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REMARKS ON SPACE-TIME BEHAVIOR IN THE CAUCHY
PROBLEMS OF THE HEAT EQUATION AND THE CURVATURE
FLOW EQUATION WITH MILDLY OSCILLATING INITIAL VALUES

HiroKI YAGISITA

Abstract

We study two initial value problems of the linear diffusion equation u, = u,, and
the nonlinear diffusion equation u, = (1 + uf)’lum, when Cauchy data u(x,0) = up(x)
are bounded and oscillate mildly. The latter nonlinear heat equation is the equation of
the curvature flow, when the moving curves are represented by graphs. In the case of
limyy ;o |xuy(x)| = 0, by using an elementary scaling technique, we show

[Ligrnq lu(v/tx, ) — (F(=x)uo(—V'7) + F(+xX)uo(+v/1))| = 0

for the linear heat equation u, =u,,, where xeR and F(z): e~ dy.

1t
“2vE)
Further, by combining with a theorem of Nara and Taniguchi, we have the same result

for the curvature equation u, = (1 + uvz)fluxx. In the case of limyy_,o|xuy(x)| = 0 and

in the case of sup, g |xuj(x)| < +o0, respectively, we also give a similar remark for the
linear heat equation u, = uy,.

1. Introduction

In this paper, by using an elementary scaling argument, we study space-time
behavior in the Cauchy problem of the heat equation

(1) u(x, 1) = upy(x, 1), (x,7) € R x (0,400),
' u(x,0) = uo(x), xeR,
when the initial values uy(x) are bounded and oscillate mildly. We also study
the Cauchy problem of the nonlinear diffusion equation
(X, 0)
L+ (v, 1))
M(X, O) = MO(x)a X € Ra

uy(x, 1) (x,1) e R x (0,400),

(1.2)
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which is the equation of the curvature flow when the moving curves are
represented by graphs.

First, we mention criteria for stabilization of the solution u(x,?) to the
Cauchy problem of the heat equation u, = u,,. From [3, 11, 4, 2] (e.g.), we see
the following:

THEOREM 1. Let up e L*(R) and ¢ € R.  Then, the solution u(x,t) to (1.1)

~ . ) 1 +R
satisfies lim,_ o, u(x,t) =c if and only if uy(x) satisfies hmRH+wﬁJ up -
-R

(x+y)dy=c Moreover, u(x,t) satisfies lim,_, o, sup, glu(x,t) —c| =0 if and
+R

only if up(x) satisfies limg_, o, SUP, R =0.

1
EJ—R up(x+ y)dy —c

On the other hand, Collet and Eckmann [1] gave a simple example of a bounded
initial value up(x) where the solution u(x,f) to (1.1) oscillates forever as
t — +o0:

Example. Let a function ug € L™ (R) with [[ug|[;-g) =1 satisfy uo(+x) =
(=1)" for all xe[n!+2" (n+1)! —2"] when n=5,6,7,.... Then, the solu-
tion u(x,?) to (1.1) satisfies

lim  sup  |u(x,t4 (n+ 1)) - (=1)"| =0
T (v el-L,+L)?

for all L > 0.

See also Krzyzanski [5] for another example. So, the large-time behavior of a
solution u(x, ) to (1.1) with a bounded initial value uy(x) may be complex.
Indeed, Vazquez and Zuazua [13] showed the general behavior is very complex:

THEOREM 2. (i) Let up € L*(R). Then, the set of accumulation points in
LE.(R) of {(e™up)(v/1-)},oq as t — +o0 coincides with the set {(e"¢)(-)|¢e A},
where A is the set of accumulation points of {uo(A-)},-y as A — +oo in the weak-
star topology o(L*,L").

(i) Let ¢>0 and B, ={feL*R)|||f|l;~ <c}. Let M, be the set of
f € B, such that the set of accumulation points of {f(%-)},.¢ as A — +oo in the
weak-star topology a(L* L") is B.. Then, M. is dense with empty interior in B,
with the weak-star topology o(L*,L").

They also showed the general behavior in a number of evolution equations on
R”Y is complex. However, the behavior may be rather simple, if the initial
value oscillates mildly. In this paper, we prove the following, which is a remark
on the long-time behavior in the Cauchy problem (1.1) when the initial value
uo(x) € L*(R)N C'(R\{0}) satisfies limyy_ o, |xuj(x)| = 0:
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THEOREM 3. Let uge L™(R)NC'(R\{0}) and limpy .
Then, the solution u(x,t) to (1.1) satisfies

ligrn sup  |u(Vix, 1) = (F(=x)uo(—V1) + F(+x)up(+v1))] = 0

21D xe[-L,+1]

xuj(x)| = 0.

1 (° 2
. — —y*/4
for all L >0, where F(z): Zﬁj_w e dy.

CorROLLARY 4. Let upe L*(R)NCHR\{0}) and limpy_ ., |xuj(x)| = 0.
Then, the set of accumulation points in Lp.(R) of {(e“up)(Vi-)}~o as
t — +oo coincides with the set {oF(—-)+ pF(+ )| (o, pB) € A}, where F(z) :=

1 z
—J e dy and A is the set of accumulation points in R* of {(uo(—4),
27
uo(+4))},50 as 2 — +oo.

We also prove the following two:

PROPOSITION 5. Let upe L*(R)NCHR\{0}) and lim_o|xuj(x)| = 0.
Then, the solution u(x,t) to (1.1) satisfies

lim  sup  |u(vix, 1) — (F(=x)uo(—V1) + F(+x)uo(+v1))| = 0

=40 xe[-L +1)

1 (° .
= /4
Sor all L >0, where F(z): Zﬁj,oc e dy.

PROPOSITION 6. Let ug € C'(R\{0}) and sup, g\ o) |xu)(x)| < +o0.  Then,
the solution u(x,t) to (1.1) satisfies

lu(V1x, 1) — (F(=x)uo(—V/1) + F(+x)uo(+v/1))]
< G(-x) (Sup Iyué(y)> + G(+x) (Sup Iyué(y)I)

y<0 >0

1
or all (x,1)eR x (0,400), where F ::—J
for all ()R x (0,+:c) O =57

- —(=0*/4 d
2ﬁL e [log y| dy.

Remark 1. (i) Let (a,b) e R* and

e dy  and G(z) ==

Then, the solution u(x,?) to (1.1) satisfies
u(\/1x,t) = aF (—x) + bF (+x)

for all (x,7) e R x (0,+00), where F(z):

1 - 2
- —y*/4
: ZﬁJ_we dy.



THE HEAT EQUATION AND THE CURVATURE FLOW EQUATION 19

(ii) Let u(x) = ¢;(log(—x)) and ur(x) = ¢y(log(+x)). Then, xuj(x)=
¢1(log(—x)) and xuj(x) = ¢;(log(+x)).
(iii) Let u(x,t) be the solution to (1.1). Then, the function

v(x, 1) == u(e*x, ")

is the solution to

0l 0) = valef) + 50060, (xR
v(x,0) = (e“up)(x), xeR.
(iv) Because of (ii), (iii), Theorem 3 and Proposition 5, if two functions
ae L*(R)NC'(R) and be L*(R)NC'(R) satisfy
: / I H ! —
Jim Ja’(5)] = lim |6'(1)] =0,
then the solution v(x,?) to the equation
v(x, 1) = vy (X, 1) + gvx(x, 1)
with the initial data

1 0 2 1 +o0 )2
v(x,o>=ﬁj ety /4a<log<y2>>dy+ﬁj0 ) b(log(1%)) dy

satisfies
lim  sup |u(x,?) — (a(6)F(—=x) + b()F(+x))| =0
22D ye[-L,+1]

I [ 2
=—| VM4
v IR

Nara and Taniguchi [9] showed that the difference between the solution to the
heat equation (1.1) and that to the curvature flow equation (1.2) with the same
initial value is of order O(¢~'/?) as t — +o0. Precisely, they given the following
theorem:

for all L > 0, where F(z):

THEOREM 7. Let &> 0. Suppose upe C*(R) satisfies sup,.g(|uo(x)|+
1 = x|
maximum interval of existence of the classical solution u(x,t) to (1.2) is [0,4+00)

and the solution u(x,t) satisfies

|ug (x)] + |ug (x)]) < 400 and sup, ., cRr v £x < +o. Then, the

1/2

sup ¢
>0,xeR

+o0
J e O () dy| < oo,

— o0

u(x,t) —

2\/nt

Therefore, by combining it with Theorem 3, we have the following remark on the
long-time behavior in the Cauchy problem (1.2):
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COROLLARY 8. Let &> 0. Suppose uye C*(R) satisfies sup,.g(|uo(x)|+

Jug (x1) — ug (x2)|
| (x)] + |ug (x)]) < 400, supxl,xzeRﬁxlisz

limy oo |xtp(x)] = 0. Then, the solution u(x,t) to (1.2) satisfies

lim  sup  [u(Vix, 1) — (F(=x)ug(—V1) + F(+x)uo(+V/1))| = 0

2490 xe[-L,+L]

< 40 and

for all L >0, where F(z):= ﬁﬁjim o V4 dy.

Nara [8] showed that the difference between the solution to the heat equation
on RY and that to the mean curvature flow equation on R" with the same
initial value is of order O(¢~'/?) as t — +oo, when the initial value is radially
symmetric. See [12, 6] for the difference between the behavior of a disturbed
planar front in a bistable reaction-diffusion equation and that of a mean curva-
ture flow with a drift term. See [10, 14, 12, 7] for other nontrivial large-time
behaviors in nonlinear diffusion equations.

2. Proof
LEMMA 9. The solution u(x,t) to (1.1) satisfies

sup  |u(V1x,t) — (aF(=x) + bF(+x))|
xe[—L,+L]

< ﬁ% jo " oL @) o —z) — al + uo(+v/52) — ) d

for all (L,t)e(0,400)* and (a,b) € R?, where p;(z) := SUP. e (-1, +1] e~ (F=20)"/4,

Proof.  From
1 +o0 e
u(\/ix, [) = TJ e (x=»)7/ UO(\/Ey) dy
TJ)-x
L Jﬂo e‘<x+’)2/4u0(—\/fz) dz + LJML e_(x_z)2/4u0(+\/22) dz
2ym o 2y ) ’
we see
00 B
u(Vix,t) — (aF(—x) + bF (+x)) = —J e N A g (= 1z) — a) dz
0

~+o00
+ —J e*(z’(”)>2/4(uo(+\ﬂz) —b) dz.

So, we have the conclusion. |
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LemMa 10. Let upe C'(R\{0}) and o> 0. Then, lim_ ., |xuj(x)| =0
implies  limg_ . |uo(se) — uo(s)| = 0.  Also,  limyy_olxug(x)| =0  implies
limys) oo (s0r) — uo(s)| = 0.

Proof. We see

KR | =

|uo(s2x) — uo(s)| = <|a+

J ‘sué(sz) dz

1

) sup s 5]

min{a, 1 /o} <|z| <max{a,1/a}

IA
R | =

o+

(24

So, we have the conclusion. [ ]

2
) sup |szu)(s2)]

min{a, 1 /o} <|z| <max{a,1/a}

2
- ) sup ()]

min{a, 1 /o}]s| < |x| <max{a, 1 /o}|s|

R | —

Proof of Theorem 3 and Proposition 5. We see
Juo(—=v/12) = uo(=V1)| + uo(+V/12) = o (+V/1)] < 4l[uto]l - g

for all >0 and z>0. Hence, because of p, € L'((0,+00)), we have the
conclusions by Lemmas 9 and 10. ]

Remark 2. (i) Let w(x) = ¢, (log(—x)), 1(x) = ¢x(log(+x)) and %> 0.
Then, lim._ . |¢;(z+loga) — ¢ (2)] =0 implies limy .o |us(sx) — ul( ) =0
and  limg olui(so) —ui(s)| = 0. Also,  lim . |¢y(z +loga) — ¢y(z)| =0
implies limy_, o |ua(s2) — u2(s)] = 0 and limg_ ;o|ua(sat) — ua(s)| = O.

(i) Because of (i) and Remark 1 (iii), if two functions a € L*(R) and
be L*(R) satisfy

Jim Ja(z+ f) —a(@)| = lim [b(z+ ) = b(1)] =0

for all feR, then the solution v(x,?) to the equation

v(x, 1) = vy (x, 1) + gvx(x, f)

with the initial data

| et aost 4

—(x=y)/4 2
7 bllog(y?) dy

o, 0) = Mr“’e

satisfies

lim  sup |o(x,f) — (a()F(—x) + b(t)F(+x))| =0

(22D ye[-L,+1]

1 z
for all L >0, where F(z) := mj e dy.
-0



22 HIROKI YAGISITA
Proof of Proposition 6. From
u(Vex, 1) = (F(=x)uo(—V'1) + F(+x)uo(+V/1))

J R (i) — o (V) d

5=

J = (+/52) — o (+VD)) dz
T ) /4<J (—Vy)uy(—V1y) dy>d
1

¥

L** —y <Jl Hﬁy)“yf)(*‘ﬂy) dy) dz,

‘a\

Il

)

_ W
[==}

+

5

Wwe sec

ju(v/2x, 1) = (F (=)o (—V1) + F(+x)uo(+V/1))|
J*"C (wha)? J [(=VI)up(—Vy)] dy) 5
0 1

y
+o0 z :
. J S J |(+Viy)ug (V)] dy‘ i
T Jo 1

2 y

1 J+m ef(x+z)2/4 JZ SUPso |SM6(S)| d
2y )y |

! JM o—lx—2)/4

y| dz
Y
“sup. |Su6(S)|
n J 2D 0 dy| dz
2y/7 ) 1 Y
= 3Pt O [ -2t o]
2w 0

/ +o0
N S“Ps>20\|/sgo(s)| L (2" Ml0g | .

So, we have the conclusion. [ |
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