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CERTAIN HOLOMORPHIC SECTIONS RELATING TO 2-POINTED
WEIERSTRASS GAP SETS ON A COMPACT RIEMANN SURFACE

ToHrU GOTOH

Abstract

For a compact Riemann surface X of genus g, we will construct a holomorphic
section of the line bundle 717 K{™N62/6 @ nx g 9TD@HD/6 oyer ¥ x X whose zero set
consists exactly of the points (P, Q) with the cardinalities of the Weierstrass gap sets
G(P, Q) greater than the minimal value (g2 + 3g)/2.

1. Introduction

This is a continuation to the previous paper [G].

Throughout this article, we denote by X a compact Riemann surface of
genus g. For a pair of distinct points P and Q in X, the Weierstrass gap set
G(P, Q) is defined by

G(P,Q) := {(m,n) e Ng x N | 4f € .#(X) such that (f), =mP+nQ}.

Here Nj denotes the set consisting of all non-negative integers, .#(X) the space
of meromorphic functions on X, and (f). the polar divisor of a meromorphic
function f. It has then been shown by Kim [K] (see also Homma [H]) that
the cardinality of the gap set at (P, Q) satisfies the inequality (g>+ 3g)/2 <
#G(P,Q) < (3g> +¢g)/2. The minimal cardinality (g + 3g)/2 is attained by
generic pair (P,Q) in X x X, while the maximal cardinality (3g>+g)/2 is
attained only when both P and Q are the hyperelliptic Weierstrass points in X.

In the previous paper [G], we have investigated the Wronskian matrices
associated to effective divisors on X and constructed a holomorphic section
relating to the gap sets, which are summarized as Theorem 1.1 below. Let Ky
denotes the canonical line bundle of X, Q(X) = H*(X,Ky) and 7; : X x X — X
the projection onto the i-th component (i =1,2).

THEOREM 1.1. For each basis wi,...,w, of Q(X), there exsists a holo-
morphic section Plw, ..., w,] of the holomorphic line bundle nl"K;}(gH)(”»wH)/lz ®

7r5‘K;”’(("H'l)(ﬁz)/6 over X x X, for which the following (1) and (2) are equivalent for
each distinct pair (P, Q).
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(1) #G(P, Q) attains the minimal value (g + 3g)/2.
(2) There exists a basis wy,...,w, of Q(X) depending on (P, Q) such that
Yo, ..., 0P, Q) #0.

Our motivation of constructing the holomorphic section is that we want to
obtain a holomophic section whose zero set consists exactly of the points (P, Q)
with the cardinalities of the gap sets greater than the minimal value (g2 + 3g)/2.
Such a holomorphic section is likely to play the role of the Wronskian deter-
minant in the classical Weierstrass point theory. However the holomorphic
section W[wy,...,w,] does not work well, because of dependence on each point
in the assertion (2) above. For Theorem 1.1 gives the following expression only.
Putting Z := {(P, Q) € X x X\AX |#G(P, Q) > (¢*> + 39)/2},

(1) Z = N ' {(P,0) e X x X\AX |Ywi,...,04(P, Q) =0}.
ba:i)sl of (;)10(7)()

Here AX denotes the diagonal set in X x X.

In this article, we will construct the other holomorphic sections in order
to remove such a weak point. We shall prove the following theorem in section
2.

THEOREM 1.2. For each basis wi,...,w, of Q(X), there exsists a holo-
morphic section S|wy,...,w4| of the holomorphic line bundle 7z1*1(§}(g+1>(g+2)/6 ®
ni‘K}‘?(gH)(gH)/é over X x X, for which the following (1) and (2) are equivalent for
each distinct pair (P, Q).

(1) #G(P, Q) attains the minimal value (g + 3g)/2.

(2) S[w1,...,04(P, Q) #0 for each fixed basis wy,...,w,; of Q(X).

In contrast with (1), for each fixed basis w;,...,w,, we have
Z={(P,Q) e X x X\AX |S[w1,...,04(P, Q) =0}.

Now we are going to review some known results that will be needed in
this article. The Weierstrass gap sequence at P in X is denoted by of =
1l <af <---<alf <2g, then the Weierstrass weight at P is defined by wt(P) :

¢ (af —i) as well. After Kim [K], we define the map p: G(P) — G(Q) by
u(a) ;== min{f| («,p) ¢ G(P,Q)}. One of the key observations made in [G] is
the following characterization for u(«) in terms of holomorphic 1-forms:

(2)  u(e) =max{f|dw € Q(X) such that ordp(w)=o—1 and ordp(w) = —1}.

Let 7(u) be the number of pairs (i, ) satisfying both i < j and u(«”) > u(af),
then Homma [H] has proved an expression of #G(P,Q): '

3) #G(P, Q) = wt(P) + wt(Q) — 1(p) +g(g + 1).
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By virtue of the expression, Homma has found that #G(P, Q) attains the minimal
value g(g? + 3¢)/2 if and only if both P and Q are non-Weierstrass points and u
is given by u(i) =g+1—i (i=1,...,9) as well. This fact has been the reason
for constructing the holomorphic section Ww;,...,w,] in [G].

After constructing the holomorphic section S[wy,...,w,] and proving The-
orem 1.2 in section 2, we will observe the orders of the holomorphic sections in
section 3. In the final section 4, some examples will be examined.

We conclude the introduction with noticing two expansion formulae for
determinants, which are used frequently in this article.

Let 4 = (a;) be an m x n matrix. Then for sequences 1 <ij <--- < i, <m
and 1 <jj <--- < jp<n, we put

ag1 @iyt Qg ayy Ay o Al

Yt i1 A2~ i y | G @y e oy
R ’ Josdb =

ai,1 i iyn Amjy Amj Amjy

Then for a g x m matrix 4 and a g X n matrix B with m 4+ n = g, the determinant
of the square g matrix (A4, B) can be expanded as

(4) |A,B| _ (_1);11(m+1)/2 Z (71)a(l)+~-+0(ﬂ7)‘Aa(l),...,a(m)| |Ba(m+1),....a(g)|.

=
OESm,n

Here we denote by &, the symmetric group of degree g, and denote likewise by
Sy the set of all (m,n)-shuffles. Namely

Sun={0€Cunlo(l) <---<alm),em+1) <--- <alm+n)}.

When m=1 or n=1, (4) is the ordinary expansion of a determinant using
cofactors according to the first or the last column respectively. The expansion
formula (4) implies another one. Let A, B be square g matices, L a g X / matrix
and M a g x m matrix with /+m =g¢g. Then

(5) AL, BM| = Y |4,

I<ii<-<iy<g
I<ji<<jm<g

Lil,.“.i/ | |Mj1,m.jm |

----- irs le,---ﬁjm

2. Construction of holomorphic sections and the proof of Theorem 1.2

In order to illustrate the reason for constructing the holomorphic section

S|o1,...,w,] mensioned in the introduction, we shall first review the definition of
Ywi,...,w, and write down an explicit expression of it.
Let o = (wy,...,w,) be a basis of Q(X) and z, w be local coordinate

functions on open sets U and V' respectively on X. Write w; = f; dz = h; dw
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(i=1,...,9), where f; and /; are holomorphic functions on U and V respecti-
vely. We denote by

fi(z2) fl’(z) fl(gil)(z)
/ (9—1)
WIf1(z) == W[fi,..., ;)(z) = flz) [ - L7(2)

the Wronskian matrix for f = (fi,...,f;), and likewise by W(f)(z) its deter-
minant, the Wronskian determinant. A lower triangular matrix Tiow[f] 1S
defined by

g 1

Tmm:&WfU%”’ I Wk fo)
sy |

for 1 £ j<i=<g, where the circumflex over a term means that it is to be
omitted. Then, in [G], we have defined the function Y[w|(z,w) on U x V
by
g g
Ylol(z,w) = [ 6" (WIF1(2) x [] 0:((Tiowl£1(2)) - (WIH(w))).

i=1 i=1

Here for a square g matrix 4 = (a;;) and 1 <i<g, we set

a ay; dgl Agi
O (A):=|............. s 0i(A) =
ajl aijj Ag—i+1,1 Ag—it1,i
Those local functions define together a global holomorphic section W[wy, ..., o]

of the line bundle in Theorem 1.1.
Now, by making a somewhat involved calculation, we have the following
explicit expression of Y[w](z,w). Namely,

g glg+1)/2
(6) Wlo](z,w) = (=17t (H (/TPR )

fiz) @) - K77V w) h
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We omit the proof for y[w](z,w) to have the expression above, because it is
not needed in what follows. However, motivated by (6), we define the local
functions on U x V' by

(7 Syle](z,w) = [W[fl(2),.. g WH(w); [ (v=0,1,....9),
(z,w) := ﬁSv
v=0

hence the expression (6) is rewritten as

g—1 (g+1)/2
8)  Ylo)(z,w) = (~1)rer/E (H W(fi,... ,f,->) Sle](z, ).
i=1

Note that Sp[w|(z,w) = W(f)(z) and S,[w](z,w) = W (h)(w).

In contrast with y[w](z,w), these functions are subjected to nice transition
rules in changing bases of Q(X ). That is to say, let A be an invertible square ¢
matrix, then

) S,j04] = |4]S,[o] and S[ed] = |47 S[o].

Especially the zero sets of S,[w] and S[w] are determined independently on the
choice of the basis @ of Q(X).
Now we are going to prove the local version of Theorem 1.2.

THEOREM 2.1. Let o = (wy,...,w,) be a basis of Q(X) and (U,z), (V,w)
two charts of X. Then the following are equivalent for each distinct pair (z,w) in
UxV.

(1) #G(z,w) attains the minimal value (g° + 3g)/2.

(2) S[w](z,w) #0.

Proof. First we show that (1) implies (2). When #G(z,w) = (9> + 3¢)/2,
as mentioned in the introduction (or by Lemma 3.1 in [G] more precisely), there
exists a basis @ = (@1, ...,d,) of Q(X) for which the Wronskian matrix turns to
be of the form

A1 * * * 0 0 Bl
R R 0 A, = B %
(WA, Wihw) = _ ;
: . LK 0 . * %
0 --- 0 A4, By * * %
where Ai,...,4, and By,...,B, are non-zero complex numbers. Here @; =

f dz = h; dw as above Thus, for each v=20,1,...,9, we have
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Ay o %

0 Ay

Sy[@](z,w) =
O By v+1
0 Bl . *
= (_l)v(%l)Al o 'Agvagva T Be/
# 0.

The transition rule (9) then shows S[w](z,w) # 0.

Next we suppose S[o](z,w) # 0. Then because Sy[w](z,w) = W(f)(z) #0
and Sy[w](z,w) = W(h)(w) # 0 by definition, both P and Q are non-Weierstrass
points in X and their gap sequences are the same {1,2,...,g9}. Then according
to (2) (Theorem 2.6 in [G]), we can take a basis & of Q(X), depending on a
point (z,w), with respect to which the orders of @; are given by ord.(@;) =i —1
and ord,(@;) = u(i)—1 (i=1,...,9). Because W[f](z) is an upper triangular
matrix, the expansion formula (4) implies

Si[o](z,w) = \W[f](Z)l g-v W[h](w)l,.“,v|

which does not vanish by the assumption S[w|(z,w) # 0 and the transition rule
(9). Therefore |W[h](v )(’ f“ I #£0 for each v=1,...,g, which verifies the
assertion. For first |W[h ](w) | # 0 implies u(g) = 1, second |W [h](w )15 1"| #0
implies u(g — 1) =2. We obtain inductively u(i) =g+ 1 —iforeachi=1,...,g,
when #G(z,w) attains the minimal value (g + 3¢g)/2 as mentioned in the
introduction. O

Remark 2.1. If we assume the expression (8), then Theorem 2.1 is obtained
as a corollary to Theorem 1.1. However once we have defined S[w] directly,
Y]w] is not needed to prove Theorem 2.1.

Next we shall proceed to find the transition rules for S,[w] and S| in
changing the local coordinate functions. Let z, Z and w, w be local coordinate
functlons on U and V respectively. For a basis o = (wy,...,w,) of Q(X), write

= fidz = f dz = h; dw = h; dw as before. With respect to these local coor-
dmate functions, the functions defined by (7) above are

yeery
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It is known that the Wronskian matrices are subjected to the following transition
rules in changing the local coordinate functions:

WIAl(z) = WIFIE)L(z) and  WIk|(w) = W[R](9)M (w).

Here L(z) and M (w) are the square g matrices of the forms

dz dw
0 (%)2 ........... 0 (d_w>2 ............
L(z):= dz , M(w) = dw
dz\? dwy’
0 (E) 0 e (%)

Making use of the expansion formula (5), we obtain

(10) Silo)(z,w) = [WIF12) g WIRI(W); |

ey yeeny

= (W@ - L. gmrr (WIRIE) - M)yl

) 3eeey

= WIAIE) - L(2)y g WIRI(W) - M(W), |

..........

= > WIAG, ., WK, ]

1<ii<-<igy<g
I<ji<-<ji<g

XL M

penng—y W) v
Substituting
dx\e—hz )
L) = (‘) =losdr =)
0 (otherwise),
i\
M) = (_> U= b=
0 (otherwise),

d§>(g—V)<g—v+l)/2 (dw)wﬂ)/z

T
a2 g2
— $ifwl(z,W) (d—) (d—) |
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Taking products on v=0,1,...,g in (11), we also have
L (dz aw\ItDet2)/6
(12) Slo](z,w) = S[o](2, ) (E %> |

On account of (11) and (12), we put

S,[0](z,w) = S,[0](z, w)(dz) D2 @ ()@ D2

13
(13) S[o(z,w) := Slo)(z, W)(dz)®g(g+1)(9+2)/6 ® (dw)®g(g+1)(9+2)/6

in order to define holomorphic sections of the line bundles p;KY "¢/ g

piKUTY2 and  prk TV @ pr gt 6/6 Gyer X x X respectively.
Hence Theorem 2.1 implies Theorem 1.2. O

3. The orders of S,

In this section, we investigate the orders of the holomorphic section S,[w]
(v=0,1,...,g) defined in the previous section. If S,[w] is expressed by S,[w]
locally as (13) and local coordinates of the point (P, Q) is (zg, wy), the order of
S,[o] at a point (P,Q) in U x V is defined by

OI‘d(P, 0) (Sv[wD

NS, o]
oz"mown

‘= min {Hm,neNo such that N =m+n and
NGNQ

(0, W) # o}.

The definition does not depend on a choice of a local coordinate function.

Let P and Q be distinct points in X and put g = u(af) for i=1,...,g,
so that G(Q) = {wy,..-,4,}. Take a basis wy,..., 0, of Q(X) with orders
ordp(w;) = af — 1 and ordp(w;) = ; — 1. We also take local coordinate func-
tions z, w centered at P and Q respectively. Write w; = f; dz = h; dw, and
further

(14)  fi(z) = 2% u(z)  (wi(0) #0),  hi(w) = wh  u(w)  (u:(0) #0),

u;(z) and v;(w) being locally defined holomorphic functions around the origin.

Now let a; denotes the (i, j)-entry of the square g matrix (W[f](2); _,
W h](w), ). Then by means of (14) and Leibniz formula for higher derivatives
of a product of functions, a; is given by

-1 /.
.]_1 ol — j—1— .
Z( K )<z BRMTNC) (I<j<g-v),
k=0

Jj—g+v—1 j—l )

> ( Kk >(W”"1)<")v§"“"”"‘“(w) (9-v+1<j<g)

k=0

@ij =
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The lowest order term of a; is
bw:{@#*w*%@> (1<j<g-v),
(U () (g —v+1<j<g),
some of which may vanish. Therefore S,[w]|(z,w) = det(b;) + (remainder terms).
We use the expansion formula (4) to compute det(b;). Namely,

z lp’lul(z) e (z“f’l)(gfvfwul(z) wh =y (w) - (w”l’l)(vfl)vg(w)

(15) det(By) = | e
— (g% 1) #y=1 T Ny

z% ug(z) - (2% ) ug(z) whe og(w) - (wh ™) Vg (w)

:(_1)(;,,‘,)(;},‘,“)/2 Z (_1)0(1)+..4+J(gﬂ,)

g€,y
20 )(2) (%) V) (2)
Z{x;”i“)ilua(gfv)(z) (Z“U(IH) l)<g_v_])ua(qfv)(z)
W’uﬂ(z/fwl)_lva(g_v_,'_l)(W) (W””(ﬂ/*"“)_l)( 71)1)0.(9_‘,_,'_1)(11/)
< TP
wheo " o () - (whea =)V (w)
_ (_1)(g*V)(g*V+1)/2 Z (71)0(1)+'“+f7(g*")
[
X Ug(1)(2) - Ug(g—v) (2) W(z“«ﬁw‘], e Z“fﬁ«‘/"')_l)
X Vg(goyi1) (W) =+ Vg(g) (W) W (whetoren =1 oo =),

The Wronskian determinants of monomials are given as follows. See [BD], for
instance.

Lemma 3.1. For any sequence f,,...,B, of nom-negative integers, the
Wronskian determinant of monomials xP,... xPn is given by

WP, xP) = H (B — B,) - xPrttbummm=1)/2

m=k>/>1
Now Lemma 3.1 yields
P P P P Noa—v
Wt ey = [ (e —aky) - e o2
g—v=k>I>1
W (whota=s v, W”ﬂ(;/)fl) = H (:ua(k) — :ua(l)) < pletgveny Tt =D /2.

g=k>1>g—v+1

Substituting those Wronskian determinants into (15), we obtain
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det(b;) = (_1)(97">(g—v+1>/2 Z (_1){7(1”4.%@,‘,)

eSSy, ,

X H (“Qk) - 0‘5(1)) : H (ﬂg(k) - ﬂo(z))

g—v=k>I>1 g=k>l>g—v+1
g—v g
Us(k) (Z) . H v(,(k)(w)
k=1 k=g—v+1
22T gy =GV 2 gy (1) /2
For this reason, for each shuffle e S,_,, and v=20,1,...,g, we set
(16) C, .= (_1)(9—")(9—V+1)/2(_1)0(1)*‘*”(9—0
P P
X H (%(k) - %(1)) : H (:ua—(k) - ﬂa(1>)
g—v=k>I>1 g=k>1>g—v+1
g—v g
JJwew© - T vow(0).
k=1 k=g—v+1

We set further, for each sequence 0 = (0i,...,0,) and v=20,1,...,g,

v v

wt {0} == (0, — i), Wt'{0} = (O vyi—i), wio{0} =wt’{0}:=0,

i=1 i=1

and for a point P, wt,(P):=wt,{af}, wt"(P) = wt"{«f}. Hence the Weier-
strass weight at P equals to wt,(P) = wt9(P) by definition.
We summarize the argument above as follows.

ProPOSITION 3.2. In accordance with the notation above, S,[o](z,w) is
expanded at the origin as follows.

(17) Sy@](z,w) = Z C\,,aZW‘-‘f*"{“f}thv{”ﬂ} + R(z,w).

eSS,

The remainder term R satisfies
(1) the order of R along the z-axis is greater than mingeg, , {wty—,{al}} =
Wty (P), .
, (2) the order of R along the w-axis is greater than mingeg, , {Wt'{u,}} =
W' (0).
Moreover we have the inequality
(3) ordp.g) (o)) > mingec, ., (Wi, {2} + wi'{,}).

The pull-back of the point divisor P by the projection 7;: X x X — X is
denoted by n/P. Then Proposition 3.2(1), (2) are interpreted as
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COROLLARY 3.3. The orders of S,|0] along n{P and n;Q are given by
ordz-p(Sy[]) = Wty (P) and ordg;o(S,[w]) = wt"(Q).
Especially the gap sequences at P and Q can be obtained by the following formula.
af = ordy p(Sy-1[0]) + 1,
OC%D = ordnl*p(Sg,z[w]) — ordn]*p(Sg,l [w]) + 2,

o) = ordy p(So[w]) — ordy:p(S1[®]) + 9.
o = ordg (S [e]) + 1,
0f = ordz; o(Sa[o]) — ordy; o(Si[w]) + 2,

Proof. Because C,, # 0 for any v, ¢ by definition (16), those orders are
verified from (17) and Proposition 3.2(1) and (2). The expressions of o/ and oc,-Q
are obtained from the definition of wt, and wt". O

When v =0 or v =g, these mean that ordp(W (f)) = wt(P) or ordo(W (h))
= wt(Q) respectively, which is a classical result in the theory of Weierstrass
points. On the diagonal set AX, the orders of S,[m] are given explicitly.

COROLLARY 3.4. For each v=1,...,9 — 1, we have the following.
(1) Sy[@|(P,P)=0 for all P X.

(2) otd(p, ) (Sife]) = Wi(P) + v(g — 7).

(3) ordax(Sy[®]) = v(g — v).

Proof. We take a local coordinate function (z,w) centered at (P, P) to be
w =z, then (14) turns to

fi2) =25 u(z), hi(w) = w¥ T u(w)  (ui(0) # 0).

Hence the expansion (17) turns to

(18) Sy(z,w) = Z Cv,JZW‘-"*"{“f}thv{“:} + R(z,w).

ey,

In this case, the degree of z"u—{%yW'{%} equals to wt(P)+ v(g — v) for each
g, which is positive because 0 < v < g by assumption. Therefore Proposition
3.2(3) implies ordp p)(S,[®]) = wt(P) +v(g —v) >0, which shows (1). Practi-
cally we have the equality (2). For in the summation (18), the coefficient of
2V (PhyyWU(P) s just C, 44, id being the identity permutation, that is not zero
by definition (16). Thus we obtain (2). See also Remark 3.1 below. Finally,
(3) comes from (2), because wt(P) =0 for all but finitely many P’s. O
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Remark 3.1. It seems likely to be true that the equality in Proposition 3.2(3)
holds, although it is not proved at present. We make some remarks when this is
the case.

To this end, we put d9(c) :=wt,,{oaf} + wt'{u,} for each €S, ,,
and also d/*¢ :=min,ce, , {d/"%(c)}. Thus the problem is whether or not the
equality ordp g)(Si[®]) = d*? holds. Take a9 € S,_,,, with d/9(ay) =dl?.
For a shuffle 0 € S,_,,, we denote ¢ ~ gy when

Wiy (o} = wi o foh ) and wt'{u,} = wt' (g, .

Then the coefficient of z™v{%} "' {#x} in the summation (17) is Y o~gy Crio
Therefore the equality in Proposition 3.2(3) holds if and only if there exists such
a oy for which > C,,, does not vanish. The following are when this is the
case.
(1) There is no o with ¢ ~ gy other than gy itself.
(2) o9 can be taken as the idendity permutation. This is the case of
Corollary 3.4(2).

a~a(

B)v=1lorv=g-—1.

(4) Because of (3), the equality holds for each v when the genus of X is
three.

4. Examples

In this section, we shall apply the argument in the preceding sections to some
examples, that is, the hyperelliptic curves and the Fermat curve of genus three.

4.1. Hyperelliptic curves

Let Y be a hyperelliptic curve of genus g. This is a compactification of
an affine plane curve y? =a(x —by)(x —by) -+ (x — byy2) with two points at
infinity. Here b1, b,,..., b4 are distinct complex numbers and a a non-zero
complex number. The Weierstrass points on Y are exactly (b1,0),..., (by2,0).
We denote by o the hyperelliptic involution of Y. That is defined by o(x, y) =
(X, _y)

Now put w, =x*dx/y (6 =0,...,9—1) on Y. Then those 1-forms be-
come a basis of Q(Y). Let ((x,y),(& 7)) be a point on ¥ x Y. When y #0
and # # 0, we can take (x,¢) as a local coordinate function around there. We
put f, :=x*/y and h, := £*/n away from y =0 and 5 = 0 respectively. Using
the expansion formula (4) to obtain

i

(19) Sv[w]((x; y)» (évﬂ)) - |W[f]1,...,g7v? W[h]l,...,g—v|
= (_1)(97‘})(97‘%1) Z (_1)0(1)+'~+a‘(g7v)
eSSy,
a(1),...,0(g— a(g—v+1),..., o
X |W[f]1’(m?g;v<./ ) IW[hh,(_‘_’.,g‘fv> ai

and substituting
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WL = Wty e )
— I/V(xa(l)—l7 o ’xo'(g—v)—l)/yg—v’
WP Do) = (et Dy, oy
= WL
into (19) and using (4) again, we have
1 0 1 0
1 X 1 g 1
) Sfol((x.p).Em) = m| 5 2 £
x071 (g — 1)x972 et (g-1)e?
g—v columns v columns

c (&= x) v(g—v)
yInY
where C = ([T/Z " K)TTiZ0 k).
At a point, say, where y # 0 and = 0, taking (x,#) as a local coordinate
function, (20) and the transition low (11) imply

)

N x) v(g—v) (é/) v(iv—1)/2

&\ (€
ol e = (5 e
Here &' = d¢/dy. Note that ord,—¢(¢") =1 and hence &’/n does not vanish at
n=20.

Let ¥ be the curve in Y x Y defined by the equation & — x =0, which
contains precisely the diagonal set AY and the graph of the hyperelliptic
involution ¢ as the irreducible components. Then because of (20), we find
that the orders of S,[w] are given by the table below.

P, Q 0rd<p7 0) S, [w]
Both P and Q are (P,Q)eX glg—1)/2+v(v—1)
Weerstrass points (P.Q)¢% | {(g=g—v—1)+v(r—1)})2
Q is a Weierstrass point and P is not v(iv—1)/2
P is a Weierstrass point and Q is not (g—v)(g—v—-1)/2
Both P and Q are (P,Q)eX v(g—v)
not Weierstrass points (P,0) ¢X 0
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The gap sets for pairs of points in a hyperelliptic curve have been well
investigated in [K] or [H]. Compare also the table with one in [G, p. 334]. As
a consequence, we know that #(x) takes the extremal values only, that is, #(x) =0
(minimum) or g(g — 1)/2 (maximum) at each pair of points in ¥ x Y. This fact
verifies that the equality in Proposition 3.2(3) holds for each (P, Q). This is the
case of Remark 3.1.(2).

4.2. Fermat curve of genus three

Let C be the Fermar curve of genus three over the field of complex numbers.
Namely C is a smooth projective plane curve of degree four defined by the
equation xo —i—xl —|—x2 =0, where xo, X1, x are the homogeneous coordinates
of P>. For U = {[x0 : x1 : x2) eP? |xz # 0} CNU is isomorphic to the affine
plane curve A4 defined by f(zg,z1) = 20 + zl +1 =0, where zp = x¢/x2, z1 = x1/%2
are the inhomogeneous coordinates of C>. We define three 1-forms on 4 by

“_ 3 __ 2 . 3
w1 =dz0/zi, wy:=dzo/zy, w3:=zodzo/z].

Then each of these 1-forms becomes a holomorphic 1-form on C, moreover wq,
w3, w3 form a basis of Q(C). See Miranda [M, p. 112], for construction of these
I-forms. Let {; (j=1,2,3,4) be the 4-th roots of —1, then the d1v1sors asso-
ciated to those l-forms are given by (w;) = Z/ g1 O] () = E/ G20 1],
(Cl)?,) Z] 1[0 C] ]

Now we compute the functions S,[w] (v=0,1,2,3)on 4 x 4. When z; # 0
and wy # 0, we can take (zo,wp) as a local coordinate function of 4 x 4. Then
elementary calculations yield the following.

(21) Sol@]((20,21), (wo, w1)) = =32/2,°

(]

Sifo)((z0, 21), (w0, w1)) = —(z9wo + ziwi + 1)/ (z}w}),

SH[@]((20,21), (wo, w1)) = —(zowg + z1wi + 1)/(z3w}),
(] )

Si[o]((zo, 21), (wo, w1)) = —3w§/w116.

With respect to the other local coordinate functions, say, at the point
where zp #0 and wy # 0, we have the expression Sl[w}((zo,zl) (wo,w1)) =
—(z3wo + ziw1 +1)/(zgwg) for instance. Sple J((z0,21), (wo, 1)) is nothing but
the Wronskian determinant W (®)(z, z1), which is a holomorphic section of K&

Therefore we find from (21) that the divisor associated to W(w) is given by

4 4 4
@)= 205:1:01+> 2[:0:1]+) 2(0
J=1 J=1 J=1

This means that there are exactly twelve Weierstrass points [{;: 1:0], [;:0: 1]
and [0:¢;:1] (j=1,2,3,4), all of whose weight are two. According to Kur-
ibayashi and Komiya [KK], there are exactly two compact Riemann surfaces of
genus three that have twelve Weierstrass points.

Let P = (z9,z1) be a point in 4 with, say, zo # 0. Then by means of (21),
the order of S,[w] along n; P is given as follow.
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* When z; # 0, ords-p(S,[@]) =0 for all v=0,1,2.

* When z; =0, ords:p(Solw]) =2 and ord,p(S,[@]) =0 for v=1,2.
In the former case, by virture of Corollary 3.3, the gap sequence at P is
af = (1,2,3), namely P is a non-Weierstrass point. In the latter case, the gap
sequence is likewise o = (1,2,5), namely P is a Weierstrass point. Therefore,
as mentioned above, the weight of every Weierstrass point equals to two.

Next let (P, Q) be a point in C x C with P # Q. We shall explain how
the sequence y; = ,u((xiP ) (j=1,2,3) can be obtained from the orders of S,[w]
(v=10,1,2,3) at the point (P,Q). The key fact is the equality

(22) Ord(R Q)(Sv[w]) = aen»gn {th—v{“f} +wt'{u,}},
which holds in the present case (genus three) as mentioned in Remark 3.1.(4).
As before, we assume the point (P, Q) to be contained in 4 x A. We also
assume that both P and Q are non-Weierstrass points. Then ordp, ¢)(So[®]) =
ord(p 0)(S3[w]) = 0. Because of (21), the orders of Si[w] and S>[w] at (P, Q)
equal to 0 or 1. When ord(p ¢)(Si[0]) = 0, (22) implies (27, — 1) + (2%, —2)
+ (#te3y — 1) =0 for some o€ &Sy ;. Then ¢=(1,2,3) and p3=1. When
ordp g)(Sale]) = 1, (22) implies (o)) — 1) + (o)) = 2) + (ko3 — 1) = 1 for
some o€ Sy, Then o=(1,2,3) and (o — 1)+ (u3—2)=1 or o =(2,1,3)
and (u; — 1)+ (43 —2) = 0. Therefore if ordp o) S1 =0 and ordp o) S> =1,
we obtain u=(2,3,1), and then #G(P,Q)=wt(P)+wt(Q)—t(p)+12=
04+0—-2+12=10 by means of (3). In all other cases, we can likewise obtain
the sequence 4; at each point.

We denote by X, (v=1,2) the zero sets of S,[w], which are defined by the
following equations with respect to the homogeneous coordinates in P? x P2.

2 :x3y0+x13y1+x§y2:0, Zzzxoyg—i—xlyf—i—xgyg:().

Therefore the argument above is summarized as the table below.

P,Q (P+0) sty s | L) | #G(P, Q)

Both P and Q are Weierstrass points 5,2,1 3 13
P is not a Weierstrass point | (P,@) €Zi\Z | 5,1,2 2 12
and Q a Weierstrass point (P,0) ¢ 5, U, 521 3 11

(P,Q)eX N, é’?’g 1 11
Both P and Q are (P,0) eZi\X, 3,1,2 2 10
not Weierstrass point

(P, Q) € X)\%, 2,31 2 10

(PaQ)¢21U22 37271 3 9
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The final comment. The examples above suggest that the holomorphic sections
S, (v=0,1,...,9) are closely related to the structure of the gap sets. For
example, it seems to be reasonable to conjecture that #G(P, Q) remains constant
on each X,, the zero set of §,, except at the intersections with the other X,’s.
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