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SOME EXTENSIONS OF THE FOUR VALUES
THEOREM OF NEVANLINNA-GUNDERSEN

Duc QuanG Si

Abstract

Nevanlinna showed that two distinct non-constant meromorphic functions on C
must be linked by a Mobius transformation if they have the same inverse images
counted with multiplicities for four distinct values. Later on, Gundersen generalized
the result of Nevanlinna to the case where two meromorphic functions share two
values ignoring multiplicity and share other two values with counting multiplicities. In
this paper, we will extend the results of Nevanlinna-Gundersen to the case of two
holomorphic mappings into P”(C) sharing (n + 1) hyperplanes ignoring multiplicity and
other (n+ 1) hyperplanes with multiplicities counted to level 2 or (n+ 1).

1. Introduction

For a divisor v on C, we define the truncated counting function of v as
follows:

n(t,y) =Y v(z), (t>1) and N(r,v):Jert, (r>1).

|z|<t 1 4

For a positive integer k& (maybe k = +c0), we denote by v/l the truncated divisor
defined by

Wi (z) = min{v(z),k} (zeC)

and put N(r,v) = N(r,v¥). We will omit the character ¥ if k = +o0.

Let f be a meromorphic function on C. We denote by v}9 (resp. vf) the
zero divisor (resp. pole divisor) of f and define the divisor generated by f by
V= v/? —v7. The proximity function of f is defined by

2n

mir. f) =~ jznlo (/e d0—ij log*|(/(¢))] d0
’ _271' 0 g 271' 0 g ’
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where log"™ x = max{0,log x} for a positive number x. The Nevanlinna’s char-
acteristic function of f is define by

T(r,f)=m(r,[)+ N(r,vS).
In 1926, R. Nevanlinna proved the following theorem.

THEOREM A (Nevanlinna [3]). Let f and g be two distinct non-constant
meromorphic functions and let ay, ay, as, as be four distinct values in CU{o0}.
Assume that

V;);a, = vf;fai fori=1,....4.
Then g is a Mdbius transformation of f.

The above theorem is usually called the four values theorem of Nevanlinna.
In 1983, Gundersen [1] improved the result of Nevanlinna by proving the
following.

THeOREM B (Gundersen [1]). Let f and g be two distinct non-constant
meromorphic functions and let ay, a,, as, as be four distinct values in CU {o0}.
Assume that

min{v}tai, 1} = min{vgw7 1} for i=1,2 and v})faj = ‘{27“, Sfor j=3,4

(outside a discrete set of counting function regardless of multiplicity is equal to
o(T(r,[))). Then v)_, =v)_, for all ie{l,...,4}.

Since that time, the above results of Nevanlinna and Gundersen have been
extended and deepen by many authors for the case of meromorphic functions.
However, so far as we know, there is no extension of such results to the case of
holomorphic mappings into P"(C). Our purpose in this paper is to generalize
and improve these results to that case. To state our results, we give the
following.

Firstly, we note that the condition: min{k, v} ,} = min{k,v) , } in Theorem
A and Theorem B will implies that

(#) () =¢"() v0<l<min{y)_,(2),vy_,(2)}

g

for all z € Supp v}, = Supp ), where by /) we denote the k-th derivative of
f and f© = f. " Therefore, in a natural way, we generalize the notion “sharing
a value” of meromorphic functions to the case of holomorphic mappings as
follows.

Let f and g be two holomorphic mappings of C into P"(C) with reduced

representations

J=Uo::/fu) and g=(go:-:gn)
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respectively. Let H be a hyperplane in P”(C) given by
H={(wg: :,):awy+ -+ a,w, =0},

where a; (i =1,...,n) are constants, not all zeros. We define functions (f, H) =
Sioaifi and (9, H) = > " ja;gi. Let k be a positive integer or +o0. We say
that f and ¢ share the hyperplane H CM; if the following are satisfied

(i) min{k, vy ) (2)} = min{k, v, ;) (2)},

0] A
(i) (§) ()= (j—) (5) Y0 << min{v®, ()% ()},
for all z outside a discrete set S of counting function regardless of multiplicity
equal to o(Ty(r) + T,(r))). If k=1 (resp. k = +c0), we will write IM* (resp.
CM") for CM; (resp. CM] ). f

Omitting the condition on the derivative of == and —, we say that f and ¢
share H CM; if Ji 9i

min{k, v?ﬁH) (z)} = min{k, V?.aﬁ) (z)} and f(z) =g¢(z)

for all ze f~'(H)Ug '(H)\S, where S is a set of counting function regardless
of multiplicity equal to o(Ty(r) + T,(r))). Similarly as above, if k=1 (resp.
k = +0), we will write IM* (resp. CM*) for CM; (resp. CM* ).

We now extend the results of Nevanlinna and Gundersen to the case of
holomorphic mappings into P”(C) as follows.

THEOREM 1.1. Let f and g be two linearly non-degenerate holomorphic
mappings of C into P"(C). Let {H }22 be (2n+2) hyperplanes of P"(C) in
general position with f~'(H;)Nf~Y(H)=0 (1<i<j<2n+2). Assume thal
f and g share (n+ 1) hyperplanes {H Mo +11 IM* and share (n+ 1) hyperplanes
{H; }122;32 CM;. If n>2 then f =g

For the case of holomorphic mappings sharing C—M,f hyperplanes, we prove
the following theorem.

THEOREM 1.2. Let f and g be two linearly non-degenerate holomorphic
mappings of C into P"(C). Let {H }22 be (2n+2) hyperplanes of P"(C) in
general position with f~'(H)Nf"Y(H)=0 (1 <i<j<2n+2). Assume that
f and g share (n+ 1) hyperplanes {H }lnﬁ IM* and share (n+ 1) hyperplanes
{H}2, CM?,,. If n>2 then f =g

i=n+

2. Basic notions in Nevanlinna theory

Let f: C— P"(C) be a holomorphic mapping. For arbitrarily fixed ho-
mogeneous coordinates (wp : ---: w,) on P"(C), we take a reduced representation
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f=(fo:-: fu), which means that fy,...,f, are holomorphic functions on C
have no common zero. Set | f]| = (|fo|> +--- + Ll )12
The characteristic function of f is defined by

1 2n . 1 2n .
1) = 55| toell el a0~ 5 [ "ol (e ao.

Let ¢ be a nonzero meromorphic function on C, which is occasionally
regarded as a meromorphic map into P'(C). Then, there is a fact that

T,(r) = T(r,p) + O(1).
The meromorphic function ¢ is said to be small with respect to f iff

| T(r,p) = o(T(r))-

cc|

Here, as usual, by the notation || P” we mean the assertion P holds for all
re€ [0, 0) excluding a Borel subset E of the interval [0, c0) with [, dr < co. We
denote by %, the field of all small (with respect to f) functions on C.

The following play essential roles in Nevanlinna theory.

THEOREM 2.1 (Second main theorem, see [4]). Let f:C — P"(C) be a
linearly non-degenerate holomorphic mapping and Hi, ..., H, be q hyperplanes in
general position in P"(C). Then

q

I (g —n—=1)T(r) < D N"(r, v 1) +o(Ty(r).
i=1

Lemma 2.2 (Lemma on logarithmic derivative, see [4]). Let f be a nonzero
meromorphic function on C™. Then

H m(¥> — Ollog" T(r. /) (keZ,).

The next lemma is due to P. Li and C. C. Yang.

LemMa 2.3 (Lemma 7, [2]). Let fi and f be two non-constant meromorphic
functions satisfying

| NUv) + NG vE) = o(T(r, i) + T(r, £2)) (i =1,2).

If (ffy — 1) is not identically zero for all integers s and t (|s| + |t| > 0), then for
any positive number &, we have

No(r, 1 /1, /2) < e(T(r, /i) + T(r, /2))

where No(r,1; f1, f2) denotes the reduced counting function of fi and f, related to
the common 1-points.
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3. Some Lemmas

In order to prove Main Theorems, we need some following lemmas.

Lemma 3.1. Let f and g be two linearly nondegenerate holomorphic
mappings of C into P"(C) and let {H;}! | be q hyperplanes of P"(C) in general
position.  Assume that f and g share H; IM* for all 1 <i<gq. If g>n+2
then

| Ty(r) = O(Ty(r)) and || Ty(r) = O(Ty(r)).

Proof. By the Second Main Theorem, we have

Hence || T,(r) = O(Ty(r)). Similarly, we get || T;(r) = O(Ty(r)). O

LemMAa 3.2. Let f and f, be two distinct holomorphic mappings of C
into P"(C) and let {H; }2"+2 be hyperplanes of P"(C) in general position with

STYH)N TN (H) =0 (1<i<j<2n+2). Suppose that fi and f> share all
H (1<i<2n +2) IM*.  Then the following assertions hold:

) || 7y(r) = a1

o)+ T, o
i) || Nrmin{vl, vl 1) = NP vl ) =nNW(r vl )+ S(r)
for V1<t<2 1<i<2n+2.

iii) For two indices i,j (1 <i< j<2n+2), fgl’ 3 # E?’H]; then
2, H; 2, H;

Z’IHNH(V,V(] wy) (), for s=12 and S(r)=

2n+2
I (T () + Ta(r)) = 3 Nromin{s0y 10 1)+ D N0y 1) + S0
v=1i,j v;}]
d |T<r (ﬁ’Hi)/(ﬁ’Hi)>:2i2Nm(rv D +S), s=1,2
hHY ) (BH)) T S (foH 2,

v#ELLJ

iv) For two indices i,j (1 <i< j<2n+2), if Ejffl’ ; 8:1’[;]3 then
27 i 2 ]

| NV, ) = NG, ) +S() = S(), s=1,2,
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Proof. 1)-ii) By changing indices if necessary, we may assume that

Vi, H) _ () _ _ (uHk) o, (nHeq) 0 _ (fnHe)
(2 H)  (hH) (hHy) " (hHgn) (2 H)
group 1 group 2
1 Hipr) _ - _ (N, He) T i He, 1) _ o _ (1o He,)
(f2, Hiy 1) (f2, Hiy) (f2, Hi,_,+1) (f2, Hy,)’
group 3 group m

where k,,, = 2n + 2.
For each 1 <i<2n+2, we set

o(i) = i+n ifi+n<2n+2,
i-n=2 ifi+n>2n+2.

and
P = (flaHi)(ﬁaHJ(i)) - (fZ’Hi)(flvHa(i))'

Since fi and f, are distinct maps, the number of elements of each group is at

H; 1, Hy (i
i) o U1 Hep)
(f27Hl') (f27Hr7(l))
that P, #0 (1 <i<2n+2).

For a fixed index i (1 <i<2n+2), we easily see that:

< If ze f7Y(H:) N f;71(H;) then z is a zero point of P; with multiplicity at
least min{.v?ﬁ’Hi)(z), v?fZ-Hi)(Z)}.. .S.imilarly, if z € S (Ho) N f7 (Hy () then z is
a zero point of P; with multiplicity at least min{v, Hg(i))(z),v?g, ) (D}

< If ze f7Y(H,)N 7Y (H,) with vé {i,o(i)} then z is a zero point of P,
(because fi(z) = f2(2)).

Thus, we have

most n. Hence

belong to distinct groups. This means

(33)  vp(2) = min{vly 4 (2), vy ) (2)} +min{v(y p 1(2)90p ) (2)}
2n+2
+ Z; min{1,v(; 4,2}, s=1,2,
v=

v#i,a(i)
for all z outside a discrete set of reduced counting function equal to S(r).

Since (min{a,b} > min{a,n} + min{b,n} — n) for all positive integers a and
b, we have

(3-4) vi(z) = min{vy (), v,y (2)} —min{o, y,)(2),n}

- min{v?ﬁ’H[)(z), ny —nmin{v s g,)(z),1} >0,
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for s = 1,2, and for all z outside a discrete set of reduced counting function equal
to S(r). Therefore, the inequality (3.3) implies that

(3.5) vp(z) = Z (min{v(z g,)(2),n} +min{v s g(z),n}
v=i,0(i)
2n+2
S {1+ Y min{l gy 1)
L;rﬁlro(z)
for s = 1,2, and for all z outside a discrete set of reduced counting function equal
to S(r).
Integrating both sides of the above inequality, we get
(3.6) | NaG) = 32 (VL 0) + N () =T )
v=i,a(i)
2n+-2
+ Z Ny () + 80, (s=1,2).
L;ﬁl (7(1)
Summing-up both sides of this inequality over all i=1,...,n+ 1, we have
ntl 2 2n42

IS Np() = D0 DN () + ().
i=1

s=1 i=1

On the other hand, by Jensen’s formula and the definition of the charac-
teristic function, we have

2n
J log|P,(re™®)| d0 + O(1)
0

2n
<j tog(|(fi. H)(re”) + (i Hoo)(re”) )2 0

0

*L log(|(fo, Hy) (re™)|* + |(f5, Hya))(re”)[2) 7% d0 + O(1)
2n
= J log(|Lfi (re ™) | (IHHI® + || Hoi)I1P)/?) dO

2n
+ L tog(l>(re™) | (| Hil12 + | Hogo |2)'72) d6 + O(1)

2n

2n
=j0 log|Lfi (re)| d9+j0 log| fa(re™)]| d0 + O(1)

= T5(r) + Ty (r) + O(1).
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This implies that

2 2n+2
(3.7) (n+ DT + Tp() = 3 S NI () + S().
s=1 i=1

By the second main theorem, we also have

2n+2
(3.8) | (n+ 1)T(r) < ; Ny () +80), (s=1,2).
This implies that
2 2n42 .
(3.9) I (n+ D)(T (1) + Ty, (1)) < Z Z NEL (1) + S ().

This inequality yields that the inequality (3.7) becomes equality. Hence, it
follows that all inequalities (3.3)—(3.5) become equalities for all z outside a
discrete set of reduced counting function equal to S(r) and inequalities (3.6)—(3.9)
become equality.

Therefore, (3.8) proves the assertion i) of the lemma. Integrating both sides
of (3.4), we get the assertion ii) of the lemma.

iii) By re-changing index if necessary, without loss of generality we may
assume that j=o(i). Since the assertion ii) holds and the inequality (3.6)
becomes equality, we immediately get the first equality of the assertion iii). We
now prove the second equality. We have

(flaHi) (f2>Hi) )
T(”(ﬁ,Hj) s, 1) = NV ) (o) /o 1)

(st ) )

S NGy ) + NG )6 m)

en(rniem) (e )

SNV ) + NG w6 m)

(ﬂvHi) 0
+ T(r, . = NV a0 m)

j 0
: ) = N1 0.m)

< T4 (r) + T (r) + Ny g m)

>
=

o0 0 0
F NV, m) = N ) = NV y)-
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V(\)/e see  that 'min{O, v?fz’H‘_)(z) — v?thi)(z)} — V?fz,H,-)(Z) = —min{v?th!)(z)7
Vi my(2)}. Then it follows that

NGy ) = N0V ) = =N rmin{vy )00, ) }).
Similarly, we have

N vy si) = N0 ) = =N rsmin{ys (s ) )-
Combining these equalities and the above inequality, we obtain that

(flle)/(f‘Zle)
(N, Hy) /) (S H))

(3.10) T(V, > < T3 (r) + Ty (r) = N(rymin{vl, 0 v0s g0 })

— N(r, min{v?fl_’H/>7 V?ﬁ,m)})~

On the other hand, we see that

(e o) = e ) )

2n+2
1
Z 1 N[](V7V?fr,H1:>)7 S:172.

=
v#£Lj

Combining this inequality, the inequality (3.10) and the first equality of the
assertion, we obtain that

, H; , H; )
|| T(r, Ejﬁ i § / Ej? i ;) = Ty(r) + T(r) = NOymin{s, 0 b+ S(0)

= ZN[I](’%V(OA,’HF))—*_S(”)’ S:172-

We get the last equality of the assertion iii).

iv) Suppose that EQ:Z;; = Eﬁ:lfz% Then j # o(i) and i # o(j). We also

0 _ .0 0 — .0 : :
see that Vi) = Vip ) and Vo) = Vs Ho)' We rewrite P; as follows

(ﬁ,Hi)
(/1. H;)
Therefore, if z is a zero point of (fi,H;) then z is a zero point of P; with

multiplicity at least (v?f] uy(2) +1). Hence, similarly as in the proof of
assertions i) and ii) with this notice, we have

P =

((flal—l_/)(ﬁaHa(i)) - (ﬁal—l_/)(flaHa(i)))'
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n n 1 1
| Np(r) = Z(j(N}A,H)( P+ Ny () = NG () + N ()
2n+2

+ Z N N+S>r), (s=1,2).

b#l a(z)
Since (3.6) becomes equality, the above inequality implies that
1
I N<[f1,H,>(V) =S(r), s=1,2.

Similarly, we have || N([i,] H,)(”) =S(r), s=1,2. The assertion iii) is proved.
) O

Lemma 3.11. Let fi and f, be two holomorphic mappings of C into
P"(C) and let {H; }2”Jr2 be hyperplanes of P"(C) in general position with
ST H)NH) =0 (1<i<j<2n+2). Assume that fi and f, share all
H (1<i<n+ 1) IM* and share H; (n+2<i<2n+2) CM* If n>2 then
=/

Proof. Suppose that f; # f,. By Lemma 3.1 we have | Ty(r)=
Ty, (r) + S(r) and || Ty,(r) = Ty (r) + S(r), where S(r) = o(Tj(r) + Tp5(r)). Set
(flaHi) .

i = i=1,...,2n+2).
() )

We distinguish the following two cases.

Case 1. Assume that for every positive number ¢ > 0 there exists a subset
E. < R" with pr dt = +o0 such that

n+1
1Y N ) <eT(r) + 8(r), s=1,2,VrekE,
i=1

where T'(r) = Ty (r) + Ty (r).
For each je{n+1,...,2n+ 2}, by the second main theorem we have

n+1

|| T(r) < NV, V(ﬁ +ZN ry Vf u) +S(r)
i=1

< NV, v(f my) +neT(r) +8(r), s=12,Vrek,.

Since we suppose that f; # f,, there exist two indices ji, e {n+1,...,2n+2}
such that P = (fi, H;,)(f>, H;,) — (f2, H;,)(fi, H;,) # 0. Similarly as in the proof
of Lemma 3.2, we have the following
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| T5 (r) + Ty (r) = N(r,vp)

2n+2
= Z N(rvmin{V?ﬁ,Hv)av?fz,Hl,)})+ Z N[l](ﬁ"?ﬁﬂv))
v=J1,/2 v=n+2
v#E i, 2
2n+2
n 0 1
= > N )+ D0 N )
v=J1,/2 v:rg+2
v# Jis )2
0 1 2n+2 0
= D> N ) 5 Do N )
v=J1,j2 v=n+2
vVF J1,)2

-1
> <2+n . )(Tf‘(r) —neT(r)+S(r), s=1,2,VrekE,.
Thus

n—1 3n-1
2n n

| T3 () + Tp() = (1 T ) (T (") + Ta(¥) + S(), Yo > 0,reE

This implies that

| T (r) + Tp(r) = S(r),  (re Ep)

—1 .. _
for all ¢ < ni' This is a contradiction.
2(3n—1)

CASE 2. Assume that there exists a positive number ¢ > 0 such that

n+1
I ZN[”(;’, V?/;,H,-)) >eT(r)+S(r), s=1,2.
i=1
(ﬁvHi) .
Set h; = — ,i=1,....2n+2.
(f27 Hi)
Fix indices i, je {n+2,...,2n+2}. By the supposition f # g, there exists
an index k ¢ {i,j}, such that /; # hy # h;. Then from the first equality of the
Lemma 3.2iii), we easily see that

|| N(r, min{v?flﬂi), v?fz,H;’)}) + N(r, min{v?thk), V?fz,Hk)})
= N(r, min{v?th/_), v?ﬁﬂ,)}) + N(r, min{v?thk), v?fszk)}) + S(r)
= || N(r, min{v?ﬁ’H’,), v?/ﬁ,Hi)}) = N(r, min{v&’H’,), v?/i,H/)}) + S(r)
= || N(r, V?_/;,H,)) = N(r, V?AH]_)) +S(r), s=1,2.
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We see that the last inequality actually holds for all i,je{n+2,...,2n+ 2}.
Then there is a positive function N(r) (r > 1) such that

(3.12) || N(r, V(Oﬁ,H;)) =N(r)+S(r), s=1,2and ie{n+2,...,2n+2}.

On the other hand, for a fixed index ie {n+2,...,2n+2} as above, we
repeat the same arguments as in the proof of Lemma 3.2i)-ii) and see that all
inequalities (3.3)—(3.9) become equalities (maybe outside a discrete set of reduced
counting function of S(r)). Then from (3.4), we have

min{v{; ;1 (2), v, ) (2)} = min{v{;, 4 (2),n} +min{v(;, ;. (2),n}
—nmin{v s p(z),1}
& min{V?fl,H,-)(Z)a V?fz‘H;)(Z)} =n=< max{V?th‘)(Z)a v?fZ*H")(Z)}

& v?ﬂ:H’,)(z) =n, s=1,2,
This implies that

(3.13) | aNU(r, v?ﬁ_’H!)) = NV, V?f;,H,-)) + S(r) = N(r, V(Oﬁ,H,->) +S(r)
=N(r)+S(@r), s=1,2.

for all ze f{"'(H;)U £, (H;)\{a discrete set of reduced counting function equal

to S(r)}.

Moreover, suppose that for every & > 0 there exists a subset E, = R with
Ji, dt = 400 such that || N(r) <eT(r) + S(r) for all re E,. Then we have

> N, ) = (4 DN(r) + S(r) < (n+ 1eT(r) + S(r)

for s=1,2 and re E,. Hence, by repeating the same argument as in Case 1,
we again get a contradiction. Therefore, there exists a positive number ¢ > 0
such that

(3.14) | N(r) = e T(r)+ S(r).
Suppose that there exist three indices ij,i,i3 € {n+2,...,2n+ 2} with h; #

h;
hi, # hi; # hi,. By Lemma 3.2iii) we see that || T(r h_> > (e + (n— De)T(r),
1 <u#v<3 We also have i

| N(r, v,?l_l i)+ NV ) = S(r), v=2.3,

hl h[ n+1
and ||N0<, ,h' h3> ZN” )+ S(r) = aT(r) + S(r).
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Then Lemma 2.3 yields that there exist integers p, ¢, not all zeros, such that
}i pr _ @ q
hy)  \hy)
By Lemma 3.2iii) we have the following
hi P h: q
3.15 T — =T —L
s (G )= G)
h; h
T T
i h,) d ( )

n+1 2n+-2

@\plzN” )+ 1pl ZzN“ )
n+
.//7&111,12

n+1 2n+-2

Iq\ZN” DA1pl Y NUE, )
Jj=n+2
J#h, i3

n+1 I’l _
& (pl ~ la) (ZN“ . 1N<r>> = 5(0).

This implies that |p| = |g| # 0. Suppossing that p = —g, we have

N _ ('
() = ()
Similarly to (3.15), one gets

(1201 = 1p)) <§:1N” +n;1N(V)> = S(r).

Then p=0. This is a contradiction. Therefore, we must have p =g #0.

h; . .
This implies that h” = h” Hence h—lz = constant. This contradicts to the fact
that ‘

3

n+l 2n+2
||T< ) ZN (r vy + 1oL D N, 1) +S(r)

Jj=n+2
J#i, 13

=& T(r) + |pl(n = )N (r) + S(r).
Then the supposition that h;, # h;, # h;, # h;, is untrue. Therefore we mus have

hi = h;, or hy =h;, or h; =h;. By this and by Lemma 3.2iv), we see that
|| N(r) = S(r). This is a contradiction.
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Hence the supposition f; # f; is untrue. Therefore we have f; = f,. The
lemma is proved. O

4. Proofs of Main Theorems

Proof of Theorem 1.1. Suppose that f #g¢g. By Lemma 3.2, we have
| T7(r) = O(T,(r)) + S(r) and || T,(r) = O(T;(r)) + S(r), where S(r) = o(T(r) +
T,(r)).

Fix an index ip e {n+2,...,2n +2}. Since f # g, there exist two indices

i,je{l,....2n+2}\{ip} such that # . Then by Lemma 3.2 (the
{ Sito) (7.1 * (0. (
last equality of the assertion iii)), we have
(f H) / ) 2n+2
T NI —|—S u=f,g.
17 (i > 0. u=rt.g

L#l/

On the other hand, since f and ¢ share H, (v#1i,j) IM", every point
ze f~1(H,)Ug ' (H,) (outside a discrete set of reduced counting function

H; , H; . L
equal to S(r)) is zero of ((f . Hi) / o, /i) _ 1) with multiplicity at least

_ (/> Hj) /[ (9, Hj)
min{v(, ;;,(2),v(, 5., (2)}. Therefore, we have

(f H) /(g,H,) 2n+2
I T<r’(f,Hj)/(g,H ) ZNrmm{fo >})+S()

L;él/
Thus
2n+2 2n+2
| ZN (ry V1)) ZNrmm{v,H ) S, s=1,2.
—1
b;ézj v#ILLj

Because H N, Vo) < N(rymin{vl, . v0 0 3) + S(r) for ue{f,g} and
ve{l,...,2n+ 2}, then the above equality implies that

| N, v(u m)) = N(r, min{v?f.HU), V&,Hl.)}) +S(r) for vé¢{i,j} and ue{f,g}.
In particular, we have

@1 | N (" V(f H )) = Nm(”» v?g,H,-O)) = N(r, min{"?f,H,-OyV?g,H,o)}) + S(r).
These equality yield that

(4.2) min{v?f’Hl_o)(z), V?g,H,-O)(Z)} =1

for Vz e f~1(H;)Ug~'(H;)\{a discrete set of reduced counting function equal to

S(r)}.
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On the other hand, by Lemma 3.2ii) we have

(4.3) N(r, min{v?f,H,-O)a V(Og,H,-O)}) = Nl (r, v?f,H,-O)) + Nl ](" V(J H, ))
—nNU(r, V?u,H,-O))’ Yu=f,g.

We also note that

min{v?ﬁ HW(Z)7 v?gﬁ Hf(])(z)} > min{n, v?_ﬁ HI_“>(Z)} + min{n, v?gﬁ H’,U)(z)}

—nmin{1,v0, 5 ()}, u=f.g.
for all ze f~'(H;)Ng~'(H,,), and the inequality becomes equality if and only if
min{v, () ) ()} < n < max(uly o ()00, g (2))-
Therefore, the equality (4.3) yields that
min{v?j',Hi (2), v?_q.H; (@) <n< max{‘”?f,y, 1(2), v?g,H,» )(2)}
for Vz e f~1(H;)Ug~'(H;)\{a discrete set of reduced counting function equal to

S(r)}. From this and (4.2), we have

(4.4) min{v?ﬁH’b)( z),v qH’ y(2)} =1 and max{v?ﬁHio)(z),v?g_’H’,O)(z)} >n

for Vz e f~1(H;)Ug ' (H;)\{a discrete set of reduced counting function equal to
S(r)}

On the other hand we notice that: Since f and g share H;, IM;, if a point
ze f~1(H,)U g‘l (H;,) (maybe outside a discrete set of reduced counting function
equal to S(r)) is a zero of (fi, ,0) with multiplicity 1 then it will be zero of
(f2, H;,)) with multiplicity 1 and vise versa. This means that

max{v?fyH[q) (2), v?‘quw (2)}<n

for Vze f~1(H;)Ug~'(H;)\{a discrete set of reduced counting function equal to

S(r)}.

From this notice and (4.4), we easily see that

||N (V v(uH)) S(}’), u:fag

Therefore, f and g share H;, CM*. This holds for all iy e {n+2,...,2n+2}.
With the help of Lemma 3.11, we have f =g. This contradicts to the sup-
position.

Then we must have f =g. The theorem is proved. O

Proof of Theorem 1.2. Suppose that f #g¢g. As in the proof of Theorem
1.1, we have | Ty(r) = O(T,(r)) + S(r) and || T,(r) = O(Ty(r)) + S(r), where
S(r) = o(Ty(r) + Ty(r)).
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Fix an index ipe {n+2,...,2n+2}. By Lemma 3.2ii) we have
(4.5) N(r, min{v?fﬁHl_O), v(oginl_O)}) = NV (r, v?f.,H,-O)) + N[”](r, V?g,HI-O))
—nNU(r, V?u,H,-O))’ u=1f,g.
Repeating the same argument as in the proof of Theorem 1, we see that
min{v?f,H,O)(Z)7 V?g. H,O)(Z)} > min{n, V?f,HiO)(Z)} + min{n, V?g. H,O)(Z)}
—n min{l, v?uvH’_o)(z)}, u=1f,g,

for all ze f~1(H;)Ng~'(H,,), and this inequality becomes equality if and only
if

min{sf; g, (2):0f ) () < 1 < max(oly (28 21

Then the equality (4.5) implies that

(4.6) min{v(ofﬂ (z),v q i) (@)} <n< max{v?/-7Hi0>(z),v?g’HiO)(z)}

for Vze f~1(H;)Ug~'(H;)\{a discrete set of reduced counting function equal to
S(r)}-

We also note that: Since f and g share H;, IM; |, if a point z e /~!(H;)
Ug‘l( H;,) (maybe outside a discrete set of reduced counting function equal to
S(r)) is a zero of (fi, H;,) with multiplicity < n (resp. multiplicity > #n) then it will
be zero of (f2, Hj,) w1th multiplicity < n (resp. multiplicity > n) and vise versa.

From this notice and (4.6), we easily see that

0 0
Vs ) (2) = Vg, (2) = 1

for Vz e f~1(H;)Ug~'(H;)\{a discrete set of reduced counting function equal to
S(r)). .

Therefore, f and g share H;, CM*. This holds for all iy e {n+2,...,2n+2}.
From Lemma 3.11, we have f =g¢g. The theorem is proved. O
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