3 ([11]).
(2) gðX ;LÞ ¼ qðXÞ þ 1 and h0ðLÞb 4 ([8]).
(3) gðX ;LÞ ¼ qðXÞ þ 2 and h0ðLÞb 5 ([12]).

On the other hand, if jLj is base point free, then we can get the classification of
polarized n-folds ðX ;LÞ with gðX ;LÞ ¼ qðXÞ, gðX ;LÞ ¼ qðXÞ þ 1, or gðX ;LÞ ¼
qðX Þ þ 2 (see [8], [11], and [12]).

By considering the result of 3-dimensional case, it is natural to consider the
following problem:

Problem 1.1. Let ðX ;LÞ be a polarized manifold with dim X ¼ n and
gðX ;LÞ ¼ qðX Þ þm, where m is a nonnegative integer. Assume that h0ðLÞb
nþm. Then classify ðX ;LÞ with these properties.

In [13], we obtained an answer of this problem if dim BsjLja 0.
The next problem it might be considered is a classification of ðX ;LÞ with

h0ðLÞ ¼ nþm� 1. In this paper, under the assumption that BsjLj ¼ j, we get
a classification of ðX ;LÞ with h0ðLÞ ¼ nþm� 1, that is, we obtain the following
main theorem.

Theorem 1.1. Let ðX ;LÞ be a polarized manifold with dim X ¼ nb 3.
Assume that BsjLj ¼ j, h0ðLÞ ¼ nþm� 1, where m ¼ gðX ;LÞ � qðXÞ. Let
ðM;AÞ be a reduction of ðX ;LÞ (see Definition 2.1 (2)). Then ðX ;LÞ is one
of the following types:

(1) ðX ;LÞ is a hyperquadric fibration over a smooth projective curve with

qðX Þa 3

2
þ 2m� 1

2n
:

(2) ðX ;LÞ is a classical scroll over a smooth projective surface Y with
kðYÞ ¼ �y.
If qðX Þ > 0 and Y is relatively minimal, then

qðX Þa 1þ 2m� nþ 1

n2 � 3nþ 4
:

If qðX Þ > 0 and Y is not relatively minimal, then

qðX Þa 1þ 4m� 1

8n2 � 20nþ 16
:

(3) ðM;AÞ ¼ ðP4;OP4ð2ÞÞ and ðX ;LÞ is obtained by 7 times simple blowing
ups of ðM;AÞ. In this case m ¼ 5.

(4) ðM;AÞ ¼ ðQ3;OQ3ð2ÞÞ and ðX ;LÞ is obtained by 7 times simple blowing
ups of ðM;AÞ. In this case m ¼ 5.

(5) ðM;AÞ ¼ ðP3;OP3ð3ÞÞ and ðX ;LÞ is obtained by 8 times simple blowing
ups of ðM;AÞ. In this case m ¼ 10.
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(6) M is a P2-bundle over P1 with ðF ;AjF Þ ¼ ðP2;OP2ð2ÞÞ for any fiber F of
it, and ðX ;LÞ is obtained by 7 times simple blowing ups of ðM;AÞ. In
this case mb 6.

(7) ðX ;LÞ is a Mukai manifold with Ln ¼ 2m� 2 and DðX ;LÞ ¼ m� 1.

Remark 1.1. In general, mb 2 holds because L is ample and BsjLj ¼ j with
h0ðLÞ ¼ nþm� 1.

By using Theorem 1.1, we can classify polarized manifolds ðX ;LÞ such that L is
very ample and 3a gðX ;LÞ � qðX Þa 5. We are planning to write a paper on
this.

The author would like to thank the referee for giving a lot of valuable
comments and suggestions.

Notation and conventions
In this paper, we shall study mainly a smooth projective variety X over the

field of complex numbers C. We will use the customary notation in Algebraic
Geometry.

2. Preliminaries

Definition 2.1. (1) Let ðX ;LÞ and ðX 0;L 0Þ be polarized manifolds with
dim X ¼ dim X 0 ¼ n. Then ðX ;LÞ is called a simple blowing up of
ðX 0;L 0Þ if X is the blowing up of X 0 at a point of X 0 and L ¼
p�ðL 0Þ � E, where p : X ! X 0 denotes its blowing up and E is the
exceptional divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and L (resp.
A) an ample line bundle on X (resp. M). Then we say that ðM;AÞ is a
reduction of ðX ;LÞ if there exists a birational morphism m : X ! M such
that m is a composition of simple blowing ups and ðM;AÞ is not obtained
by a simple blowing up of any polarized manifold. In this case the map
m is called the reduction map.

Remark 2.1. Let ðX ;LÞ be a polarized manifold and let ðM;AÞ be a
reduction of ðX ;LÞ. Then the following hold.

(1) gðX ;LÞ ¼ gðM;AÞ.
(2) An � Ln ¼ t, where t is the number of simple blowing ups of ðM;AÞ.

Proposition 2.1. Let X and M be smooth projective varieties with dim X ¼
dim M ¼ nb 3, and let L and A be ample line bundles on X and M respectively
such that ðX ;LÞ is obtained by a finite number of simple blowing ups of ðM;AÞ and
KM þ ðn� 2ÞA is nef. Let m : X ! M be its birational morphism. Assume that
BsjLj ¼ j. Then dim BsjAja 0 holds and for any general member D A jLj we
have BsjLDj ¼ j, mðDÞ A jAj is smooth, ðD;LDÞ is obtained by a finite number of
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simple blowing ups of ðmðDÞ;AmðDÞÞ via mjD : D ! mðDÞ, dim BsjAmðDÞja 0 and
KmðDÞ þ ðn� 3ÞAmðDÞ is nef.

Proof. We note that dim BsjAja 0 since BsjLj ¼ j and ðX ;LÞ is obtained
by a finite number of simple blowing ups of ðM;AÞ. By [19, Proposition 2.1] we
see that mðDÞ A jAj is smooth, ðD;LDÞ is obtained by a finite number of simple
blowing ups of ðmðDÞ;AmðDÞÞ via mjD : D ! mðDÞ. Because BsjLDj ¼ j, we have
dim BsjAmðDÞja 0. Since KM þ ðn� 2ÞA is nef, so is KmðDÞ þ ðn� 3ÞAmðDÞ by
adjunction formula. r

Proposition 2.2. Let ðX ;LÞ and ðM;AÞ be polarized manifolds with n ¼
dim X ¼ dim Mb 3. Assume that BsjLj ¼ j, ðX ;LÞ is obtained by a finite
number of simple blowing ups of ðM;AÞ, and KM þ ðn� 2ÞA is nef. Then there
exists a polarized surface ðS;HÞ such that S is smooth, An ¼ H 2, dim BsjHja 0,
gðS;HÞ ¼ gðX ;LÞ, qðXÞ ¼ qðSÞ, KS is nef, and h0ðHÞb h0ðAÞ � ðn� 2Þ.

Proof. By Proposition 2.1 we see that there exist smooth projective varieties
Xi and Mi of dimension n� i for 1a ia n� 2 and ample line bundles Li and Ai

on Xi and Mi respectively such that Xi A jLi�1j and Mi A jAi�1j, and ðXi;LiÞ is
obtained by a finite number of simple blowing ups of ðMi;AiÞ, where X0 :¼ X ,
M0 :¼ M, L0 :¼ L, A0 :¼ A, Li :¼ Li�1jXi

and Ai ¼ Ai�1jMi
. We set S :¼ Mn�2

and H :¼ An�2. Then we see from Proposition 2.1 that S is smooth, An ¼ H 2,
dim BsjHja 0, gðX ;LÞ ¼ gðM;AÞ ¼ gðS;HÞ and qðX Þ ¼ qðMÞ ¼ qðSÞ hold.
Finally we see from the exact sequence

0 ! OXi
! Ai ! Aiþ1 ! 0

that

h0ðHÞ ¼ h0ðAn�2Þb h0ðAn�3Þ � 1b h0ðAn�4Þ � 2b � � �b h0ðA0Þ � ðn� 2Þ

¼ h0ðAÞ � ðn� 2Þ:

So we get the assertion. r

Proposition 2.3. Let ðX ;LÞ and ðM;AÞ be polarized manifolds with n ¼
dim X ¼ dim Mb 3. Assume that BsjLj ¼ j, ðX ;LÞ is obtained by a finite
number of simple blowing ups of ðM;AÞ, and KM þ ðn� 2ÞA is nef. Then
wH
2 ðX ;LÞ ¼ wH

2 ðM;AÞb 1, where wH
2 ðX ;LÞ (resp. wH

2 ðM;AÞ) denotes the second
sectional H-arithmetic genus of ðX ;LÞ (resp. ðM;AÞ) (see [17, Definition 2.1]).

Proof. Since KM þ ðn� 2ÞA is nef, we have kðKM þ ðn� 2ÞAÞb 0 by the
nonvanishing theorem [26, (0.2)].

If 0a kðKM þ ðn� 2ÞAÞa 1, then by [17, Theorem 3.2.1] we get
wH
2 ðM;AÞb 1.

Next we consider the case of kðKM þ ðn� 2ÞAÞb 2. By the argument in
[17, Remark 2.2] and the proof of Proposition 2.2, there exists a smooth
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projective surface S such that wH
2 ðM;AÞ ¼ wðOSÞ. Furthermore we see from [17,

Proposition 2.1 (1)] that kðSÞ ¼ 2. Hence by Castelnuovo’s theorem wðOSÞb 1
holds. Therefore we have wH

2 ðM;AÞb 1.
Since wH

2 ðX ;LÞ ¼ wH
2 ðM;AÞ by [17, Remark 2.1 (5)], we get the assertion.

r

Definition 2.2. Let ðX ;LÞ be a polarized manifold of dimension n.
(1) We say that ðX ;LÞ is a scroll (resp. quadric fibration) over a normal

projective variety Y of dimension m with 1am < n if there exists a
surjective morphism with connected fibers f : X ! Y such that KX þ
ðn�mþ 1ÞL ¼ f �A (resp. KX þ ðn�mÞL ¼ f �A) for some ample line
bundle A on Y .

(2) ðX ;LÞ is called a classical scroll over a normal variety Y if there exists a
vector bundle E on Y such that X GPY ðEÞ and L ¼ HðEÞ, where HðEÞ
is the tautological line bundle.

(3) We say that ðX ;LÞ is a hyperquadric fibration over a smooth projective
curve C if ðX ;LÞ is a quadric fibration over C such that the morphism
f : X ! C is the contraction morphism of an extremal ray. In this
case, if nb 3, then ðF ;LF ÞG ðQn�1;OQn�1ð1ÞÞ for any general fiber F of
f , every fiber of f is irreducible and reduced (see [22] or [5, Claim (3.1)])
and h2ðX ;CÞ ¼ 2.

Theorem 2.1. Let ðX ;LÞ be a polarized manifold with n ¼ dim X b 3.
Then ðX ;LÞ is one of the following types:

(1) ðPn;OPnð1ÞÞ.
(2) A scroll over a smooth projective curve.
(3) ðQn;OQ nð1ÞÞ.
(4) KX @�ðn� 1ÞL, that is, ðX ;LÞ is a Del Pezzo manifold.
(5) A hyperquadric fibration over a smooth projective curve.
(6) A classical scroll over a smooth projective surface.
(7) Let ðM;AÞ be a reduction of ðX ;LÞ.

(7.1) n ¼ 4, ðM;AÞ ¼ ðP4;OP4ð2ÞÞ.
(7.2) n ¼ 3, ðM;AÞ ¼ ðQ3;OQ3ð2ÞÞ.
(7.3) n ¼ 3, ðM;AÞ ¼ ðP3;OP3ð3ÞÞ.
(7.4) n ¼ 3, M is a P2-bundle over a smooth projective curve C with

ðF ;AjF Þ ¼ ðP2;OP2ð2ÞÞ for any fiber F of it.
(7.5) KM þ ðn� 2ÞA is nef.

Proof. See [2, Proposition 7.2.2, Theorem 7.2.3, Theorem 7.2.4, Theorem
7.3.2, and Theorem 7.3.4]. See also [6, (11.2), (11.7) and (11.8) in Chapter II] or
[22, Theorem in Section 1]. r

Remark 2.2. (1) A polarized manifold ðX ;LÞ in the case 2 in [2, Theorem
7.3.2] is a quadric fibration over a smooth curve. If ðX ;LÞ is a quadric
fibration over a smooth curve C with dim X b 3, then by [2, Theorem
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14.2.1] and the proof of [22, Lemma (c) in Section 1], we see that ðX ;LÞ
is one of the following:
(a) A hyperquadric fibration over C.
(b) A classical scroll over a smooth surface with dim X ¼ 3.

(2) A polarized manifold ðX ;LÞ in the case 3 in [2, Theorem 7.3.2] is a scroll
over a normal surface. If ðX ;LÞ is a scroll over a normal surface S,
then we can prove that S is smooth and ðX ;LÞ is a classical scroll over S
(see [2, Theorem 11.1.1]).

(3) In the case 4 in [2, Theorem 7.3.4], the reduction ðM;AÞ of ðX ;LÞ has
the property that there exist a smooth curve C and a surjective morphism
f : M ! C with connected fibers such that ðF ;AjF Þ ¼ ðP2;OP2ð2ÞÞ for a
general fiber F . However, in this case we see from [6, (11.8.5), (5-i) in
the proof of (11.8) Theorem] that ðF ;AjF Þ ¼ ðP2;OP2ð2ÞÞ for any fiber F
and ðM;AÞ is the case (7.4) in Theorem 2.1 (see also [6, (13.10)]).

Definition 2.3 (See [7, Definition 1.9].).
(1) Let ðX ;LÞ be a quasi-polarized surface. Then ðX ;LÞ is called L-minimal

if LE > 0 for any ð�1Þ-curve E on X .
(2) For any quasi-polarized surface ðX ;LÞ, there is a quasi-polarized surface

ðS;AÞ and a birational morphism m : X ! S such that L ¼ m�ðAÞ and
ðS;AÞ is A-minimal. Then we call ðS;AÞ an L-minimalization of ðX ;LÞ.

Remark 2.3. If ðX ;LÞ is a polarized surface, then ðX ;LÞ is L-minimal.

Theorem 2.2. Let ðX ;LÞ be a quasi-polarized surface with h0ðLÞb 2 and
kðXÞ ¼ 2. Assume that gðX ;LÞ ¼ qðXÞ þm for mb 0. Then L2 a 2m. More-
over if L2 ¼ 2m and ðX ;LÞ is L-minimal, then X GC1 � C2 and L1C1 þ 2C2,
where C1 and C2 are smooth curves with gðC1Þb 2 and gðC2Þ ¼ 2.

Proof. We obtain this assertion by using [10, Theorem 3.1] and the fact that
L2 a 2m is equivalent to KXLb 2qðX Þ � 2. r

Theorem 2.3. Let ðX ;LÞ be a quasi-polarized surface with kðXÞ ¼ 0 or 1.
Assume that gðX ;LÞ ¼ qðX Þ þm. Then L2 a 2mþ 2.

If this equality holds and ðX ;LÞ is L-minimal, then ðX ;LÞ is one of the
following;

(1) The case where kðXÞ ¼ 0.
X is an Abelian surface and L is any nef and big divisor.

(2) The case where kðXÞ ¼ 1.
X GF � C and L1C þ ðmþ 1ÞF , where F and C are smooth projective
curves with gðCÞb 2 and gðF Þ ¼ 1.

Proof. We get the assertion by using [10, Theorem 2.1] and the fact that
L2 a 2mþ 2 is equivalent to KXLb 2qðXÞ � 4. r
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Theorem 2.4. Let X be a smooth projective surface, and let E be an ample
and spanned vector bundle of rank rb 2 on X.

(1) If c2ðEÞ ¼ 1, then ðX ;EÞG ðP2;OP2ð1Þl2Þ.
(2) If c2ðEÞ ¼ 2, then r ¼ 2 and ðX ;EÞ is one of the following pairs:

(2.1) ðX ;EÞG ðP2;OP2ð1ÞlOP2ð2ÞÞ.
(2.2) ðX ;EÞG ðQ2;OQ2ð1ÞlOQ2ð1ÞÞ.
(2.3) X is isomorphic to a geometrically ruled surface PCðFÞ over an

elliptic curve C with the projection p : PCðFÞ ! C and with the
tautological line bundle HðFÞ, and EG p�ðGÞnHðFÞ, where F
and G are indecomposable rank two vector bundles on C of degree 1.

(2.4) There exists a finite morphism f : X ! P2 of degree 2 and EG
f �ðOP2ð1Þl2Þ.

Proof. (1) See [2, Theorem 11.1.3].
(2) See [25, Theorem 6.1] and [23, Corollary]. r

Lemma 2.1. Let ðX ;LÞ be a polarized manifold with dim X ¼ nb 3,
BsjLj ¼ j, gðX ;LÞ ¼ qðXÞ þm, and h0ðLÞ ¼ nþm� 1. If Ln a 2m� 2, then
qðX Þ ¼ 0, gðX ;LÞ ¼ m ¼ DðX ;LÞ þ 1 and Ln ¼ 2DðX ;LÞ ¼ 2m� 2, where
DðX ;LÞ is the D-genus of ðX ;LÞ (see [6]).

Proof. Then DðX ;LÞ ¼ nþ Ln � h0ðLÞanþ 2m� 2� ðnþm� 1Þ ¼ m� 1.
Hence we get

gðX ;LÞb qðX Þ þ DðX ;LÞ þ 1 > DðX ;LÞ:ð1Þ

We set t :¼ m� 1� DðX ;LÞ, where t is a non-negative integer. Then

m� t ¼ DðX ;LÞ þ 1 ¼ nþ Ln � h0ðLÞ þ 1

¼ nþ Ln � n�mþ 2

¼ Ln �mþ 2:

So we obtain Ln ¼ 2m� 2� t ¼ 2DðX ;LÞ þ tb 2DðX ;LÞ.
If t > 0, then Ln b 2DðX ;LÞ þ 1 and we get qðXÞ ¼ 0 and m ¼ gðX ;LÞ ¼

DðX ;LÞ by [6, (I.3.5)], but this is a contradiction by (1). Hence t ¼ 0, DðX ;LÞ ¼
m� 1, and Ln ¼ 2DðX ;LÞ ¼ 2m� 2.

Next we prove that qðXÞ ¼ 0. If qðX Þ > 0, then gðX ;LÞbmþ 1 ¼
DðX ;LÞ þ 2. Hence by [4, Corollary (1.10)] ðX ;LÞ is a hyperelliptic polarized
manifold. By [4, (6.1) Table II] we see that ðX ;LÞ is a scroll over a smooth
curve. Then m ¼ 0 holds because gðX ;LÞ ¼ qðXÞ. However, since L is ample
and spanned with h0ðLÞ ¼ nþm� 1, we have mb 2 and this is impossible.

r

Lemma 2.2. Let ðX ;LÞ be a polarized manifold of dimension nb 3. Let
m ¼ gðX ;LÞ � qðXÞ and let ðM;AÞ be a reduction of ðX ;LÞ. Assume that
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PicðMÞGZ, BsjLj ¼ j, h0ðLÞ ¼ nþm� 1 and Ln a 2m� 2. Then ðX ;LÞ ¼
ðM;AÞ.

Proof. By Lemma 2.1 we see that qðXÞ ¼ 0, gðX ;LÞ ¼ DðX ;LÞ þ 1 ¼ m
and Ln ¼ 2m� 2 ¼ 2DðX ;LÞ. Then we see from [4, (1.4) Theorem] that ðX ;LÞ
is either a Mukai manifold1 or a hyperelliptic polarized manifold.

Assume that ðX ;LÞ0 ðM;AÞ. Then there exist polarized manifolds ðXi;LiÞ
and birational morphisms mi : Xi�1 ! Xi for i ¼ 1; . . . ; s such that ðX0;L0Þ ¼
ðX ;LÞ, ðXs;LsÞ ¼ ðM;AÞ and mi is a simple blowing up of ðXi;LiÞ. We set
m :¼ ms � � � � � m1. Let Ei be the exceptional divisor of mi.

(A) If ðX ;LÞ is a Mukai manifold, then OX ðKX þ ðn� 2ÞLÞ ¼ OX . Since
KX ¼ m�

1 ðKX1
Þ þ ðn� 1ÞE1 and L ¼ m�

1 ðL1Þ � E1, we have KX þ ðn� 2ÞL ¼
m�
1 ðKX1

þ ðn� 2ÞL1Þ þ E1. So we get

m�
1 ðKX1

þ ðn� 2ÞL1Þ ¼ �E1ð2Þ
by assumption. Since 0 < h0ðm�

1 ðKX1
þ ðn� 2ÞL1Þ þ E1Þ ¼ h0ðKX1

þ ðn� 2ÞL1Þ,
we infer that m�

1 ðKX1
þ ðn� 2ÞL1ÞHn�1 b 0 for any ample line bundle H on X .

On the other hand, since H is ample and E1 is a nonzero e¤ective divisor, we
have ð�E1ÞHn�1 < 0. So we get a contradiction from (2). Therefore the case
where ðX ;LÞ is a Mukai manifold is impossible.

(B) Next we consider the case where ðX ;LÞ is a hyperelliptic polarized
manifold. First we note that b2ðX Þb 2 since we assume that ðX ;LÞ0 ðM;AÞ.
So by [4, (6.1) Table II] we see that ðX ;LÞ is the type ðSnðdÞþa;bÞ.

In this case, X is a double covering of a projective bundle PP1ðEÞ over P1,
where E is a vector bundle on P1. Let p : X ! PP1ðEÞ be the morphism of the
double covering and let p : PP1ðEÞ ! P1 be the projection. Then f :¼ p � p :
X ! P1 is a surjective morphism. Since E1 HX and Pn�1 GE1, we see that
f ðE1Þ is a point. Therefore by using [2, Lemma 4.1.13] we infer that there
exists a surjective morphism f1 : X1 ! P1 such that f ¼ f1 � m1. By iterating this
process, there exists a surjective morphism fi : Xi ! P1 with connected fibers such
that fi ¼ fiþ1 � miþ1 for each i. In particular there exists a surjective morphism

fs : M ¼ Xs ! P1 with connected fibers such that f ¼ fs � ms � � � � � m1 ¼ fs � m,
but this is impossible because PicðMÞGZ. Therefore we get the assertion.

r

Lemma 2.3. Let a polarized manifold ðX ;LÞ be a classical scroll over a
smooth projective surface Y with n ¼ dim X b 3 and qðXÞ > 0. Assume that
BsjLj ¼ j, gðX ;LÞ ¼ qðX Þ þm, h0ðLÞ ¼ nþm� 1, and kðYÞ ¼ �y. Then

(i) If Y is relatively minimal, then

qðXÞa 1þ 2m� nþ 1

n2 � 3nþ 4
:

1A polarized manifold ðX ;LÞ is called a Mukai manifold if OX ðKX þ ðn� 2ÞLÞ ¼ OX . In [4]

Fujita used the terminology ‘‘Fano-K3 variety’’.
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(ii) If Y is not relatively minimal, then

qðXÞa 1þ 4m� 1

8n2 � 20nþ 16
:

Proof (See also [8, Lemma 1.21] and [13, Lemma 1.7].). Let E be an
ample vector bundle of rank n� 1 on Y such that X ¼ PY ðEÞ and L ¼ HðEÞ,
where HðEÞ is the tautological line bundle on PY ðEÞ. Let N ¼ c1ðEÞ. We note
that N is ample and spanned. Since ðY ;NÞ is not scroll over a smooth curve,
we have gðY ;NÞb 2qðY Þ by kðYÞ ¼ �y and [8, Lemma 1.16]. Moreover we
note that c2ðEÞb 1 holds since E is ample.

(a) The case in which Y is relatively minimal.
(a.1) The case in which c2ðEÞb 3.

Since qðYÞ > 0 by assumption, we see that Y is a P1-bundle over a smooth curve
C with gðCÞ > 0. Let F be a vector bundle of rank two on C such that
Y ¼ PCðFÞ. Let p : Y ! C be the projection and let C0 be a minimal section
of p with e ¼ �C 2

0 . Let Fp be a fiber of p. We put N1 aC0 þ bFp. Then

n� 1 ¼ rankðEÞa a ¼ NFp:ð3Þ

On the other hand, we get

KYN ¼ 2qðYÞ � 2þ ða� 1Þð2qðY Þ � 2Þ þ ae� 2b:

Claim 2.1. 2b� aeb ða� 1Þð2qðY Þ � 2Þ þ 2 holds.

Proof. If 2b� aea ða� 1Þð2qðYÞ � 2Þ þ 1, then KYNb 2qðY Þ � 3 by the
above equality, that is, N 2 a 2mþ 1. (We note that gðY ;NÞ ¼ gðX ;LÞ ¼
qðX Þ þm ¼ qðYÞ þm.)

On the other hand, since c2ðEÞb 3 and Ln ¼ N 2 � c2ðEÞ, we get Ln a

2m� 2. By Lemma 2.1, we get qðY Þ ¼ qðXÞ ¼ 0 and this is a contradiction.
r

Therefore by (3) and Claim 2.1 we get the following:

N 2 ¼ 2ab� a2eð4Þ
¼ að2b� aeÞ
b aða� 1Þð2qðY Þ � 2Þ þ 2a

b 2ðn� 1Þðn� 2ÞðqðYÞ � 1Þ þ 2ðn� 1Þ:

Furthermore since qðY Þ > 0 and ðY ;NÞ is not scroll, KY þN is nef. Hence we
have the following:

0a ðKY þNÞ2 ¼ 4ðgðY ;NÞ � 2qðY Þ þ 1Þ �N 2ð5Þ

¼ 4ðm� qðYÞ þ 1Þ �N 2:
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By the inequalities (4) and (5) we get

qðXÞ ¼ qðY Þa 1þ 2m� nþ 1

n2 � 3nþ 4
:

(a.2) The case in which c2ðEÞa 2.
Then by c2ðEÞa 2 we get qðY Þa 1 by Theorem 2.4. Since qðYÞ > 0, we

have qðYÞ ¼ 1, and by Theorem 2.4 we have n ¼ 3. On the other hand since L
is ample with BsjLj ¼ j and h0ðLÞ ¼ nþm� 1, we get mb 2. So in this case
we obtain

1 ¼ qðYÞ ¼ qðX Þ < 1þ 2m� 2

4
¼ 1þ 2m� nþ 1

n2 � 3nþ 4
:

(b) The case in which Y is not relatively minimal.
Let Y 0 be the relatively minimal model of Y and let m : Y ! Y 0 be its birational
morphism. Since qðY Þ ¼ qðXÞ > 0, Y 0 is a P1-bundle over a smooth curve
C. Let p 0 : Y 0 ! C be the projection. Here we note that qðY Þ ¼ qðY 0Þ.
We put m ¼ mt � � � � � m1, where mi : Yi�1 ! Yi is one point blowing up, Y0 :¼ Y
and Yt :¼ Y 0. Let Ei be the mi-exceptional curve. Let N0 :¼ N and Ni ¼
ðmiÞ�ðNi�1Þ. Then Ni�1 ¼ ðmiÞ

�ðNiÞ � niEi for some positive integer ni. We put
N 0 :¼ Nt. Let N 0 1 aC0 þ bFp 0 , where C0 is a minimal section of p 0 and Fp 0 is
a fiber of p 0. Then we obtain

KYN ¼ KY 0N 0 þ
Xt

i¼1

ni

and

KY 0N 0 ¼ 2qðY 0Þ � 2þ ða� 1Þð2qðY 0Þ � 2Þ þ ae� 2b:

Claim 2.2. 2b� aeb ða� 1Þð2qðY 0Þ � 2Þ þ
P t

i¼1 ni holds.

Proof. If 2b� aeþ 1a ða� 1Þð2qðY 0Þ � 2Þ þ
P t

i¼1 ni, then KYNb

2qðY 0Þ � 1 ¼ 2qðY Þ � 1, that is, N 2 a 2m� 1 because gðY ;NÞ ¼ qðYÞ þm.
So we get

Ln þ 1aLn þ c2ðEÞ ¼ N 2
a 2m� 1:

Hence Ln a 2m� 2. By Lemma 2.1 we get qðXÞ ¼ 0 and this is a contradiction
by hypothesis. r

By Claim 2.2 we get

ðN 0Þ2 ¼ að2b� aeÞb aða� 1Þð2qðY 0Þ � 2Þ þ a
Xt

i¼1

ni:
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On the other hand, we get a ¼ NF ¼ Ni�1Fi�1 bNi�1Ei ¼ ni for each i, where F
(resp. Fi�1) is a fiber of p 0 � m : Y ! C (resp. p 0 � mt � � � � � mi : Yi�1 ! C). Hence

ðN 0Þ2 b aða� 1Þð2qðY 0Þ � 2Þ þ
Xt

i¼1

n2i :ð6Þ

Furthermore since qðY Þ > 0 and ðY ;NÞ is not scroll, KY þN is nef and we have

0a ðKY þNÞ2

¼ ðKY 0 þN 0Þ2 �
Xt

i¼1

ðni � 1Þ2

¼ 4ðgðY 0;N 0Þ � 2qðY 0Þ þ 1Þ � ðN 0Þ2 �
Xt

i¼1

ðni � 1Þ2

¼ 4ðm� qðY 0Þ þ 1Þ � ðN 0Þ2 þ
Xt

i¼1

2niðni � 1Þ �
Xt

i¼1

ðni � 1Þ2

because qðY 0Þ þm ¼ qðYÞ þm ¼ gðY ;NÞ ¼ gðY 0;N 0Þ �
P t

i¼1
1
2 niðni � 1Þ. Hence

ðN 0Þ2 a 4ðm� qðY 0Þ þ 1Þ þ
Xt

i¼1

ðn2i � 1Þ:ð7Þ

Since Y is not minimal, we get a ¼ N 0Fp 0 ¼ NF b 2 rankðEÞ ¼ 2ðn� 1Þ, where F
is a fiber of p 0 � m : Y ! C. Hence by (6) we get

ðN 0Þ2 b 2ðn� 1Þð2n� 3Þð2qðY 0Þ � 2Þ þ
Xt

i¼1

n2i :ð8Þ

Therefore by the above inequalities (8) and (7), we see that

2ðn� 1Þð2n� 3Þð2qðY 0Þ � 2Þa 4ðm� qðY 0Þ þ 1Þ � t

a 4mþ 3� 4qðY 0Þ:
So we obtain

qðX Þ ¼ qðYÞ ¼ qðY 0Þa 1þ 4m� 1

8n2 � 20nþ 16
:

This completes the proof of Lemma 2.3. r

3. The proof of Theorem 1.1

In this section we are going to give a proof of Theorem 1.1.

Proof. (A) The case in which ðX ;LÞ is not any type from (1) to (7.4)
in Theorem 2.1.
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Let ðM;AÞ be a reduction of ðX ;LÞ. In this case, we see from the assump-
tion that KM þ ðn� 2ÞA is nef (see Theorem 2.1). Then by Proposition 2.2
there exists a polarized surface ðS;HÞ such that S is smooth, dim BsjHja 0,
qðX Þ ¼ qðSÞ, gðS;HÞ ¼ gðX ;LÞ ¼ qðX Þ þm ¼ qðSÞ þm, KS is nef and h0ðHÞb
h0ðAÞ � ðn� 2Þb h0ðLÞ � ðn� 2Þ ¼ mþ 1. Since KS is nef, we see that S is
minimal with kðSÞb 0.

(A.1) The case in which h0ðHÞ ¼ mþ 1.
We use [14, Theorem 2.1]. Then ðS;HÞ is one of the types from (M-1) to

(M-3-6) in [14, Theorem 2.1].
First we consider the case where ðS;HÞ is the type (M-1) in [14, Theorem

2.1]. In this case, An ¼ 1 because H 2 ¼ 1. Hence ðM;AÞ ¼ ðX ;LÞ and Ln ¼ 1.
Since BsjLj ¼ j, we have DðX ;LÞ ¼ 0 and KX þ ðn� 2ÞL is not nef. However,
this is impossible by the assumption in (A).

Next we consider the case where ðS;HÞ is the type (M-3-6) in [14, Theorem
2.1]. Then S is an abelian surface, but this is impossible because any abelian
surface cannot be an ample divisor of a smooth projective 3-fold (see [3,
Proposition (2.2)]).

Next we consider the case where ðS;HÞ is the types from (M-2-1) to (M-2-6)
in [14, Theorem 2.1]. Then S is a relatively minimal elliptic fibration over a
smooth curve C with wðOSÞ ¼ 0. On the other hand, by the argument in [17,
Remark 2.2] we see that wðOSÞ ¼ wH

2 ðM;AÞ, and by Proposition 2.3 we have
wH
2 ðM;AÞb 1. So we get wðOSÞb 1, but this is a contradiction.

Next we consider the case where ðS;HÞ is the types from (M-3-1) to (M-3-5)
in [14, Theorem 2.1]. Then kðSÞ ¼ 0. By using results in [4], we get h0ðKSÞ ¼ 1.
(For example, see [4, (6.1)].) Since S is minimal, we have KS ¼ OS. By the
Lefschetz theorem for Picard groups (see e.g. [6, (7.1) Theorem 5)]) we see
that KM þ ðn� 2ÞA ¼ OM , that is, ðM;AÞ is a Mukai manifold. In particular,
qðX Þ ¼ qðMÞ ¼ 0 and gðX ;LÞ ¼ gðM;AÞ ¼ 1þ ð1=2ÞAn. So we get Ln aAn

¼ 2m� 2. We see from h0ðLÞ ¼ nþm� 1 and BsjLj ¼ j that Ln ¼ 2m� 2
holds by Lemma 2.1. Hence Ln ¼ An and so ðX ;LÞ ¼ ðM;AÞ. This is the type
(7) in Theorem 1.1.

(A.2) The case where h0ðHÞbmþ 2.
Since dim BsjHja 0 and gðS;HÞ ¼ qðSÞ þm, we get kðSÞ ¼ �y by [15,

Theorem 2.1], but this is impossible because KS is nef.
(B) The case in which ðX ;LÞ is one of the types from (1) to (7.4) in Theorem

2.1.
(B.1) If ðX ;LÞ is one of the types (1), (2), (3) in Theorem 2.1, then we have

gðX ;LÞ ¼ qðX Þ. Hence h0ðLÞ ¼ nþm� 1 ¼ n� 1 by our hypothesis. However,
since L is ample with BsjLj ¼ j, we get h0ðLÞb nþ 1 and this is impossible.

(B.2) If ðX ;LÞ is the type (4) in Theorem 2.1, then m ¼ gðX ;LÞ � qðXÞ ¼
1� 0 ¼ 1 and h0ðLÞ ¼ nþm� 1 ¼ n. However, this is impossible because L is
ample and BsjLj ¼ j.

(B.3) Assume that ðX ;LÞ is the type (5) in Theorem 2.1. Let f : X ! W
be a hyperquadric fibration over a smooth curve W . We put E :¼ f�ðLÞ. Then
E is a locally free sheaf of rank nþ 1 on W . Let p : PW ðEÞ ! W be the
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projective bundle map. Then there exists an embedding i : X ,! PW ðEÞ such
that X A j2HðEÞ þ p�Bj for some B A PicðWÞ, where HðEÞ is the tautological line
bundle on PW ðEÞ. Let b :¼ deg B, e :¼ c1ðEÞ, d :¼ Ln, and s :¼ 2eþ ðnþ 1Þb.
Then by easy calculations we get d ¼ 2eþ b and qðX Þ ¼ mþ 1� e� b. So we
have

ðn� 1Þd þ sþ 2nqðXÞ ¼ 2nðmþ 1Þ:ð9Þ
By [5, (3.3)], we have sb 0.

If da 2m� 2, then we see from Lemma 2.1 that qðXÞ ¼ 0 <
3

2
þ 2m� 1

2n
.

If db 2m� 1, then by (9) we get

ð2m� 1Þðn� 1Þ þ sþ 2nqðX Þa 2nðmþ 1Þ:
Since sb 0, we obtain

2nqðX Þa 2nðmþ 1Þ � ð2m� 1Þðn� 1Þ
¼ 3nþ 2m� 1:

Therefore

qðXÞa 3

2
þ 2m� 1

2n
:

This case is the type (1) in Theorem 1.1.
(B.4) Assume that ðX ;LÞ is the type (6) in Theorem 2.1. Let p : X ! Y be

its Pn�2-bundle, where Y is a smooth projective surface. Let E be an ample
vector bundle on Y of rank n� 1 such that X ¼ PY ðEÞ and L ¼ HðEÞ, where
HðEÞ is the tautological line bundle on PY ðEÞ. Then we can prove the
following.

Claim 3.1. kðYÞ ¼ �y holds.

Proof. Here we put B :¼ c1ðEÞ. Then B is ample and spanned.
(a) The case in which c2ðEÞb 3.
(a.1) The case in which kðY Þ ¼ 2.
Then B2 a 2m by Theorem 2.2 because gðY ;BÞ ¼ gðX ;LÞ ¼ qðXÞ þm ¼

qðY Þ þm. Since Ln þ c2ðEÞ ¼ B2, we have Ln ¼ B2 � c2ðEÞa 2m� 3. So by
Lemma 2.1 this is impossible.

(a.2) The case in which kðY Þ ¼ 0 or 1.
In this case B2 a 2mþ 2 by Theorem 2.3.
(a.2.1) If B2 a 2mþ 1, then Ln ¼ B2 � c2ðEÞa 2m� 2 and so by Lemma 2.1

we have gðX ;LÞ ¼ m and Ln ¼ 2m� 2. In particular, ðKX þ ðn� 2ÞLÞLn�1 ¼ 0
holds. So we get

0 ¼ ðKX þ ðn� 2ÞLÞLn�1

¼ ð�HðEÞ þ p�ðKY þ c1ðEÞÞÞHðEÞn�1

¼ c2ðEÞ þ KYc1ðEÞ:
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Since kðYÞb 0, we have KYc1ðEÞb 0. On the other hand c2ðEÞ > 0 because E
is ample. Hence c2ðEÞ þ KYc1ðEÞ > 0 and this is impossible.

(a.2.2) Next we consider the case where B2 ¼ 2mþ 2.
(a.2.2.1) First we assume that kðYÞ ¼ 1. Then Theorem 2.3 (2) we have

Y GF � C and B1C þ ðmþ 1ÞF , where F is a smooth elliptic curve and C is
a smooth projective curve of genus gðCÞb 2. Then BF ¼ 1. Moreover since B
is generated by its global sections, so is BF . Hence we see that F GP1, but this
is a contradiction. Therefore this case cannot occur.

(a.2.2.2) Next we consider the case where kðY Þ ¼ 0. Then we see from
Theorem 2.3 (1) that Y is an Abelian surface. In this case, h0ðBÞ ¼ mþ 1
because h0ðBÞ ¼ B2=2. We note that KY þ B is ample. Hence ðX ;LÞ is a scroll
over Y in the sense of Definition 2.2 (1) because KX þ ðn� 1ÞL ¼ p�ðKY þ BÞ.
Since L is base point free, there exists a ladder X ¼: X0 IX1 I � � �IXn�2 such
that Xi is a smooth projective variety of dimension n� i with Xi A jLjXi�1

j for
1a ia n� 2. Then we note that

h0ðLjXn�2
Þbmþ 1ð10Þ

because h0ðLÞ ¼ nþm� 1 from the assumption. By [2, Theorem 11.1.2] and
the proof of [2, Theorem 11.1.1], we see that ðY ;BÞ is a reduction of
ðXn�2;LjXn�2

Þ. Since B is spanned by its global sections, we have h0ðLjXn�2
Þ <

h0ðBÞ ¼ mþ 1, but this contradicts to (10). Therefore this case also cannot
occur.

We see from (a.1) and (a.2) that kðYÞ ¼ �y holds if c2ðEÞb 3.
(b) The case in which c2ðEÞa 2.
Assume that kðYÞb 0. Then by Theorem 2.4, we have rankðEÞ ¼ 2, n ¼ 3,

and ðY ;BÞ is the following type: There exists a finite morphism f : Y ! P2 of
degree 2 such that EG f �ðOP2ð1Þl2Þ. Since kðY Þb 0, we see that the branch
locus is an element of the complete linear system of OP2ð2aÞ, where a is an
integer with ab 3. So in particular we get

h0ðLÞ ¼ h0ðEÞ ¼ h0ð f �ðOP2ð1Þl2ÞÞð11Þ

¼ 2ðh0ðOP2ð1ÞÞ þ h0ðOP2ð1ÞnOP2ð�aÞÞÞ
¼ 6:

On the other hand, since qðXÞ ¼ qðY Þ ¼ 0,

m ¼ qðXÞ þm ¼ gðX ;LÞ ¼ gðY ;BÞ

¼ 1þ 1

2
ð f �ðKP2 þ OP2ðaÞÞ þ f �ðOP2ð2ÞÞÞ f �OP2ð2Þ

¼ 1þ ðOP2ð�3Þ þ OP2ðaÞ þ OP2ð2ÞÞOP2ð2Þ

¼ 2a� 1:
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However, since h0ðLÞ ¼ nþm� 1 ¼ mþ 2 ¼ 2aþ 1, by (11) we have a ¼ 5=2
and this is a contradiction. Hence kðYÞ ¼ �y holds if c2ðEÞa 2.

By (a) and (b), we get the assertion of Claim 3.1. r

Hence we get the type (2) in Theorem 1.1 by Claim 3.1 and Lemma 2.3.
(B.5) Next we consider the types from (7.1) to (7.4) in Theorem 2.1. Let t

be the number of simple blowing ups of ðM;AÞ. For 1a ia t, let ðXi;LiÞ be a
polarized manifold, let mi : Xi�1 ! Xi be the birational morphism of a simple
blowing up of ðXi;LiÞ, and let Ei be the exceptional divisor of mi. Here we set
ðX0;L0Þ :¼ ðX ;LÞ and ðXt;LtÞ ¼ ðM;AÞ.

(B.5.1) Assume that ðM;AÞ is the types (7.1) (resp. (7.2), (7.3)) in Theorem

2.1, that is, ðM;AÞ ¼ ðP4;OP4ð2ÞÞ (resp. ðQ3;OQ3ð2ÞÞ, ðP3;OP3ð3ÞÞ). Then
gðM;AÞ ¼ 5 (resp. 5, 10), A4 ¼ 16 (resp. A3 ¼ 16, A3 ¼ 27). Since qðMÞ ¼ 0
(resp. 0, 0), we have m ¼ 5 (resp. 5, 10). Hence by assumption we have h0ðLÞ ¼
nþm� 1 ¼ 8 (resp. 7, 12). On the other hand h0ðAÞ ¼ 15 (resp. 14, 20). Here
we note that we have h0ðLiÞ � 1a h0ðLi�1Þa h0ðLiÞ for each i by the following
exact sequence

0 ! Li�1 ! m�
i ðLiÞ ! OEi

! 0:ð12Þ

Hence tb 7 (resp. tb 7, tb 8) because h0ðAÞ � h0ðLÞ ¼ 7 (resp. 7, 8).
If tb 8 (resp. tb 8, tb 9), then L4 ¼ A4 � ta 8 ¼ 2m� 2 (resp. L3 ¼

A3 � ta 8 ¼ 2m� 2, L3 ¼ A3 � ta 18 ¼ 2m� 2). However, by Lemma 2.2,
this case cannot occur. Hence we have t ¼ 7 (resp. t ¼ 7, t ¼ 8). Therefore
we get the type (3) (resp. (4), (5)) in Theorem 1.1.

(B.5.2) Assume that ðM;AÞ is the type (7.4) in Theorem 2.1. Let H ¼
KM þ 2A. Then ðM;HÞ is a scroll over C. So there exists an ample vector
bundle E of rank three on C such that M ¼ PCðEÞ and H ¼ HðEÞ. Further-
more there exists a line bundle B on C such that A ¼ 2HðEÞ þ f �ðBÞ, where
f : M ¼ PCðEÞ ! C is the projection. We set e :¼ deg E and b :¼ deg B. Then
we get the following equations (see e.g. [6, (13.10)]).

gðX ;LÞ ¼ gðM;AÞ ¼ 1þ 2eþ 2b;ð13Þ

A3 ¼ 8eþ 12b;ð14Þ
2qðMÞ � 2þ eþ 2b ¼ 0:ð15Þ

We see from (13) and (15) that

gðX ;LÞ ¼ gðM;AÞ ¼ 1þ 2eþ 2b

¼ qðMÞ þ 1

2
ðeþ 2bÞ þ 2ðeþ bÞ

¼ qðX Þ þ 5

2
eþ 3b:
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Therefore

m ¼ 5

2
eþ 3b;ð16Þ

and by (15) we have

qðX Þ ¼ 1� 1

2
ðeþ 2bÞ ¼ 1� 1

3
mþ 1

3
e;ð17Þ

that is, m ¼ 3ð1� qðXÞÞ þ e. Noting that

e ¼ deg E ¼ HðEÞ3 ¼ ðKM þ 2AÞ3;
we have

m ¼ 3ð1� qðXÞÞ þ eð18Þ

¼ 3ð1� qðXÞÞ þ ðKM þ 2AÞ3:

By (14), (15), (16) and (18), we have

A3 ¼ 8eþ 12bð19Þ
¼ 3ðeþ 2bÞ þ ð5eþ 6bÞ
¼ 3ð2� 2qðMÞÞ þ 2m

¼ 4m� 2ðKM þ 2AÞ3:

We note that

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ;

and by [18, Corollary 3.1]2 we have

h0ðKM þ 2AÞ ¼ gðM;AÞ � qðMÞ ¼ gðX ;LÞ � qðXÞ ¼ m:

Hence we have

ðKM þ 2AÞ3 ¼ m� 3þ DðM;KM þ 2AÞ:ð20Þ

By (19) and (20) we have

A3 ¼ 4m� 2ðKM þ 2AÞ3ð21Þ
¼ 2mþ 6� 2DðM;KM þ 2AÞ:

Since 2m� 2aL3 by Lemma 2.1, we see from (21) that

2m� 2aL3
aA3 ¼ 2mþ 6� 2DðM;KM þ 2AÞ:ð22Þ

2 In this case, g2ðM;AÞ ¼ 0, h2ðOMÞ ¼ 0 and g3ðM;AÞ ¼ h3ðOMÞ ¼ 0, where giðM;AÞ denotes the
ith sectional geometric genus of ðM;AÞ (see [16, Example 2.10 (11)] for details).
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Namely we have DðM;KM þ 2AÞa 4. On the other hand, we have
DðM;KM þ 2AÞb 0 since KM þ 2A is ample. Therefore DðM;KM þ 2AÞ ¼
0; 1; 2; 3; 4.

Next we study ðM;AÞ for each value of DðM;KM þ 2AÞ. Before that, we
note the following.

Lemma 3.1. If qðMÞ ¼ 0, then t ¼ 7.

Proof. First we prove the following claim.

Claim 3.2. 0a ta 7 holds.

Proof. Since qðMÞ ¼ 0, we have gðM;AÞ ¼ qðMÞ þm ¼ m and by (13) we
have

1þ 2eþ 2b ¼ m:ð23Þ

On the other hand, by (15) we have

eþ 2b ¼ 2:ð24Þ
By (23) and (24) we have

e ¼ m� 3;ð25Þ

b ¼ 1

2
ð5�mÞ:ð26Þ

Therefore A3 ¼ 8eþ 12b ¼ 2mþ 6. Since L3 b 2m� 2 and t ¼ A3 � L3, we see
that 0a ta 8.

Assume that t ¼ 8. In particular ðX ;LÞ0 ðM;AÞ. In this case L3 ¼
2m� 2. So by Lemma 2.1 we have L3 ¼ 2DðX ;LÞ ¼ 2m� 2 and qðXÞ ¼ 0.
We note that gðX ;LÞ ¼ m > DðX ;LÞ. Hence by [4, (1.4) Theorem] we see that
ðX ;LÞ is either a Mukai manifold or a hyperelliptic polarized manifold. Since
ðX ;LÞ0 ðM;AÞ, we see from the proof of Lemma 2.2 that ðX ;LÞ is not a
Mukai manifold but a hyperelliptic polarized manifold of type ðSnðdÞþa;bÞ. In
particular X is a double covering of a projective bundle PP1ðFÞ over P1,
where F is a vector bundle of rank three on P1. Let p : X ! PP1ðFÞ be the
double covering map and let p : PP1ðFÞ ! P1 be the projection. Here we note
that L ¼ p�ðHðFÞÞ. Since t ¼ 8, there exists a divisor E on X such that E is
the exceptional divisor of a simple blowing up m1 : X ! X1 and L ¼ m�

1L1 � E,
where X1 is a smooth projective variety and L1 is an ample line bundle on
X1. Because EGP2, we have ðp � pÞðEÞ is a point. Therefore E is contained

in a fiber of p � p. Let Fr ¼ ðp � pÞ�1ððp � pÞðEÞÞ. Then Fr has at least two
components because E3 ¼ 1. We note that pjFr

: Fr ! Fp is surjective, where

Fp ¼ p�1ððp � pÞðEÞÞ. Since p is a double covering and Fp GP2, Fr has two
components and pjE : E ! Fp is birational. Since E and Fp are isomorphic to
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P2 and pjE is a finite morphism, we see that pjE is an isomorphism by the Zariski
Main Theorem. Note that

KXE
2 ¼ ðm�

1 ðKX1
Þ þ 2EÞE2 ¼ 2:ð27Þ

Here we note that KX ¼ p�ðKP
P1 ðFÞ þDÞ for some divisor D on PP1ðFÞ. Hence

KXE
2 ¼ p�ðKP

P1 ðFÞ þDÞE 2ð28Þ

¼ ðpjEÞ
�ðKFp

þDjFp
ÞEjE

¼ ðKFp
þDjFp

ÞOP2ð�1Þ

¼ OP2ð�3þ bÞOP2ð�1Þ
¼ 3� b;

where we set OP2ðbÞ ¼ DjFp
. Therefore (27) and (28) imply b ¼ 1. Hence

KX ¼ p�ð�2HðFÞ þ f �ðPÞÞ for some P A PicðP1Þ. So we get KX þ 2L ¼ p� �
f �ðPÞ, but then KX þ 2L is not big and this is impossible because KX þ 2L ¼
m�ðKM þ 2AÞ and KM þ 2A is ample3. Therefore the case where t ¼ 8 cannot
occur, and we get the assertion of Claim 3.2. r

Next we prove the following.

Claim 3.3. h0ðAÞbmþ 9.

Proof. We note that degðS2ðEÞnBÞ ¼ 4eþ 6b ¼ mþ 3 by (25) and (26).
Hence by the Riemann-Roch theorem we have

h0ðAÞ ¼ h0ð2HðEÞ þ f �ðBÞÞ ¼ h0ðS2ðEÞnBÞ

b degðS2ðEÞnBÞ þ rankðS2ðEÞnBÞð1� gðCÞÞ

¼ degðS2ðEÞnBÞ þ 6

¼ mþ 9: r

Note that we see from the exact sequence (12) that

h0ðAÞ � h0ðLÞa tð29Þ
holds. Since h0ðLÞ ¼ mþ 2, by (29) and Claims 3.2 and 3.3 we have t ¼ 7.
Therefore we get the assertion of Lemma 3.1. r

(B.5.2.i) The case where DðM;KM þ 2AÞ ¼ 4. Then by (22) we have L3 ¼
A3 ¼ 2m� 2. So by Lemma 2.1 we get qðMÞ ¼ qðXÞ ¼ 0. Since ðM;KM þ 2AÞ
is a scroll over C, we have gðM;KM þ 2AÞ ¼ qðMÞ ¼ 0. Hence by [6, (12.1)
Theorem] we infer that DðKM þ 2AÞ ¼ 0 and this is impossible.

3Here m : X ! M denotes the reduction map.
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(B.5.2.ii) The case where DðM;KM þ 2AÞ ¼ 0. Then we see from
DðM;KM þ 2AÞ ¼ 0 that qðMÞ ¼ 0 by [6, (5.10) Theorem]. So by Lemma
3.1 we see that t ¼ 7.

(B.5.2.iii) The case where DðM;KM þ 2AÞ ¼ 1. Then by (21) we have
A3 ¼ 2mþ 4. Since L3 b 2m� 2 by Lemma 2.1 we see that t ¼ A3 � L3 a 6,
and by Lemma 3.1 we have qðMÞb 1. So we have

gðM;KM þ 2AÞ ¼ qðMÞb 1 ¼ DðM;KM þ 2AÞ:ð30Þ

Here we note that e is a positive even integer by (15). Moreover since
DðM;KM þ 2AÞ ¼ 1, we see that ðM;KM þ 2AÞ has a ladder by [6, Theorems
(4.2) and (4.15)].

Claim 3.4. The case (B.5.2.iii) cannot occur.

Proof. (a) Assume that eb 4. Then

ðKM þ 2AÞ3 ¼ eb 4 ¼ 2DðM;KM þ 2AÞ þ 2:

However, then by [6, (3.5) Theorem 3)] we have qðMÞ ¼ 0 and this is impossible.
(b) Assume that e ¼ 2. Then by (15) we have b ¼ �qðMÞ, and by (14) we

get

0 < A3 ¼ 8eþ 12b ¼ 16� 12qðMÞ;

that is, qðMÞa 1. So we get qðMÞ ¼ 1, b ¼ �qðMÞ ¼ �1 and A3 ¼ 4. On the
other hand, since L3 b 2m� 2, we have 2m� 2aL3 aA3 ¼ 4. Namely we
get ma 3. We note that mb 2 since L is ample and spanned with h0ðLÞ ¼
nþm� 1. Hence m ¼ 2 or 3. By (16) we get ðe; b;mÞ ¼ ð2;�1; 2Þ because b
is an integer. Then we note that L3 ¼ 2; 3 or 4 because 2 ¼ 2m� 2aL3 a

A3 ¼ 4. Since qðX Þ ¼ qðMÞ ¼ 1, gðX ;LÞ ¼ gðM;AÞ ¼ qðMÞ þm ¼ 3 and L is
generated by its global sections, we see from the classification of polarized
manifolds with sectional genus three [21] that this case cannot occur.

Therefore these complete the proof of Claim 3.4. r

(B.5.2.iv) The case where DðM;KM þ 2AÞ ¼ 2. Then by (21) we have
A3 ¼ 2mþ 2. Since L3 b 2m� 2 by Lemma 2.1 we see that t ¼ A3 � L3 a 4,
and qðMÞb 1 by Lemma 3.1. Moreover since h0ðKM þ 2AÞ ¼ gðM;AÞ � qðMÞ
¼ m and DðM;KM þ 2AÞ ¼ 2 in this case, we have

ðKM þ 2AÞ3 ¼ m� 1:ð31Þ

Claim 3.5. L3 b 5 holds.

Proof. Assume that L3 a 4. Then A3 a 8 because ta 4 in this case.
Hence by (19) and (31) we have

8bA3 ¼ 4m� 2ðKM þ 2AÞ3 ¼ 2mþ 2;
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that is, ma 3. Because L is ample and spanned with h0ðLÞ ¼ nþm� 1, we
get mb 2. Therefore m ¼ 2 or 3.

If m ¼ 2, then A3 ¼ 6 and by (14) and (16) we get

2 ¼ m ¼ 5

2
eþ 3b

6 ¼ A3 ¼ 8eþ 12b:

So we get e ¼ 1 and b ¼ � 1
6 , but this is impossible becaue b is an integer.

If m ¼ 3, then A3 ¼ 8 and by (14) and (16) we get

3 ¼ m ¼ 5

2
eþ 3b

8 ¼ A3 ¼ 8eþ 12b:

So we get e ¼ 2 and b ¼ � 2
3 and this is also impossible. Therefore we get the

assertion of Claim 3.5. r

Claim 3.6. KM þ 2A is generated by its global sections.

Proof. Since L is generated by its global sections with L3 b 5 and gðX ;LÞ
¼ qðXÞ þm > qðXÞ, we see from [2, Theorem 9.2.1] that KX þ 2L is generated
by its global sections. Since KX þ 2L ¼ p�ðKM þ 2AÞ, where p : X ! M is the
reduction map, we infer that KM þ 2A is also generated by its global sections.

r

Claim 3.7. mb 4 holds.

Proof. First we note that h0ðKM þ 2AÞ ¼ gðM;AÞ � qðMÞ ¼ m. Since
KM þ 2A is ample, we see from Claim 3.6 that h0ðKM þ 2AÞb 4. Therefore
we get the assertion. r

Claim 3.8. The case (B.5.2.iv) cannot occur.

Proof. (a) Assume that eb 6.
(a.1) If qðMÞb 2, then gðM;KM þ 2AÞ ¼ qðMÞb 2 ¼ DðM;KM þ 2AÞ.

By Claim 3.6 ðM;KM þ 2AÞ has a ladder. Moreover

ðKM þ 2AÞ3 ¼ eb 6 ¼ 2DðM;KM þ 2AÞ þ 2:

Hence by [6, (3.5) Theorem 3)] we have qðMÞ ¼ 0 and this is impossible.
(a.2) If qðMÞ ¼ 1, then by (15) we have eþ 2b ¼ 0. Furthermore by (13)

we have

1þm ¼ gðX ;LÞ ¼ gðM;AÞ ¼ 1þ 2eþ 2b ¼ 1þ e:
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Namely m ¼ e. Thereore by (14)

2eþ 2 ¼ 2mþ 2 ¼ A3 ¼ 8eþ 12b:

However, then 6eþ 12b ¼ 2 and this is impossible because e and b are integer.
(b) Assume that e ¼ 4. Then

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ
¼ 3þ e�m ¼ 7�m:

Here we note that 4am by Claim 3.7.
(b.1) If mb 6, then DðM;KM þ 2AÞa 1, but this contradicts the assumption

that DðM;KM þ 2AÞ ¼ 2.
(b.2) If m ¼ 5, then by e ¼ 4 and (16) we have

5 ¼ m ¼ 5

2
eþ 3b ¼ 10þ 3b:

However, this is impossible because b is an integer.
(b.3) If m ¼ 4, then by e ¼ 4 and (16) we have

4 ¼ m ¼ 5

2
eþ 3b ¼ 10þ 3b:

Hence we have b ¼ �2. By (14) we have A3 ¼ 8eþ 12b ¼ 8. On the other
hand A3 ¼ 2mþ 2 ¼ 10 and this is impossible.

(c) Assume that e ¼ 2. Then

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ
¼ 3þ e�m ¼ 5�m:

So by Claim 3.7 we have DðM;KM þ 2AÞa 1, but this contradicts the
assumption that DðM;KM þ 2AÞ ¼ 2.

These complete the proof of Claim 3.8. r

(B.5.2.v) The case where DðM;KM þ 2AÞ ¼ 3. By (21) we have A3 ¼ 2m.
Since L3 b 2m� 2 by Lemma 2.1 we see that t ¼ A3 � L3 a 2, and qðMÞb 1 by
Lemma 3.1. First we prove the following.

Claim 3.9. 0a ta 1 holds.

Proof. If t ¼ 2, then L3 ¼ 2m� 2 and by Lemma 2.1 we have qðMÞ ¼ 0,
but this is impossible. r

Moreover since h0ðKM þ 2AÞ ¼ gðM;AÞ � qðMÞ ¼ m and DðM;KM þ 2AÞ ¼ 3 in
this case, we have

ðKM þ 2AÞ3 ¼ m:ð32Þ
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Claim 3.10. L3 b 5 holds.

Proof. Assume that L3 a 4. Then A3 a 5 because 0a ta 1 holds by
Claim 3.9. Hence by (19) and (32) we have

5bA3 ¼ 4m� 2ðKM þ 2AÞ3 ¼ 2m;

that is, ma 2. Because L is ample and spanned with h0ðLÞ ¼ nþm� 1, we
get mb 2. Therefore m ¼ 2 and A3 ¼ 2m ¼ 4.

Then by (16) and (14) we get

2 ¼ m ¼ 5

2
eþ 3b

4 ¼ A3 ¼ 8eþ 12b:

So we get e ¼ 2 and b ¼ �1. By (15) we have qðMÞ ¼ 1. Therefore gðX ;LÞ
¼ gðM;AÞ ¼ qðMÞ þm ¼ 3. Here we note that L3 ¼ 3 or 4 because ta 1.
Since L is ample and spanned, by the classification of polarized manifolds with
sectional genus three, this case cannot occur (see [21, (3) Case (C) (3-2) or the
proof of (5-1-2)]). Therefore we get the assertion. r

By the same argument as the proof of Claims 3.6 and 3.7 we get the
following.

Claim 3.11. KM þ 2A is generated by its global sections and mb 4.

Here we prove the following.

Claim 3.12. The case (B.5.2.v) cannot occur.

Proof. (a) Assume that eb 8.
(a.1) If qðMÞb 3, then gðM;KM þ 2AÞ ¼ qðMÞb 3 ¼ DðM;KM þ 2AÞ.

Moreover

ðKM þ 2AÞ3 ¼ eb 8 ¼ 2DðM;KM þ 2AÞ þ 2:

Hence by Claim 3.11 and [6, (3.5) Theorem 3)] we have qðMÞ ¼ 0, but this is
impossible.

(a.2) If qðMÞ ¼ 2, then by (15) we have

eþ 2b ¼ �2:ð33Þ

Furthermore by (13) we have

2þm ¼ qðXÞ þm ¼ gðX ;LÞ ¼ gðM;AÞ ¼ 1þ 2eþ 2b ¼ e� 1:

Namely m ¼ e� 3. Therefore by (14)

2e� 6 ¼ 2m ¼ A3 ¼ 8eþ 12b:
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Namely

eþ 2b ¼ �1:ð34Þ
However, by (33) and (34) we get a contradiction.

(a.3) If qðMÞ ¼ 1, then by (15) we have

eþ 2b ¼ 0:ð35Þ
Furthermore by (13) we have

1þm ¼ gðX ;LÞ ¼ gðM;AÞ ¼ 1þ 2eþ 2b ¼ 1þ e:

Namely m ¼ e. So we get qðMÞ ¼ 1 and m ¼ e ¼ �2b by (35).
(b) Assume that e ¼ 6. Then

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ
¼ 3þ e�m ¼ 9�m:

Since DðM;KM þ 2AÞb 0, we have ma 9. Here we note that 4am by Claim
3.11. By using (16) we get the following types.

m e b DðM;KM þ 2AÞ

6 6 �3 3

9 6 �2 0

If m ¼ 9, then qðMÞ ¼ 0 by [6, (5.10) Theorem], but this is impossible. If
m ¼ 6, then by (15) we have qðMÞ ¼ 1.

(c) Assume that e ¼ 4. Then

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ
¼ 3þ e�m ¼ 7�m:

By DðM;KM þ 2AÞb 0 and Claim 3.11, we have 4ama 7. By (16) we get the
following types.

m e b DðM;KM þ 2AÞ

4 4 �2 3

7 4 �1 0

If m ¼ 7, then qðMÞ ¼ 0 by [6, (5.10) Theorem], but this is impossible. If
m ¼ 4, then by (15) we have qðMÞ ¼ 1.

(d) Assume that e ¼ 2. Then

DðM;KM þ 2AÞ ¼ 3þ ðKM þ 2AÞ3 � h0ðKM þ 2AÞ
¼ 3þ e�m ¼ 5�m:
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By DðM;KM þ 2AÞb 0 and Claim 3.11, we have 4ama 5. By (16) we get the
following types.

m e b DðM;KM þ 2AÞ

5 2 0 0

However, if m ¼ 5, then qðMÞ ¼ 0 by [6, (5.10) Theorem], and this is
impossible.

We see from the above argument that the following type possibly occurs.

qðMÞ ¼ 1; e is even with eb 4 and m ¼ e ¼ �2b:ð36Þ
(e) Finally we will prove that (36) cannot occur.
First we calculate h0ðAÞ. We note that h0ðAÞ ¼ h0ð2HðEÞ þ f �ðBÞÞ ¼

h0ðS2ðEÞnBÞ. Since 2HðEÞ þ f �ðBÞ is ample, so is E
�
1
2B

�
by the definition

of ampleness of E
�
1
2B

�
(see [24, Definition 6.2.3]), where E

�
1
2B

�
denotes a

Q-twisted bundle (see [24, Definition 6.2.1]). By [24, Lemma 6.2.8] we infer that

S2
�
E
�
1
2B

��
is ample. On the other hand, S2ðEÞnBGQ S2

�
E
�
1
2B

��
, we see

that S2ðEÞnB is ample, where GQ denotes Q-isomorphism (see [24, Definition
6.2.2]). Since gðCÞ ¼ 1, we see from [1, Lemma 15] that

h0ðS2ðEÞnBÞ ¼ degðS2ðEÞnBÞ ¼ 4eþ 6b ¼ e:

Therefore h0ðAÞ ¼ e. Since h0ðLÞ ¼ nþm� 1 ¼ eþ 2, we have h0ðLÞ > h0ðAÞ,
but this is impossible because ðM;AÞ is a reduction of ðX ;LÞ. Hence we get the
assertion of Claim 3.12. r

Therefore the case where DðM;KM þ 2AÞ ¼ 0 possibly occurs, and then qðMÞ ¼ 0,
that is, gðCÞ ¼ 0 and t ¼ 7 if ðM;AÞ is the type (7.4) in Theorem 2.1. In this
case by (17) we have m ¼ eþ 3. Since E is an ample vector bundle of rank
three on P1, we have eb 3. Hence we get mb 6. So we get the type (6) in
Theorem 1.1.

These complete the proof of Theorem 1.1. r
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