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FUNCTIONAL ANALYSIS ON TWO-DIMENSIONAL LOCAL FIELDS

Alberto Cámara*

Abstract

We establish how a two-dimensional local field can be described as a locally convex

space once an embedding of a local field into it has been fixed. We study the resulting

spaces from a functional analytic point of view: in particular we study bounded, c-

compact and compactoid submodules of two-dimensional local fields.

Introduction

This work is concerned with the study of characteristic zero two-dimensional
local fields. These are complete discrete valuation fields whose residue field is a
local field, either of characteristic zero or positive.

Following an idea introduced in [17], we do not regard two-dimensional
fields as fields in the usual sense, but as an embedding of fields K ,! F , where K
is a local field and F is a two-dimensional local field. Given a two-dimensional
local field F , such field embeddings always exist and we are not assuming any
extra conditions on F ; we are only changing our point of view.

In the arithmetic-geometric context, such field embeddings arise in the
following way: suppose that S is the spectrum of the ring of integers of a
number field and that f : X ! S is an arithmetic surface (for our purposes it
is enough to suppose that X is a regular 2-dimensional scheme and that f is
projective and flat). Choose a closed point x A X and an irreducible curve

fygHX such that x is regular in fyg, and let s ¼ f ðxÞ A S. Starting from the
local ring of regular functions OX ;x, we obtain a two-dimensional local field
Fx;y through a process of repeated localizations and completions:

Fx;y ¼ FracððdOX ;xOX ;xÞyÞ:
This is analogous to the procedure of localization and completion that allows us
to obtain a local field Ks ¼ FracðdOS; sOS; sÞ from the closed point s A S. The structure
morphism OS; s ! OX ;x induces a field embedding Ks ,! Fx;y.

The moral of the above paragraph is that if two-dimensional fields arise from
an arithmetic-geometric context then they always come with a prefixed local field
embedded into them.
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What we study in this work is the K-vector space structure associated to F
via the embedding K ,! F . As such, we connect the topological theory of two-
dimensional local fields with the theory of nonarchimedean locally convex vector
spaces. In particular, for the fields KððtÞÞ and Kfftgg (see §2 for the definition of
the latter), we establish in Corollaries 3.2 and 3.8, a family of defining seminorms
for the higher topology of the formX

i

xit
i

�����
����� ¼ sup

i

jxijqni ;

where ðniÞi AZ HZU f�yg is a sequence subject to certain conditions and q is the
number of elements in the residue field of K .

In particular, this provides us with a new way to describe higher topologies
on two-dimensional local fields which does not rely on taking a lifting map from
the residue field as in [15]. This also introduces a new concept of bounded
subset.

Although our description of higher topologies is valid for both equal and
mixed characteristic two-dimensional local fields, the study of the functional
theoretic properties in the two cases suggests that similarities stop here. Equal
characteristic fields may be shown to be LF-spaces (see §1 for the definition and
Corollary 3.6) and, as such, they are bornological, nuclear and reflexive. This
characterization is unavailable for mixed characteristic fields such as Kfftgg and
we show how these properties do not hold.

One of the advantages of our point of view is that certain submodules of F
arise as the families of c-compact and compactoid submodules, and therefore
have a property which is a linear-topological analogue of compactness. In
particular, compactoid submodules coincide with bounded submodules in equal
characteristic (this is a consequence of nuclearity) and define a family strictly
contained in that of bounded submodules in mixed characteristic. By using the
associated bornology we achieve in Theorem 6.2 a very explicit self-duality result
in the line of [4, Remark in §3].

We briefly outline the contents and main results of this work. Sections §1
and §2 summarise relevant parts of the theory of nonarchimedean locally convex
vector spaces and the structure of two-dimensional local fields, respectively. We
have included them in this work in order to be able to refer to certain general
results in later parts of the work and in order to fix notations and conventions.
Hence, we do not supply proof for any statement in these sections, but refer the
reader to the available literature.

At the beginning of section §3 we center our attention in the K-vector spaces
KððtÞÞ and Kfftgg, two examples of two-dimensional local fields whose topological
behaviour determines the topological properties of equal characteristic and mixed
characteristic two-dimensional local fields, respectively. We prove in Proposi-
tions 3.1 and 3.7 how the higher topology on these two fields induces the
structure of a locally convex K-vector space and we describe these locally convex
topologies in terms of seminorms in Corollaries 3.2 and 3.8. We can easily study
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the case of KððtÞÞ, as in Proposition 3.4 we prove that the higher topology defines
an LF-space and deduce the main analytic properties of this space in Corollary
3.6: it is complete, bornological, barrelled, reflexive and nuclear. In subsequent
sections, we show how Kfftgg is not bornological (Corollary 4.7), barrelled
(Proposition 3.12), nuclear (Corollary 5.9) nor reflexive (Corollary 6.5).

Section §4 deals with the nature of bounded subsets of the considered locally
convex spaces. In particular, Propositions 4.2 and 4.4 describe a basis for the
convex bornology associated to the locally convex topology, usually known as the
Von-Neumann bornology. We also prove in Proposition 4.9 that the multipli-
cation map on the two-dimensional local field, despite not being continuous, is
bounded.

§5 contains a study of relevant O-submodules of KððtÞÞ and Kfftgg such as
rings of integers and rank-two rings of integers. In the case of KððtÞÞ, these may
be shown to be c-compact (Proposition 5.3 and Corollary 5.4) but not com-
pactoid (Corollary 5.5). In the case of Kfftgg, these rings of integers may
be shown not to be compactoid nor c-compact (Corollary 5.11). It follows
from nuclearity that all bounded submodules of KððtÞÞ are compactoid. How-
ever, this is not the case for Kfftgg: in Proposition 5.7 we describe a basis for the
bornology of compactoid submodules on Kfftgg, which is strictly coarser than the
Von-Neumann bornology. We are however able to prove that boundedness of
the multiplication map on Kfftgg holds for this coarser bornology (Corollary
5.12).

In §6 we study duality issues. In particular, Theorem 6.2 establishes that the
two-dimensional local fields considered are isomorphic in the category of locally
convex vector spaces to their appropriately topologized duals: we deduce some
consequences of this fact. Finally, we study polarity issues after identifying our
two-dimensional local fields and their duals.

In §7, we extend the results of the previous sections to the case of a general
embedding K ,! F of a local field into a two-dimensional local field. It is
important to remark that the functional analytic properties of equal characteristic
two-dimensional local fields are the same as KððtÞÞ and the properties of mixed
characteristic two-dimensional local fields closely resemble those of Kfftgg.

Sections §8 and §9 explain how the results in this work can also be applied to
archimedean two-dimensional local fields and positive characteristic local fields,
respectively. In the first case, we are dealing with LF-spaces and we deduce our
results from the well-established theory of (archimedean) locally convex spaces.
In the second case, we relate the locally convex structure of vector spaces over
FqððuÞÞ to the linear topological structure of vector spaces over Fq through
restriction of scalars. The study of topological aspects of two-dimensional local
fields in positive characteristic was started by Parshin [19]; our point of view links
with his in this case.

Finally, we discuss some applications and further directions of research in §10.

Notation. Whenever F is a complete discrete valuation field, we will
denote by OF , pF , pF and F its ring of integers, the unique nonzero prime ideal
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in the ring of integers, an element of valuation one and the residue field,
respectively. Whenever x A OF , x A F will denote its image modulo pF . A two-
dimensional local field is a complete discrete valuation field F such that F is a
local field.

Throughout the text, K will denote a characteristic zero local field, that is, a
finite extension of Qp for some prime p. The cardinality of the finite field K will
be denoted by q. The absolute value of K will be denoted by j � j, normalised so
that jpK j ¼ q�1. Due to far too many appearances in the text, we will ease
notation by letting O :¼ OK , p :¼ pK and p :¼ pK .

The conventions p�y ¼ K, py ¼ f0g and q�y ¼ 0 will be used.

Acknowledgements. I am indebted to Matthew Morrow and Oliver Bräun-
ling, with whom I had the initial discussions that later turned into this piece of
work. Thomas Oliver has been my counterpart in many interesting conversa-
tions during the process of establishing and writing down the results contained
here. I am also in great debt with Ralf Meyer and Cristina Pérez-Garcı́a, whose
comments on early drafts of this work have proven to be invaluable. I would
also like to thank the anonymous referee, whose comments and criticism have
led me to improve the text considerably. Finally, I thank my supervisor Ivan
Fesenko for his guidance and encouragement.

1. Locally convex spaces over K

In this section we summarise some concepts and fix some notation regarding
locally convex vector spaces over K . This is both for the reader’s convenience as
much as for establishing certain statements and properties for later reference.

The theory of locally convex vector spaces over a nonarchimedean field is
well developed in the literature, so we will keep a concise exposition of the facts
that we will require later. Both [21] and [20] are very good references on the
topic.

Let V be a K-vector space. A lattice in V is an O-submodule LJV such
that for any v A V there is an element a A K� such that av A L. This is
equivalent to having

LnO KGV

as K-vector spaces. A subset of V is said to be convex if it is of the form vþL
for v A V and L a lattice in V . A vector space topology on V is said to be
locally convex if the filter of neighbourhoods of zero admits a collection of lattices
as a basis.

A seminorm on V is a map k � k : V ! R such that:
(i) klvk ¼ jlj � kvk for every l A K , v A V ,
(ii) kvþ wkamaxðkvk; kwkÞ for all v;w A V .

These conditions imply in particular that a seminorm only takes non-negative
values and that k0k ¼ 0. A seminorm k � k is said to be a norm if kxk ¼ 0
implies x ¼ 0.
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The gauge seminorm of a lattice LJV is defined by the rule:

k � kL : V ! R; v 7! inf
v A aL
jaj:ð1Þ

Given a family of seminorms fk � kjgj A J on V , there is a unique coarsest
vector space topology on V making the maps k � kj : V ! R continuous for every
j A J. Such topology is locally convex: since the intersection of a finite number
of lattices is a lattice, the closed balls

BjðeÞ ¼ fv A V ; kvkj a eg; e A R>0; j A J

supply a subbasis of neighbourhoods of zero consisting of open lattices. Note
that the use of the adjective closed here is, as usual in this setting, an imitation of
the analogous archimedean convention. Topologically, BjðeÞ and fv A V ; kvkj < eg
are both open and closed.

A locally convex topology can be described in terms of lattices or in terms
of seminorms; passing from one point of view to the other is a simple matter of
language.

A locally convex vector space V is said to be normable if its topology may
be defined by a single norm. By saying that V is a normed K-vector space, we
will imply that we are considering a norm on it and that we regard the space
together with the locally convex topology defined by a norm.

For a locally convex vector space V , a subset BHV is bounded if for
any open lattice LHV there is an a A K such that BJ aL. Alternatively, B is
bounded if for every continuous seminorm k � k on V we have

sup
v AB
kvk < y:

A locally convex K-vector space V is bornological if any seminorm which is
bounded on bounded sets is continuous. A linear map between locally convex
vector spaces V !W is said to be bounded if the image of any bounded subset of
V is a bounded subset of W .

More generally, a bornology on a set X is a collection B of subsets of X
which cover X , is hereditary under inclusion and stable under finite union. We
say that the elements of B are bounded sets and the pair ðX ;BÞ is referred to as a
bornological space [10, Chapter I].

Just like a topology on a set is the minimum amount of information required
in order to have a notion of open set and continuous map, a bornology on a set
is the minimum amount of information required in order to have a notion of
bounded set and bounded map, the latter being a map between two bornological
spaces which preserves bounded sets. A basis for a bornology B on a set is a
subfamily B0 HB such that every element of B is contained in an element of B0.

The bornology which we have described above for a locally convex vector
space V is known as the Von-Neumann bornology [9, §I.2], and it is compatible
with the vector space structure, meaning that the vector space operations are
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bounded maps. Moreover, the Von-Neumann bornology on a locally convex
vector space is convex, as it admits a basis given by convex subsets [9, §I.6].

Open lattices in a nonarchimedean locally convex space are also closed [21,
§6]. A locally convex space V is said to be barrelled if any closed lattice is open.

Among many general ways to construct locally convex spaces [21, §5], we
will require the use of products.

Proposition 1.1. Let fVigi A I be a family of locally convex K-vector spaces,
and let V ¼

Q
i A I Vi. Then the product topology on V is locally convex.

Proof. See [21, §5.C]. If fLi; jgj denotes the set of open lattices of Vi

for i A I , then the set of open lattices of V is given by finite intersections of
lattices of the form p�1i Li; j.

Equivalently, the product topology on V is the one defined by all seminorms
of the form

v 7! sup
i; j
kpiðvÞki; j;

where fk � ki; jgj is a defining family of seminorms for Vi for all i A I , pi : V ! Vi

is the corresponding projection and the supremum is taken over a finite collection
of indices i, j. r

Similarly, if ðXi;BiÞi A I is a collection of bornological sets, the product
bornology on X ¼

Q
i A I Xi is the one defined by taking as a basis the sets of the

form B ¼
Q

i A I Bi with Bi A Bi [10, §2.2].
Another construction which we will require is that of inductive limits. Let

V be a K-vector space and fVigi A I be a collection of locally convex K-vector
spaces. Let, for each i A I , fi : Vi ! V be a K-linear map. The final topology
for the collection f figi A I is not locally convex in general. However, there is
a finest locally convex topology on V making the map fi continuous for every
i A I [21, §5.D]. That topology is called the locally convex final topology on V .
Inductive limits and direct sums of locally convex spaces are particular examples
of such construction.

Definition 1.2. Suppose that V is a K-vector space and that we have
an increasing sequence of vector subspaces V1 JV2 J � � �JV such that V ¼
6

n AN Vn. Suppose that for each n A N, Vn is equipped with a locally convex
topology such that Vn ,! Vnþ1 is continuous. Then the final locally convex
topology on V is called the strict inductive limit topology.

Let us fix, from now until the end of the present section, a locally convex
vector space V . In order to discuss completeness issues, we require to deal not
only with sequences, but arbitrary nets.

Let I be a directed set. A net in V is a family of vectors ðviÞi A I HV . A
sequence is a net which is indexed by the set of natural numbers. The net ðviÞi A I
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converges to a vector v, and we shall write vi ! v, if for any e > 0 and continuous
seminorm k � k on V , there is an index i A I such that for every jb i we have
kvj � vka e. Similarly, the net ðviÞi A I is said to be Cauchy if for any e > 0 and
continuous seminorm k � k on V there is an index i A I such that for every pair of
indices j; kb i we have kvj � vkka e.

Definition 1.3. A subset AJV is said to be complete if any Cauchy net in
A converges to a vector in A.

A K-Banach space is a complete normed locally convex vector space. V is
said to be a Fréchet space if it is complete and its locally convex topology is
metrizable. A locally convex vector space is said to be an LF-space if it may be
constructed as a strict inductive limit of a countable family of Fréchet spaces.

Example 1.4. K is a Fréchet space. There is a unique locally convex
topology on any finite dimensional K-vector space which defines a structure of
Fréchet space [21, Proposition 4.13].

In general, the usual topological notion of compactness is not very powerful
for the study of infinite dimensional vector spaces over non-archimedean fields.
This is why we prefer to use the language of c-compactness, which is an O-linear
concept of compactness.

Definition 1.5. Let A be an O-submodule of V . A is said to be c-compact
if, for any decreasing filtered family fLigi A I of open lattices of V , the canonical
map

A! lim �
i A I

A=ðLi VAÞ

is surjective.

Example 1.6. The base field K is c-compact as a K-vector space [21, §12].
This shows that a c-compact module need not be bounded.

This property may be phrased in a more topological way.

Proposition 1.7. An O-submodule AJV is c-compact if and only if for
any family fCigi A I of closed convex subsets Ci JA such that 7

i A I Ci ¼ j there are

finitely many indices i1; . . . ; im A I such that Ci1 V � � �VCim ¼ j.

Proof. See [21, Lemma 12.1.ii and subsequent paragraph]. r

Proposition 1.8. Let fVhgh AH be a collection of locally convex K-vector
spaces, and for each h A H let Ah JVh be a c-compact O-submodule. ThenQ

h AH Ah is c-compact in
Q

h AH Vh.
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Proof. [21, Prop. 12.2]. r

Another notion which is used in this setting is that of a compactoid O-
module; it is a notion which is analogous to that of relative compactness in the
archimedean setting.

Definition 1.9. Let AJV be an O-submodule. A is compactoid if for any
open lattice L of V there are finitely many vectors v1; . . . ; vm A V such that

AJLþ Ov1 þ � � � þ Ovm:

Let AJV be an O-submodule. If A is c-compact, then it is closed and
complete. Similarly, if A is compactoid then it is bounded. [21, §12].

Proposition 1.10. Let AJV be an O-submodule. The following are
equivalent.

(i) A is c-compact and bounded.
(ii) A is compactoid and complete.

Proof. [21, Prop. 12.7]. r

The collection of compactoid O-submodules of V generates a bornology
which is a priori weaker than the one given by the locally convex topology.

Remark 1.11. It should be pointed out that the locally convex vector spaces
that we consider in this work are always defined over a local field, which is
discretely valued and, therefore, locally compact and spherically complete. This
implies that the general theory of locally convex spaces over a nonarchimedean
complete field simplifies in our setting. In particular, for an O-submodule AJV ,
compactoidness and completeness imply compactness [20, Theorem 3.8.3]. We
choose, however, to use the language of c-compact and compactoid submodules.

If V , W are two locally convex K-vector spaces, a linear map f : V !W is
continuous as soon as the pull-back of a continuous seminorm is a continuous
seminorm. We denote the K-vector space of continuous linear maps between V
and W by LðV ;WÞ.

The space LðV ;WÞ may be topologized in the following way. Let B be a
collection of bounded subsets of V . For any continuous seminorm k � k on W
and B A B, consider the seminorm

k � kB : LðV ;WÞ ! R; f 7! sup
v AB
k f ðvÞk:

Definition 1.12. We write LBðV ;WÞ for the space of continuous linear
maps from V to W endowed with the locally convex topology defined by the
seminorms k � kB, for every continuous seminorm k � k on W and B A B.
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In the particular case in which B consists of all bounded sets of V , we write
LbðV ;WÞ for the resulting space, which is then said to have the topology of
uniform convergence, or b-topology. If B consists only of the singletons fvg for
v A V , we denote the resulting space by LsðV ;WÞ and say that it has the
topology of point-wise convergence. Finally, if B is the collection of compac-
toid O-submodules of V , we denote the resulting space by LcðV ;WÞ and say
that it has the topology of uniform convergence on compactoid submodules, or
c-topology.

There are two cases of particular interest: the topological dual space V 0 ¼
LðV ;KÞ, and the endomorphism ring LðVÞ ¼LðV ;VÞ. We denote V 0s , V 0b,
V 0c ; LsðVÞ, LbðVÞ and LcðVÞ for the corresponding topologies of point-wise
convergence, uniform convergence and uniform convergence on compactoid sub-
modules, respectively.

The choice of a family of bounded subsets B of V does not a¤ect V 0B as
a set, but it does a¤ect the bidual space. As such, in the category of locally
convex vector spaces over K, it is an interesting issue to classify which spaces are
isomorphic, algebraically and/or topologically, to certain bidual spaces through
the duality maps

d : V ! ðV 0BÞ
0; v 7! dvðlÞ ¼ lðvÞ:ð2Þ

The best possible case is when d induces a topological isomorphism between V
and ðV 0bÞ

0
b; in this case we say that V is reflexive.

Proposition 1.13. Every locally convex reflexive K-vector space is barrelled.

Proof. [21, Lemma 15.4]. r

The notion of polarity plays a role in the study of duality, as it provides
us with a way of relating O-submodules of V to O-submodules of V 0.

Definition 1.14. If AJV is an O-submodule, we define its pseudo-polar
by

Ap ¼ fl A V 0; jlðvÞj < 1 for all v A Ag:

The pseudo-bipolar of A is

App ¼ fv A V ; jlðvÞj < 1 for all l A Apg:

Taking the pseudo-polar of an O-submodule of V gives an O-submodule of
V 0.

We have that l A Ap if and only if lðAÞJ p. Note that the traditional
notion of polar relaxes the condition in the definition of pseudo-polar to jlðvÞja 1
or, equivalently, lðAÞJO. Introducing the distinction is an important technical
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detail, as pseudo-polarity is a better-behaved notion in the nonarchimedean
setting.

Proposition 1.15. Let AJV be an O-submodule. We have
(i) If AJBJV is another O-submodule, then Bp JAp.
(ii) Ap is closed in V 0s .
(iii) Let B be any collection of bounded subsets of V. If A A B, then Ap is

an open lattice in V 0B.
(iv) App is equal to the closure of A in V.

Proof. Statements (i), (ii) and (iii) are part of [21, Lemma 13.1]. (iv) is
[21, Proposition 13.4]. r

In order to conclude this section we define nuclear spaces. For any sub-
module AJV , denote VA :¼ AnO K , endowed with the locally convex topology
associated to the gauge seminorm k � kA. VA may not be a Hausdor¤ space, but
its completion cVAVA :¼ lim �

n AZ

VA=p
nA

is a K-Banach space.

Definition 1.16. V is said to be nuclear if for any open lattice LJV there
exists another open lattice MJL such that the canonical map dVMVM ! cVLVL is
compact, that is: there is an open lattice in dVMVM such that the closure of its image
is bounded and c-compact.

Proposition 1.17. We have:
(i) An O-submodule of a nuclear space is bounded if and only if it is

compactoid.
(ii) Arbitrary products of nuclear spaces are nuclear.
(iii) Strict inductive limits of nuclear spaces are nuclear.

Proof. (i) is [21, Proposition 19.2], (ii) is [21, Proposition 19.7] and (iii) is
[21, Corollary 19.8]. r

2. Our point of view on two-dimensional local fields

We consider the category whose objects are field inclusions

K ,! F

where K is our fixed characteristic zero local field and F is a two-dimensional
local field. In such case, we shall say that F is a two-dimensional local field
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over K . A morphism in this category between K ,! F1 and K ,! F2 is a com-
mutative diagram of field inclusions

F1 ���! F2x???
K
�����!

where F1 ,! F2 is an extension of complete discrete valuation fields.
The classification of characteristic zero two-dimensional local fields follows

from Cohen structure theory of complete local rings and was established in
[15]. The particular case with which we are dealing is very well described in
[17, §2.2 and 2.3].

By this classification, given a two-dimensional local field F it is always
possible to exhibit a local field contained in it, so our assumption does not imply
any further structure on F . Let us briefly recall the structure of two-dimensional
local fields, which depends on the relation between the characteristics of F and F .

If char F ¼ char F , the choice of a field embedding F ,! F determines an
isomorphism F GFððtÞÞ [8, §II.5]. Such an isomorphism is not unique, as it does
indeed depend on the choice of coe‰cient field F ,! F .

Besides fields of Laurent series, there is another construction which is key
in order to work with two-dimensional local fields, and higher local fields in
general. For any complete discrete valuation field L, consider

Lfftgg ¼
X
i AZ

xit
i; xi A L; inf

i AZ
vLðxiÞ > �y; xi ! 0 ði! �yÞ

( )
;

with operations given by the usual addition and multiplication of power series.
Note that we need to use convergence of series in L in order to define the
product. With the discrete valuation given by

vLfftgg
X
i AZ

xit
i

 !
:¼ inf vLðxiÞ;

Lfftgg turns into a complete discrete valuation field. In the particular case in
which L is a characteristic zero local field, the field Lfftgg is a 2-dimensional local
field which we call the standard mixed characteristic field over L. Its first residue
field is LððtÞÞ.

We view elements of L as elements of Lfftgg in the obvious way. In
particular, if pL is a uniformizer of OL, it is also a uniformizer of OLfftgg; the
element t A Lfftgg is such that t A LððtÞÞ is a uniformizer.

Suppose now that F is any two-dimensional local field such that
char F 0 char F . Then there is a unique field embedding Qp ,! F . Let ~KK
be the algebraic closure of Qp in F ; it is a finite extension of Qp. In this case, F
contains a subfield which is ~KK-isomorphic to ~KKfftgg, the extension ~KKfftgg ,! F
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being finite. Finally, if a field embedding K ,! F with K a local field is given,
then we have Qp JKJ ~KK and the extension KfftggJ ~KKfftgg is finite (details to
all statements in this paragraph may be found in [17, §2.3.1]).

Since the residue field of a two-dimensional local field is a local field, we can
use the discrete valuation at the residue level to define a rank-two valuation on F
as follows: order ZlZ by ðn1;m1Þ < ðn2;m2Þ if and only if n1 < n2 or n1 ¼ n2
and m1 < m2 and consider, after choosing a uniformizer p A F ,

ðvF ; vpÞ : F� ! ZlZ

with vpðxÞ :¼ vF ðxp�vF ðxÞÞ. The valuation ring

OF ¼ fx A F ; ðvF ðxÞ; vpðxÞÞb ð0; 0Þg

does not depend on the choice of uniformizer [6, §1].

Example 2.1. Consider K ¼ Qp HQpfftgg ¼ F . For the choice of uni-
formizer p for vF , the associated rank-two valuation of F is

ðv1; v2Þ : F� ! ZlZ; x ¼
X
i AZ

xit
i 7! inf

i AZ
vpðxiÞ; inffi; xi B pv1ðxÞþ1Zpg

� �
:

The restriction of v1 to K is vp, while v2 restricts trivially. The rank-two ring of
integers is

OF ¼
X
i AZ

xit
i A F ; xi A pZp for i < 0 and xi A Zp for ib 0

( )
:

Example 2.2. Consider K ¼ Qp HQpððtÞÞ ¼ F . In such case, the rank-two
valuation of F associated to the uniformizer t for vF is

ðv1; v2Þ : F� ! ZlZ;
X
ibi0

ait
i 7! ði0; vpðai0ÞÞ;

where we suppose that ai0 is the first nonzero coe‰cient in the power series. The
restriction of v1 to K is trivial while the restriction of v2 to K is vp. In this case
we have OF ¼ Zp þ tQp½½t��.

Remark 2.3. There are two particular local fields which play a very
distinguished role when these objects are to be studied from a functional analytic
point of view. Those are the fields KððtÞÞ and Kfftgg. As we will see, most
topological properties which hold in these particular cases will hold in general
after taking restrictions of scalars or a base change over a finite extension which
topologically is equivalent to taking a finite cartesian product. It is for this
reason that we will work from now on with these two particular examples of two-
dimensional local fields. We will explain how our results extend to the general
case in §7.
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Notation. When working with the two-dimensional local fields F ¼ Kfftgg
or F ¼ KððtÞÞ, for any collection fAigi AZ of subsets of K , we will denoteX

i AZ

Ait
i ¼

X
i

xit
i A F ; xi A Ai for all i A Z

( )
:

We will also denote OKfftgg ¼ Offtgg. After all, this ring consists of all
power series in Kfftgg all of whose coe‰cients lie in O.

3. Higher topologies are locally convex

In this section we will explain how the higher topology on KððtÞÞ and Kfftgg
is a locally convex topology. Higher topologies for two-dimensional local fields
were first introduced in [19] in the study of two-dimensional class field theory
in positive characteristics. The general construction is available at [15], while
[6, §1] contains an accessible survey on the topic.

We are forced to study both cases separately.

3.1. Equal characteristic
The higher topology on KððtÞÞ is defined as follows. Let fUigi AZ be a

collection of open neighbourhoods of zero in K such that, if i is large enough,
Ui ¼ K . Then define

U ¼
X
i AZ

Uit
i:ð3Þ

The collection of sets of the form U defines the set of neighbourhoods of
zero of a group topology on KððtÞÞ [15, §1].

Proposition 3.1. The higher topology on KððtÞÞ defines the structure of a
locally convex K-vector space.

Proof. As K is a local field, the collection of open neighbourhoods of
zero admits a collection of open subgroups as a filter, that is: the basis of
neighbourhoods of zero for the topology is generated by the sets of the form

pn ¼ fa A K ; vKðaÞb ng;
where n A ZU f�yg. These closed balls are not only subgroups, but O-fractional
ideals. This in particular means that the sets of the form

L ¼
X
i AZ

pni t i JKððtÞÞ;ð4Þ

where ni ¼ �y for large enough i, generate the higher topology. Moreover,
they are not only additive subgroups, but also O-modules.

If x ¼
P

ibi0
xit

i A KððtÞÞ is an arbitrary element, and i1 is such that ni ¼ �y
for all i > i1 then we have the possibilities:
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(i) i0 > i1, in which case x A L.
(ii) i0 a i1. In such case, let

n ¼ max max
i0aiai1

ni; 0

� �
:

Then pn A O satisfies pnx A L.
Thus, L is a lattice and the higher topology is locally convex. r

As a consequence of the previous proposition, it is possible to describe the
higher topology in terms of seminorms.

Corollary 3.2. For any sequence ðniÞi AZ HZU f�yg such that there is an
integer k satisfying ni ¼ �y for all i > k, define

k � k : KððtÞÞ ! R;
X

ig�y
xit

i 7! max
iak
jxijqni :ð5Þ

Then k � k is a seminorm on KððtÞÞ and the higher topology on KððtÞÞ is the locally
convex topology defined by the family of seminorms given by (5) as ðniÞi AZ varies
over all sequences specified above.

Proof. This result is a consequence of Proposition 3.1 and of the fact that
the gauge seminorm attached to a lattice of the form

L ¼
X
i AZ

pni t i

with ni ¼y for all i > k is precisely the one given by (5). In order to see
that, let x ¼

P
ibi0

xit
i A KððtÞÞ and a A K . We have that x A aL if and only if

xi A apni for every ib i0. This is the case if and only if we have

jxijqni a jaj

for all ib i0. The infimum value of jaj for which the above inequality holds is
precisely the supremum of the values of jxjqni for ib i0. r

The seminorm k � k from the previous corollary is associated to and does
depend on the choice of the sequence ðniÞi AZ. If we have chosen notation not
to reflect this fact, it is in hope that a lighter notation will simplify reading and
that the sequence of integers defining k � k, when needed, will be clear from the
context.

Remark 3.3. As F is a field, it is worth asking ourselves whether the
seminorm (5) is multiplicative. It is very easy to check that for i; j A Z,

ktik � kt jk ¼ qniþnj ;
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while

ktiþ jk ¼ qniþ j :

These two values need not coincide in general.

The field of Laurent series KððtÞÞ has been considered previously from the
point of view of the theory of locally convex spaces in the following manner.
The ring of Taylor series K ½½t�� is isomorphic to KN as a K-vector space, and
thus might be equipped with the product topology of countably many copies
of K . Moreover, we have

KððtÞÞ ¼ 6
i AZ

tiK ½½t��;ð6Þ

with tiK ½½t��GKN. Therefore, we may topologize KððtÞÞ as a strict inductive
limit.

In the result below, we explain how the higher topology on KððtÞÞ agrees with
this description. We will immediately deduce most of the analytic properties of
KððtÞÞ from this result.

Proposition 3.4. The higher topology on KððtÞÞ agrees with the strict
inductive limit topology given by (6).

Proof. The open lattices for the product topology on KN are exactly the
ones that can be expressed as an intersection of finitely many lattices of the
form Y

i A I

Li �
Y
i B I

K ;

where I is a finite subset of N and Li are open lattices in K , that is, integer
powers of p. This description agrees with the description of the open lattices in
K½½t�� for the subspace topology induced by the higher topology.

Further, if L ¼
P

i AZ pni t i is an open lattice for the higher topology on
KððtÞÞ, for any j A Z, we have that LV t jK ½½t�� ¼

P
ib j p

ni t i is an open lattice for
the product topology on t jK ½½t��GKN.

Finally, a basis of open lattices for the strict inductive limit 6
j AZ t jK ½½t��

is determined by a collection of open lattices Lj J t jK ½½t�� for each j A Z [21,
Lemma 5.1.iii], which we may assume to be of the form Lj ¼

P
ib j p

ni; j t i for

some sequence ðni; jÞib j HZU f�yg for which there is an index ki b i such that
ni; j ¼ �y for all jb ki. The fact that the inductive limit is strict amounts
to the following: if i1 < i2 then we have ni1; j ¼ ni2; j for every jb i2 and, in
particular, ki1 ¼ ki2 . Altogether, this determines a sequence ðniÞi AZ HZU f�yg
and an index k A Z such that ni ¼ �y for every ib k. Under the identification
KððtÞÞ ¼6

j AZ t jK ½½t��, the lattice associated to ðLjÞj AZ is L ¼
P

i AZ pni t i, which

is open for the higher topology. r
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Remark 3.5. The higher topology on KððtÞÞ also admits the following
description as an inductive limit. For each i A Z and jb i, tiK ½t�=t jK ½t� is a
finite dimensional K-vector space and we endow it with its unique Hausdor¤
locally convex topology. The field of Laurent series might be constructed as

KððtÞÞ ¼ lim�!
i AZ

lim �
jbi

t iK ½t�=t jK ½t�;

the higher topology on it agrees with the one obtained by endowing the direct
and inverse limits in the above expression with the corresponding direct and
inverse limit locally convex topologies. The proof of this statement is a restate-
ment of Proposition 3.4.

Corollary 3.6. KððtÞÞ is an LF-space. As a locally convex vector space, it
is complete, bornological, barrelled, reflexive and nuclear.

Proof. After Proposition 3.4, in order to see that KððtÞÞ is an LF-space it
su‰ces to check that the locally convex space KN endowed with the product
topology is a Fréchet space. This follows from the fact that K itself is Fréchet
and that a countable product of Fréchet spaces is a Fréchet space [20, Corollary
3.5.7].

Completeness follows from being a strict inductive limit of complete spaces
[21, Lemma 7.9]. Being bornological follows from [21, Proposition 8.2] and
[21, Examples after Prop. 6.13].

Reflexivity follows from [20, Corollary 7.4.23], if one notes that KððtÞÞG
0

N
Kl

Q
N K in the category of locally convex K-spaces; barrelledness follows

from reflexivity (cf. Proposition 1.13). Finally, nuclearity follows from Propo-
sition 1.17. r

3.2. Mixed characteristic
The higher topology on Kfftgg may be described as follows.
Let fVigi AZ be a sequence of open neighbourhoods of zero in K such that
(i) There is c A Z such that pc JVi for every i A Z.
(ii) For every l A Z there is an index i0 A Z such that p l JVi for every ib i0.

Then define

V ¼
X
i AZ

Vit
i HKfftgg:ð7Þ

The higher topology on Kfftgg is the group topology defined by taking the sets of
the form V as the collection of open neighbourhoods of zero [15, §1].

Again, as K is a local field, the collection of neighbourhoods of zero admits
the collection of open subgroups as a filter. These are not only subgroups but
O-fractional ideals, namely the integer powers of the prime ideal p.

Proposition 3.7. Let ðniÞi AZ HZU f�yg be a sequence restricted to the
conditions:
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(i) There is c A Z such that ni a c for every i.
(ii) For every l A Z there is an index i0 A Z such that ni a l for every ib i0.

The set

L ¼
X
i AZ

pni t ið8Þ

is an O-lattice. The sets of the form (8) generate the higher topology on Kfftgg,
which is locally convex.

Condition (ii) is equivalent, by definition of limit of a sequence, to having
ni ! �y as i!y; we will phrase it this way in the future.

Proof. It is clear that L is an O-module, and that the conditions imposed
on the indices ni imply that it is a basic neighbourhood of zero for the higher
topology.

Given an arbitrary element x ¼
Py

i¼�y xit
i A F , we must show the existence

of an element a A K� such that ax A L. Indeed, a power of the uniformizer does
the trick: we have that pnx A L if and only if pnxi A pni for every i A Z, and this
is true if and only if

nþ vKðxiÞb ni

for all i A Z. In other words, such an n exists if and only if the di¤erence

ni � vKðxiÞ
cannot be arbitrarily large. But on one hand there is an integer c that bounds
the ni from above, and on the other hand the values vKðxiÞ are bounded below by
vF ðxÞ. We may take n ¼ c� vF ðxÞ.

Because the integer powers of p generate the basis of neighbourhoods of
zero of the topology on K , the lattices of the form (8) generate the higher
topology. In particular, the higher topology on Kfftgg is locally convex. r

We wish to point out that condition (ii) for the sequence ðniÞi AZ has not been
used in the proof. Indeed, such a condition may be suppressed and we would
still obtain a locally convex topology on Kfftgg, if only finer: see Remark 4.8 for
a description of the topology obtained in such case.

Once we know that the higher topology is locally convex, we can describe it
in terms of seminorms.

Corollary 3.8. For any sequence ðniÞi AZ HZU f�yg satisfying the con-
ditions:

(i) there is c A Z such that ni a c for all i A Z,
(ii) ni ! �y as i!y,

consider the seminorm

k � k : Kfftgg ! R;
X
i AZ

xit
i 7! sup

i AZ
jxijqni :ð9Þ
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The higher topology on Kfftgg is the locally convex topology generated by the
family of seminorms defined by (9), as ðniÞi AZ varies over the sequences specified
above.

Proof. The gauge seminorm associated to the lattice L is (9). The argu-
ment is the same as the proof of Corollary 3.2 and we omit it. r

The seminorms in Corollary 3.8 are well defined because they arise as
gauge seminorms attached to lattices. If we forget this fact for a moment, let
us examine the values jxijqni .

On one hand, when i tends to �y, the values jxij tend to zero while the
values qni stay bounded. On the other hand, when i tends to þy the values jxij
stay bounded and qni tends to zero. In conclusion, the values jxijqni are all
positive and tend to zero when jij ! þy; this implies the existence of their
supremum.

Just like in the equal characteristic case, a defining seminorm k � k is not
multiplicative, for the same reason.

A mixed characteristic two-dimensional local field cannot be viewed as a
direct limit in a category of locally convex K-vector spaces in the fashion of
Remark 3.5. However, such an approach is valid from an algebraic point of
view in a category of O-modules.

3.3. First topological properties
For starters, let us recall a few well-known properties of higher topologies.

A two-dimensional local field K ,! F endowed with a higher topology is a
Hausdor¤ topological group [15, Theorem 1.1.i and Proposition 1.2]. Moreover,
multiplication by a fixed nonzero element defines a homeomorphism F ! F
[15, Theorem 1.1.ii] and the residue map OF ! F is open when OF is given the
subspace topology and the local field F is endowed with its usual complete
discrete valuation topology [3, Proposition 3.6.(v)].

Remark 3.9. In order to show that KððtÞÞ or Kfftgg is Hausdor¤, it su‰ces
to show that given a nonzero element x, there is a continuous seminorm k � k for
which kxk0 0. This is obvious.

Multiplication m : F � F ! F fails to be continuous when the product top-
ology is considered on the left hand side [6, §1.3.2]. However, m is separately
continuous as explained above.

Another well known fact about higher topologies is that no basis of open
neighbourhoods of zero is countable [6, §1.3.2]. In other words, these topologies
do not satisfy the first countability axiom. This implies that the set of semi-
norms defining the higher topology is uncountable. From the point of view of
functional analysis, this shows that two-dimensional local fields are not Fréchet
spaces.
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Definition 3.10. We will call seminorms of the form (5) in the equal
characteristic case and (9) in the mixed characteristic case admissible.

In both cases, admissible seminorms are attached to a sequence ðniÞi AZ H
ZU f�yg, subject to di¤erent conditions, but satisfying the formulaX

i

xit
i

�����
����� ¼ sup

i

jxijqni ;

the reasons why this formula is valid di¤er in each case.

Remark 3.11. Power series expressions of the form x ¼
P

i xit
i define con-

vergent series with respect to the higher topology, in the sense that the net of
partial sums ð

P
ian xit

iÞn AZ converges to x. If we let Sn ¼
P

ian xit
i and k � k be

any admissible seminorm, then

kx� Snk ¼
X
i>n

xit
i

�����
�����

may be shown to be arbitrarily small if n is large enough.

Another well-known fact is that rings of integers K ½½t�� and Offtgg are closed
but not open. In the first case, consider the set of open (and closed) lattices

Ln ¼
X
ia0

pnti þ K ½½t��; nb 0

to find that K ½½t�� ¼7
nb0

Ln is closed. In the second case, consider the open
(and closed) lattices:

Ln ¼
X
i<n

Kti þ Otn þ
X
i>n

Kti; n A Z

and obtain that Offtgg ¼7
n AZ Ln is closed. In order to see that these rings are

not open, it is enough to say that they do not contain any open lattice.
A very similar argument shows that the rank-two rings of integers Oþ tK ½½t��

and
P

i<0 pt
i þ
P

ib0 Ot
i are closed but not open.

After the previous remark, we get the following result.

Proposition 3.12. The field Kfftgg is not barrelled.

Proof. The ring of integers Offtgg is a lattice which is closed but not open.
r

4. Bounded sets and bornology

Let us describe the nature of bounded subsets of KððtÞÞ and Kfftgg. We will
supply a description of a basis for the Von-Neumann bornology of these fields.

554 alberto cámara



Example 4.1. Let k � k be an admissible seminorm, attached to the sequence
ðniÞi AZ. The values of k � k on O only depend on n0. If n0 ¼ �y then the
restriction of k � k to O is identically zero. Otherwise, for any x A O we have
kxka qn0 and therefore O is bounded.

Similarly, if n0 > �y, we may find elements x A K making the value jxjqn0

arbitrarily large. Hence, K is unbounded.

Proposition 4.2. For any sequence ðkiÞi AZ HZU fyg such that there is an
index i0 A Z for which ki ¼y for every i < i0, consider the O-submodule of KððtÞÞ
given by

B ¼
X
i AZ

pki t i:ð10Þ

The bornology of KððtÞÞ admits as a basis the collection of O-submodules given by
(10) as ðkiÞi AZ varies over the sequences specified above.

Proof. First, the O-submodule B given by (10) is bounded: suppose that
k � k is an admissible seminorm on KððtÞÞ given by the sequence ðniÞi AZ and that
k is the index for which ni ¼ �y for every i > k.

If k < i0, then the restriction of k � k to B is identically zero. Otherwise, for
x ¼

P
ibi0

xit
i A B,

kxk ¼ max
i0aiak

jxijqni a max
i0aiak

qni�ki ;

and the bound is uniform for x A B once k � k has been fixed.
Next, we study general bounded sets. From Example 4.1 we deduce that if

a subset of KððtÞÞ contains elements for which one coe‰cient can be arbitrarily
large, then the subset is unbounded in F . Therefore, any bounded subset of
KððtÞÞ is included in a subset of the formX

i AZ

pki t i; ki A ZU fyg:

In order to prove our claim, it is enough to show that the indices ki A ZU fyg
may be taken to be equal to y for all small enough i.

We will show the contrapositive: a subset DHKððtÞÞ cannot be bounded as
soon as there is a decreasing sequence of indices ðijÞjb0 A Z<0 satisfying that for
every jb 0 there is an element xij A D with a nonzero coe‰cient in degree ij,
which we denote xij A K .

For, if such is the case, let

ni ¼
�y; i0 ij for any jb 0 or i > 0;

�ij þ vKðxij Þ; i ¼ ij for some jb 0;

�
and consider the associated admissible seminorm k � k on KððtÞÞ. We have

kxijkb jxij jq
nij ¼ q�ij

for every jb 0, and this shows that D is not bounded. r
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Corollary 4.3. If k � k : KððtÞÞ ! R is a seminorm which is bounded on
bounded sets, then there is an index i0 A Z such that ktik ¼ 0 for all ib i0.

Proof. Suppose that for every i0 A Z there is an ib i0 such that ktik0 0.
If i is such that ktik > 0, take ki A Z such that

q�kiktikb qi:

If i is such that ktik ¼ 0, take ki ¼ 0. By Proposition 4.2, the set

B ¼
X
ib0

pki t i

is bounded. Let xj ¼ p
kj
K t

j for every jb 0. We have that kxjk ¼ q�kjkt jk.
Our hypothesis implies that the sequence of real numbers ðkxjkÞjb0 is unbounded,
and therefore k � k is not bounded on B. r

Proposition 4.4. Consider a sequence ðkiÞi AZ HZU fyg which is bounded
below. The bornology of Kfftgg admits the O-submodules of the form

B ¼
X
i AZ

pki t ið11Þ

as a basis.

Proof. First, let us show that B is bounded. Assume all the ki in (11)
are bounded below by some integer d. Let k � k be an admissible seminorm on
Kfftgg defined by a sequence ðniÞi AZ HZU f�yg. In particular, there is an
integer c such that ni a c for every i A Z.

Then, if
P

xit
i A B, we have thatX

xit
i

��� ��� ¼ sup
i

jxijqni a qc�d ;

and the bound is uniform on B once k � k has been fixed.
Next, we study general bounded sets. Again, from Example 4.1 we may

deduce that a subset of Kfftgg which contains elements with arbitrarily large
coe‰cients cannot be bounded. Therefore, any bounded subset of Kfftgg is
contained in a set of the formX

i AZ

pki t i; ki A ZU fyg:

In order to prove our claim, it is enough to show that the indices ki may be
taken to be bounded below.

Suppose that DHKfftgg is not contained in a set of the form (11). Then it
must contain elements with arbitrarily large coe‰cients. More precisely, at least
one of the following must happen:
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1. There is a decreasing sequence ðijÞjb0 HZ<0 and a sequence ðxij Þjb0 HD
such that, if xij A K denotes the coe‰cient in degree ij of xij , we have
jxij j !y as j !y.

2. There is an increasing sequence ðijÞjb0 HZb0 and a sequence ðxij Þjb0 HD
such that, if xij A K denotes the coe‰cient in degree ij of xij , we have
jxij j !y as j !y.

If condition 1 holds, consider the admissible seminorm k � k associated to the
sequence

ni ¼
0; if ia 0;

�y; if i > 0:

�
We have that kxijkb jxij j for all jb 0 and this implies that D cannot be
bounded.

If condition 1 does not hold, then condition 2 must hold. In such case,
define

nij ¼

vKðxij Þ � 1

2
if vKðxij Þ is odd;

vKðxij Þ
2

; if vKðxij Þ is even:

8>>><>>>:
Furthermore, let ni ¼ �y for any i < 0 and nl ¼ nij for any index l such that
ij a l < ijþ1. With such choices, the following three facts hold:

(i) The sequence ðnij � vKðxij ÞÞjb0 tends to infinity.
(ii) The sequence ðniÞi AZ is bounded above.
(iii) For any l A Z, there is an index i0 such that ni a l for all ib i0.

After (ii) and (iii), let k � k be the admissible seminorm associated to ðniÞi AZ. We
have, for every jb 0, kxijkb jxij jq

nij , and thus D cannot be bounded. r

Definition 4.5. Given that they constitute a basis for the Von-Neumann
topology, we will refer to any O-submodule of the form (10) (resp. (11)) as a basic
bounded O-submodule of KððtÞÞ (resp. Kfftgg).

Corollary 4.6. If k � k : Kfftgg ! R is a seminorm which is bounded on
bounded sets, then there is a real number C > 0 such that ktik < C for every i A Z.

Proof. Suppose that k � k is a seminorm such that the sequence of real
numbers ðktikÞi AZ is not bounded. Consider the bounded set

Offtgg ¼
X
i AZ

Oti;

and the sequence ðtiÞi AZ HOfftgg. The seminorm k � k is not bounded on OF .
r
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Contrary to the situation in the equal characteristic case, in the mixed
characteristic setting we get the following.

Corollary 4.7. The space Kfftgg is not bornological.

Proof. It is enough to supply a seminorm which is bounded on bounded
sets but not continuous.

Consider the norm on Kfftgg given by

X
i AZ

xit
i

�����
����� ¼ sup

i AZ
jxij;ð12Þ

which is the absolute value on Kfftgg related to the valuation vF . If B is a basic
bounded set as in (11), then

sup
x AB
kxk ¼ sup

i AZ
q�ki ;

and hence k � k is bounded on bounded sets. However, the norm k � k is not
continuous on Kfftgg because

Offtgg ¼ fx A Kfftgg; kxka 1g

is closed but not open in Kfftgg. r

Remark 4.8. When defining the higher topology on Kfftgg, an admissible
seminorm was attached to a sequence ðniÞi AZ HZU f�yg subject to two
conditions:

(i) The ni are bounded above.
(ii) We have ni ! �y as i!y.

However, in the proof of Proposition 3.7 we did not require to make use of
condition (ii).

Indeed, if we remove condition (ii) and allow all sequences ðniÞi AZ satisfying
only condition (i), we obtain a locally convex topology. Let us describe it: on
one hand, the norm on Kfftgg given byX

i AZ

xit
i 7! sup

i AZ
jxij;

becomes continuous, as it corresponds to taking ni ¼ 0 for all i A Z. Hence, the
resulting locally convex topology is both finer than the higher topology and finer
than the complete discrete valuation topology. It is an immediate exercise to see
that under such a topology the ring of integers Offtgg is a bounded open lattice
and this is equivalent to the locally convex topology being defined by a single
seminorm [21, Proposition 4.11]. We conclude that the resulting topology is the
complete discrete valuation topology.
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It is immediate to check that the complete discrete valuation topology on
Kfftgg defines a Banach K-algebra structure with very nice analytic properties.
However, it is unclear whether this structure is of any arithmetic interest.

Proposition 4.9. Let F ¼ KððtÞÞ or Kfftgg. The multiplication map
m : F � F ! F is bounded with respect to the product bornology on the domain.

Proof. Let B1 ¼
P

i AZ pmi ti and B2 ¼
P

i AZ pnj t j be two bounded O-
submodules of F . The product bornology on F � F is generated by sets of
the form B1 � B2. We have that mðB1;B2Þ ¼

P
k AZ Vkt

k with Vk ¼
P

k¼iþ j p
mipnj

¼
P

k¼iþ j p
miþnj . We distinguish cases.

If F ¼ KððtÞÞ, mi ¼y and nj ¼y if i and j are small enough. In this
case, the sum defining Vk is actually finite and there is lk A ZU fyg such that
Vk H p lk . Moreover, we actually have Vk ¼ f0g if k is small enough and
therefore mðB1;B2ÞHF is bounded.

If F ¼ Kfftgg, then there are integers c and d such that mi b c for all i A Z
and nj b d for all j A Z. This implies that Vk H pcþd for every k and that it is
bounded. r

5. Complete, c-compact and compactoid O-submodules

In this section we will study relevant O-submodules of KððtÞÞ and Kfftgg,
including rings of integers and rank-2 rings of integers.

We start dealing with completeness of rings of integers.

Proposition 5.1. The rings of integers K ½½t�� and Offtgg are complete O-
submodules of KððtÞÞ and Kfftgg, respectively.

In the case of K½½t��HKððtÞÞ, the result follows because KððtÞÞ is complete
and K ½½t�� is a closed subset. However, it is also immediate to give an argument
by hand.

Proof. Let I be a directed set and ðxiÞi A I a Cauchy net in the ring of
integers. We distinguish cases below.

In the case of K ½½t��, we write xi ¼
P

kb0 xk; it
k with xk; i A K . Since ðxiÞi A I is

a Cauchy net in OF , we have that ðxk; iÞi A I is a Cauchy net in K and hence
converges to an element xk A K for every kb 0. The element x ¼

P
kb0 xkt

k is
the limit of the Cauchy net.

In the case of Offtgg, the procedure is very similar. We write xi ¼P
k AZ xi;kt

k with xi;k A O. Since O is complete and ðxi;kÞi A I is a Cauchy net,
it converges to an element xk A O for every k A Z. It is elementary to check that
as k ! �y, we have xk ! 0 and therefore x ¼

P
k AZ xkt

k is a well-defined
element in Offtgg which is the limit of the Cauchy net. r
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Corollary 5.2. The rank-2 rings of integers of KððtÞÞ and Kfftgg are
complete.

Proof. It follows from the previous proposition due to the fact that they
are closed subsets of complete O-submodules. r

Next we will study rings of integers from the point of view of c-compactness
and compactoidness.

Proposition 5.3. K ½½t�� is c-compact.

Proof. As a locally convex K-vector space, K ½½t�� is isomorphic to KN

(Proposition 3.4). The field K is c-compact (Example 1.6). Finally, a product
of c-compact spaces is c-compact (Proposition 1.8). r

Corollary 5.4. The rank-2 ring of integers of KððtÞÞ, Oþ tK ½½t��, is c-
compact.

Proof. After the previous proposition, the result follows from the fact
that Oþ tK ½½t��HK ½½t�� is closed, as c-compactness is hereditary for closed subsets
[21, Lemma 12.1.iii]. r

Corollary 5.5. The rings K ½½t�� and Oþ tK ½½t�� are not compactoid.

Proof. This follows from the fact that they are both c-compact, unbounded,
complete and Proposition 1.10. r

The compactoid submodules of a locally convex vector space define a
bornology. Since every compactoid submodule is bounded, in our case it is
important to decide which basic bounded submodules of KððtÞÞ and Kfftgg are
compactoid.

Since KððtÞÞ is a nuclear space, the classes of bounded O-submodules and
compactoid O-submodules coincide [21, Proposition 19.2].

It is in any case easy to see that any basic bounded subset

B ¼
X
ibi0

pki t i; ki A ZU fyg

is compactoid: suppose that L ¼
P

i AZ pni t i with ni A ZU f�yg and such that for
every i > i1 we have ni ¼ �y. If i1 < i0 then BHL and there is nothing to
show. Otherwise, let li ¼ minðni; kiÞ for i0 a ia i1. Then

BJLþ
Xi1
i¼i0

O � p li t i;

which shows that it is compactoid.
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Corollary 5.6. The basic bounded O-submodules of KððtÞÞ are c-compact.

Proof. In view of Proposition 1.10, it is enough to show that a submodule
B as in the proof of the previous proposition is complete for nets. But the
argument for showing completeness of such O-submodules is the same as in the
proof of Proposition 5.1 and we shall omit it. r

In the case of Kfftgg there is a di¤erence between bounded and compactoid
O-submodules. For the proof of the following proposition we will consider the
projection maps

pj : Kfftgg ! K ;
X
i AZ

xit
i 7! xj ; j A Z:

These are examples of continuous nonzero linear forms on Kfftgg.

Proposition 5.7. The only compactoid submodules amongst the basic bounded
submodules of Kfftgg are the ones of the form

B ¼
X
i AZ

pki t i;ð13Þ

with ki A Z bounded below and such that ki !y as i! �y. In particular, the
submodules of the form (13) describe a basis for the bornology on Kfftgg generated
by compactoid submodules.

Proof. Let B be a basic bounded submodule as in (13), with the
ki A ZU fyg bounded below.

On one hand, assume that ki !y as i! �y. Let L ¼
P

i AZ pni t i be
an open lattice and assume that B is not contained in L, as otherwise there
is nothing to prove. When i!y, the ki are bounded below and ni ! �y.
Similarly, when i! �y, ki !y and the ni are bounded above. Hence, the
following two statements are true:

(i) There is an index i0 such that for every i < i0, ki b ni.
(ii) There is an index i1 such that for every i > i1, ki b ni.

We have i0 a i1, as otherwise B is contained in L. Let li ¼ minðki; niÞ for
i0 a ia i1. Then we have

BJLþ
Xi1
i¼i0

O � p li t i;

which shows that B is compactoid.
On the other hand, suppose that the ki do not tend to infinity as i! �y.

In such case, there is a decreasing sequence ðijÞjb0 HZ<0 such that ðkij Þjb0 is
bounded above. Let M A Z be such that kij < M for every jb 0.
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Let

L ¼
X
i<0

pMti þ
X
ib0

Kti HKfftgg;

which is an open lattice. Suppose that x1; . . . ; xm A Kfftgg satisfy that BJLþ
Ox1 þ � � � þ Oxm. We denote xl ¼

P
i AZ xl; it

i, with xl; i A K , for 1a lam.
We know that for 1a lam, we have xl; i ! 0 as i! �y. Therefore, there

is an index j0 b 0 such that for every jb j0 we have vKðxl; ij Þ > M. Then we
have

pij0 ðBÞJ pij0 ðLþ Ox1 þ � � � þ OxmÞ;

from where we deduce

p
kij0 J pM þ p

vK ðx1; ij0 Þ þ � � � þ p
vK ðxm; ij0

Þ ¼ pM :

However, this inclusion contradicts the fact that kij0 < M. r

Definition 5.8. We will refer in the sequel to the O-submodules of the form
(10) (resp. (13)) as basic compactoid submodules of KððtÞÞ (resp. Kfftgg).

We deduce several consequences of this result.

Corollary 5.9. The field Kfftgg is not a nuclear space.

Proof. After the previous Proposition and (i) in Proposition 1.17, the result
follows by observing that Kfftgg contains O-submodules, such as Offtgg, which
are bounded but not compactoid. r

Corollary 5.10. The basic compactoid submodules of Kfftgg are c-compact.

Proof. Again, in view of Proposition 1.10, it is enough to show that the
O-submodule B as in (13) is complete. The argument is the same as in the proof
of Proposition 5.1 and we omit it. r

The proof of the following corollary is immediate after Proposition 5.7.

Corollary 5.11. Offtgg and the rank-two ring of integers of Kfftgg are not
compactoid nor c-compact.

Proof. The fact that these rings are not compactoid follows from Prop-
osition 5.7. The fact that they are not c-compact follows from the fact that, on
top of not being compactoid, they both are bounded and complete. r

Corollary 5.12. Multiplication m : Kfftgg � Kfftgg ! Kfftgg is also
bounded when Kfftgg is endowed with the bornology generated by compactoid
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O-submodules in the codomain, and the product of two copies of such bornology in
the domain.

Proof. Let B1 ¼
P

i AZ pmi ti and B2 ¼
P

j AZ pnj t j be two basic compactoid
O-submodules of Kfftgg; let Vk as in the proof of Proposition 4.9. Just like in
the aforementioned proof, Vk is a contained in a fractional ideal of K and is
therefore bounded. Moreover, it is possible to choose lk A ZU fyg such that
lk !y as k ! �y and Vk H p lk ; this proves that mðB1;B2Þ is contained in a
compactoid O-submodule of Kfftgg. r

6. Duality

Let us describe some duality issues of two-dimensional local fields when
regarded as locally convex vector spaces over a local field.

Much is known about the self-duality of the additive group of a two-
dimensional local field. From [4, §3], if F is a two-dimensional local field, once
a nontrivial continuous character

c : F ! S1 HC�

has been fixed, the group of continuous characters of the additive group of F
consists entirely of characters of the form a! cðaaÞ, where a runs through all
elements of F . This result is entirely analogous to the one-dimensional theory
[22, Lemma 2.2.1].

In the case of KððtÞÞ and Kfftgg, self-duality of the additive group follows in
an explicit way from two self-dualities: that of the two-dimensional local field as
a locally convex K-vector space, and that of the additive group of K as a locally
compact abelian group. Since the second is su‰ciently documented [22, §2.2], let
us focus on the first one.

We have already exhibited nontrivial continuous linear forms on a two-
dimensional local field. Let F ¼ KððtÞÞ or Kfftgg; the map

pi : F ! K ;
X

xjt
j 7! xið14Þ

is a continuous nonzero linear form for all i A Z.
Consider now the following map:

g : F ! F 0; x 7! px;

with

px : F ! K ; y 7! p0ðxyÞ:

More explicitly, if x ¼
P

xit
i and y ¼

P
yit

i, then

pxðyÞ ¼
X

xi y�i:
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The map g is well-defined because px, being the composition of multipli-
cation by a fixed element F ! F and the projection p0 : F ! K , is a continuous
linear form. Besides that, g is K-linear and injective.

Remark 6.1. Regarding topologies on dual spaces, we have that KððtÞÞ0c ¼
KððtÞÞ0b after Proposition 1.17.(i). However, the topology of Kfftgg0c is strictly
weaker than the one of Kfftgg0b: consider the seminorm

j � jOfftgg : Kfftgg
0 ! R; l 7! sup

x AOfftgg
jlðxÞj;

which is continuous with respect to the b-topology. If j � jOfftgg was continuous
with respect to the c-topology, there would be a basic compactoid submodule
BHKfftgg and a constant C > 0 such that jljOfftggaCjljB for all l A Kfftgg0.

However, suppose that B ¼
P

i AZ pki t i with ki !y as i! �y. For any
real number C > 0 there is an index j A Z such that Cq�kj < 1. This implies the
inequality

CjpjjB < jpjjOfftgg:

This shows that j � jOfftgg is not continuous in the c-topology.

Theorem 6.2. The map g : F ! F 0c is an isomorphism of locally convex
K-vector spaces.

Before we prove this result, we need an auxiliary result.

Lemma 6.3. Let w A F 0 and define, for every i A Z, ai ¼ wðt�iÞ. Then the
formal sum

P
ait

i defines an element of F .

Proof. We distinguish cases. If F ¼ KððtÞÞ, it is necessary to show that
ai ¼ 0 for all small enough indices i. In other words, that there is an index
i0 A Z such that for every ib i0 we have wðtiÞ ¼ 0. Without loss of generality,
we may restrict ourselves to a continuous linear form w : K ½½t�� ! K . In this
case we get our result from the following isomorphisms: first K ½½t��GK N, second
ðK NÞ0G0

N
K 0 [20, Theorem 7.4.22], and third K 0GK .

In the case in which F ¼ Kfftgg, we need to show that the values jaij for
i A Z are bounded and that jaij ! 0 as i ! �y. On one hand, the subset
OfftggHF is bounded after Proposition 4.4 and ti A Offtgg for every i A Z. As
w is continuous, the set wðOfftggÞHK is bounded and therefore the values wðtiÞ
are bounded. On the other hand, the net ðtiÞi AZ tends to zero in Kfftgg as
i!y. As w is continuous, ai ¼ wðt�iÞ ! 0 as i! �y. r

Proof of Theorem 6.2. As explained above, the map g is well-defined, K-
linear and injective.
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Let w A F 0. Define x ¼
P

i ait
i A F with ai as in Lemma 6.3. Then, for

y ¼
P

yit
i A F , we have

w
X

yit
i

� �
¼
X

yiwðtiÞ ¼
X

yia�i ¼ p0ðxyÞ

(the first equality follows from Remark 3.11). Therefore, w ¼ px and the map d
is surjective.

In order to show bicontinuity, let us first work out what continuity means
in this setting. For any e > 0 and B a set in the bornology generated by
compactoid submodules, we must show that there are d > 0 and an admissible
seminorm k � k : F ! K such that kxka d implies jpxjB a e.

Without loss of generality, we may replace e and d by integer powers of q,
and the generic bounded set B by a basic compactoid submodule of F , which is
of the form (10) in the equal characteristic case or (13) in the mixed characteristic
case. For convenience, let us write

B ¼
X
i AZ

pki t i; ki A ZU fyg

by allowing, in the equal characteristic case, ki ¼y for every small enough i.
Now, let n A Z. We take ni ¼ �k�i for every i A Z. Because of the con-

ditions defining B, the sequence ðniÞi AZ defines an admissible seminorm k � k in
both cases. Now, for x ¼

P
xit

i, we have that kxka qn if and only if for every
index i A Z we have

ni � na vKðxiÞ:ð15Þ

Similarly, jpxjB a qn if and only if for every index i A Z we have

�k�i � na vKðxiÞ:ð16Þ

By direct comparison and substitution between (15) and (16), we have that with
our choice of admissible seminorm k � k,

kxka qn if and only if jpxjB a qn;

which shows bicontinuity. r

Remark 6.4. In the mixed characteristic case we may ask ourselves if it is
possible to exhibit any self-duality result involving F 0b, that is, topologizing the
dual space according to uniform convergence over all bounded sets.

It can be seen from the proof of Theorem 6.2 that this is not the case. Any
bornology B stronger than the one generated by compactoid submodules will
stop the map g : F ! F 0B from being continuous.

We remark that if there were no other bounded sets in Kfftgg besides the
ones generated by compactoid submodules, it would be possible to show that
such a locally convex vector space is bornological.
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From the failure of Kfftgg at being bornological we may deduce that
Theorem 6.2 is the best possible result.

By applying Theorem 6.2 twice on KððtÞÞ, we recover the fact that this locally
convex space is reflexive. Indeed, we have made this fact explicit via the choice
of duality pairing:

KððtÞÞ � KððtÞÞ ! K ; ðx; yÞ 7! p0ðxyÞ:

Corollary 6.5. The field Kfftgg is not reflexive.

Proof. Since any reflexive space is barrelled (Proposition 1.13), the result
follows from Proposition 3.12. r

In order to conclude this section let us describe polars and pseudo-polars of
the O-submodules which we have studied in §5.

After Theorem 6.2, the topological isomorphism given by g allows us to
identify F with F 0c , and in particular lets us relate their O-submodules.

Definition 6.6. Let F ¼ KððtÞÞ or Kfftgg. Let AHF be an O-submodule.
We let

Ag ¼ g�1ðApÞHF

and refer to it, by abuse of language, as the pseudo-polar of A.

Proposition 6.7. Consider the O-submodule

A ¼
X
i AZ

pki t i; ki A ZU fGyg

of F ¼ KððtÞÞ or Kfftgg. Then, we have

Ag ¼
X
i AZ

p1�k�i t i:

Proof. Let B ¼
P

i AZ p1�k�i t i.
On one hand, suppose x ¼

P
xit

i A B. We have, for every y ¼
P

yit
i A A,

jpxðyÞj ¼
X

x�i yi

��� ���a supjx�ij jyij ¼ sup q�1þki�ki < 1

and, therefore, BJAg.
On the other hand, suppose that x ¼

P
xit

i A Ag. Then, by definition, we
have

jpxðyÞj < 1; for any y A A:
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In particular, let y ¼ pki t i. Then the inequality

jpxðpki t iÞj ¼ jx�ipki j < 1

implies that vKðx�iÞb 1� ki. Therefore x�i A p1�ki . Since our conclusion holds
for any i A Z, we have that x A Ag and, therefore, BHAg. r

After (iv) in Proposition 1.15, we may think of the following corollary as a
proof that the submodule A in the statement of the previous Proposition is closed,
as it is equal to its pseudo-bipolar; proofs to this result and the following two
corollaries are immediate.

Corollary 6.8. For an O-submodule A as in the previous Proposition, we
have App ¼ A. r

Corollary 6.9. We have K ½½t��g ¼ K ½½t��. For the rank-2 ring of integers, we
have ðOþ tK½½t��Þg ¼ pþ tK½½t��. r

Corollary 6.10. We have ðOfftggÞg ¼ pfftgg. For the rank-2 ring of

integers, we have ð
P

i<0 pt
i þ
P

ib0 Ot
iÞg ¼

P
ia0 Ot

i þ
P

i>0 pt
i. r

By Proposition 1.15 and Theorem 6.2, pseudo-polarity exchanges open
lattices and basic compactoid submodules. Under the characterization given
by Proposition 6.7, the relation is evident.

The same arguments exposed apply to compute that the polar of the O-
submodule

P
i AZ pki t i, ki A ZU fGyg is

P
i AZ p�k�i t i. As such, the polar of an

open lattice is a compactoid lattice and vice versa.
Let us write down a table with pseudo-polars and polars of relevant O-

submodules:

A Ag polar of A

K ½½t�� K ½½t�� K ½½t��

Oþ tK½½t�� pþ tK½½t�� Oþ tK½½t��

Offtgg pfftgg OfftggP
i<0 pt

i þ
P

ib0 Ot
i
P

ia0 Ot
i þ
P

i>0 pt
i
P

ia0 Ot
i þ
P

i>0 p
�1ti

L ¼
P

i AZ pni t i

(open lattice)
B ¼

P
i AZ p1�n�i t i

(compactoid)
B ¼

P
i AZ p�n�i t i

(compactoid)

B ¼
P

i AZ pki t i

(basic compactoid)
L ¼

P
i AZ p1�k�i t i

(open lattice)
B ¼

P
i AZ p�k�i t i

(open lattice)

The isomorphism g : F ! F 0c is not unique, as it depends on choosing a
nonzero linear form on F , which in our case is p0. For example, replacing p0 by
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p1 in the definition of g would lead to an identical result. The actual shape
of Ag, for a given O-submodule AHF , depends heavily on g. However, the
fact that polarity exchanges open lattices with compactoid submodules does not
depend on g.

In conclusion, taking the pseudo-polar or polar is a self-map on the set of
O-submodules of KððtÞÞ or Kfftgg which reverses inclusions, gives basic com-
pactoid submodules when applied to open lattices and vice versa, and whose
square equals the identity map when restricted to closed O-submodules.

7. General two-dimensional local fields

In the previous sections of this work we have developed a systematic study of
KððtÞÞ and Kfftgg from the point of view of the theory of locally convex spaces
over K . Let us explain how the previous results extend to a general charac-
teristic zero two-dimensional local field K ,! F . The moral of the story is that
we can link the higher topology on F to the constructions on KððtÞÞ and Kfftgg
that we have performed in the preceding sections of this work by performing
operations such as restriction of scalars along a finite extension and taking finite
products, and due to their finite nature, none of these operations modifies the
properties of the resulting locally convex spaces.

Due to the di¤erence in their structures, we consider the equal characteristic
and mixed characteristic cases separately.

7.1. Equal characteristic
Assume that K ,! F is a two-dimensional local field and that char F ¼

char F . In this case, as explained in §2, the choice of a field embedding F ,! F
determines an isomorphism F GFððtÞÞ.

Denote the algebraic closure of K in F by ~KK . The extension ~KK jK is finite
and ~KK ,! F is the only coe‰cient field of F which factors the field inclusion
K ,! F [17, Lemma 2.7], and this is the only coe‰cient field of F that we will
take into account in our constructions.

Remark 7.1. It is a well-known fact that in this case the higher topology
of F depends on the choice of a coe‰cient field [23, Example 2.1.22]. This is
why we stress that in this work the only coe‰cient field we consider is ~KK ,! F
because the field embedding K ,! F is given a priori.

The ~KK-vector space F G ~KKððtÞÞ is a complete, bornological, barrelled, reflex-
ive and nuclear locally convex space by direct application of Corollary 3.6. The
higher topology on F only depends on the choice of the embedding ~KK ,! F
and, therefore, does not change by restriction of scalars along K ,! ~KK .

Let us explain this fact with more detail. On one hand, all open lattices L
are O-modules by restriction of scalars. On the other hand, if x A F , there is a
positive power of p ~KK that maps x to L by multiplication. These facts are
enough to deduce local convexity over K .
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The absolute value on ~KK restricts to the absolute value of K and there-
fore Corollary 3.2 describes the admissible seminorms of K ,! F without any
changes.

Moreover, after Proposition 3.4 we have that the higher topology on ~KKððtÞÞ
agrees with the strict inductive limit topology given by

~KKððtÞÞ ¼ 6
i AZ

ti ~KK ½½t��;

which is also a union of K-vector spaces. Since the extension ~KK jK is finite,
we also have that ~KK ½½t�� is isomorphic to a product of countably many copies
of K and is therefore a Fréchet K-vector space. Hence, we get that F is
an LF-space over K and in particular we may deduce from Proposition 3.6
that F is a complete, bornological, barrelled, reflexive and nuclear K-vector
space.

Because admissible seminorms do not change after restricting scalars to
K, Proposition 4.2 describes a basis of bounded O-submodules of F . These
are complete, and from nuclearity we deduce that the classes of bounded
O-submodules and compactoid O-submodules of F agree.

Since ~KK is a finite dimensional K-vector space, it is c-compact. The ring
of integers OF ¼ ~KK ½½t�� is therefore c-compact, being isomorphic to a product of
copies of ~KK . It is unbounded, complete and not compactoid after Proposition
1.10. Similarly, the rank-2 ring of integers of F shares all these properties
with OF .

Regarding duality, the fact that the map g : F ! F 0c is an isomorphism of
locally convex spaces does not change when we restrict scalars to K . Explicit
nonzero linear forms F ! K may be constructed by composing the maps
pi : F ! ~KK as in (14) with Tr ~KK jK .

Problem. It is relevant to decide whether the class of bounded sets of F
changes along with the change of vector space and locally convex structures
associated to the choice of a di¤erent coe‰cient field.

7.2. Mixed characteristic
If char F 0 char F , then, as explained in §2, there is a unique field

embedding Qp ,! F . If we denote the algebraic closure of Qp in F by ~KK , the
field inclusion K ,! F fits into the following commutative diagram of field
embeddings

Kfftgg ���! ~KKfftgg ���! F ;x??? x???
Qp ���! K ���! ~KK

in which all horizontal arrows are finite extensions.
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The inclusions K ,! Kfftgg and ~KK ,! ~KKfftgg correspond to the situation
we have been dealing with in the preceding sections of this work. Let n ¼
½F : ~KKfftgg�.

As ~KK-vector spaces, we have

F G ~KKfftggn:

The higher topology on F may be defined as the product topology on n copies of
the higher topology on ~KKfftgg [15, 1.3.2]. Furthermore, it does not depend on
any choices of subfields ~KKfftggHF [12, §1]. Hence, since the product topology
on a product of locally convex vector spaces is locally convex, the inclusion
~KK ,! F gives a locally convex ~KK-vector space. Let us first study this space, and
later restrict scalars along the finite extension K ,! ~KK .

We may describe the family of open lattices or, equivalently, continuous
seminorms, from the corresponding lattices or seminorms for ~KKfftgg and Prop-
osition 1.1.

The situation for the ring of integers OF is as follows. If we denote ~OO ¼ O ~KK ,
the inclusion ~OOfftgg ,! OF turns OF into a rank-n free ~OOfftgg-module. There-
fore the subspace topology on OF HF coincides with the product topology on
OF G ~OOfftggn. From here, it is possible to show that OF is a bounded and

complete ~OO-submodule of F which is neither c-compact nor compactoid. It is
however closed, but not open, and this proves that F is not barrelled. The norm
attached to the valuation vF provides a example of a seminorm which is bounded
on bounded sets but not continuous, as its unit ball, OF , is not open. Hence
~KK ,! F is not bornological.

From the self-duality of ~KKfftgg, we obtain a chain of isomorphisms of
locally convex ~KK-vector spaces

F 0c G ð ~KKfftgg
nÞ0c G ð ~KKfftgg

0
cÞ

n G ~KKfftggn GF ;

which shows that F is also self-dual. Explicit nonzero linear forms may be
constructed in this case composing the trace map TrF j ~KKfftgg with the maps

pi : ~KKfftgg ! ~KK as in (14). Finally, as OF is a bounded O-submodule which is

not compactoid, we deduce that ~KK ,! F is not nuclear.
In order to conclude our discussion, we need to verify that the properties

of K ,! F agree with the ones of ~KK ,! F . The discussion is very similar to
what has already been discussed in §7.1. In this case, the higher topology on
F is known not to depend on any choices [12, §1]. Similarly to what
happens in the equal characteristic case, ~OO-lattices are also O-lattices after
restriction of scalars and therefore the sets of open lattices and admissible
seminorms for ~KK ,! F and K ,! F coincide after restricting scalars along the
field inclusion K ,! ~KK . This also implies that the collections of bounded sets
agree.

Suppose now that BHF is a compactoid ~OO-module. Given any open lattice
LHF , there are x1; . . . ; xm A F such that BHLþ ~OOx1 þ � � � þ ~OOxm. We have
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that ~OO is a free O-module of rank e ¼ eð ~KK jKÞ and, in particular, there are
y1; . . . ; ye A ~OO such that ~OO ¼ Oy1 þ � � � þ Oye. Hence, we have

BJLþ
Xm
i¼1

Xe
j¼1

Oyjxi

 !
and therefore B is a compactoid O-submodule of F .

Reciprocally, if B is an ~OO-module which is a compactoid O-submodule of F
after restriction of scalars, then for any open lattice L there are finitely many
x1; . . . ; xm A F such that BJLþ Ox1 þ � � � þ Oxm. But then we have inclusions

BJLþ Ox1 þ � � � þ Oxm JLþ ~OOx1 þ � � � þ ~OOxm

and, therefore, B is also compactoid as an ~OO-module.
It is for these reasons that OF is an O-lattice which is closed and complete

but not open, bounded but not compactoid. Hence K ,! F is neither barrelled
nor nuclear. Since any reflexive space is barrelled (Proposition 1.13), F cannot
be reflexive. The norm attached to the lattice OF is bounded on bounded
sets but not continuous since OF is not open and, therefore, K ,! F is not
bornological.

Finally, the isomorphisms of locally convex ~KK-vector spaces

F 0c G ð ~KKfftgg
nÞ0c G ð ~KKfftgg

0
cÞ

n G ~KKfftggn GF

turn into isomorphisms of locally convex K-vector spaces after restriction of
scalars. Finally, we construct explicit non-zero linear forms on F by, for
example, taking

Tr ~KKjK � pi � TrF j ~KKfftgg : F ! ~KKfftgg ! ~KK ! K ; i A Z:

8. A note on the archimedean case

Let K ¼ R or C. We will denote by j � j either the usual absolute value on R,
or the module on C.

In this section we will consider the study of archimedean two-dimensional
local fields. An archimedean two-dimensional local field is a complete discrete
valuation field F whose residue field is an archimedean (one-dimensional) local
field. Hence, we have a non-canonical isomorphism F GKððtÞÞ for one of our
two choices of K. Once an inclusion of fields KHF has been fixed and t has
been chosen, a unique such isomorphism is determined.

The theory of locally convex vector spaces over K was developed much
earlier than the analogous non-archimedean theory and is well explained in, for
example, [13]. Let V be a K-vector space and CJV . The subset C is said to
be convex if for any v;w A C, the segment

flvþ mw; l; m A Rb0; lþ m ¼ 1g
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is contained in C. The subset C is said to be absolutely convex if, moreover, we
have lCJC for every l A K such that jlja 1.

We may associate a seminorm pC to any convex subset CJV by the rule

pC : V ! R; x 7! inf
r>0;x A rC

r:

This seminorm satisfies the usual triangle inequality, but not the ultrametric
inequality.

Definition 8.1. The K-vector space V is said to be locally convex if it is a
topological vector space such that its topology admits a basis of neighbourhoods
of zero given by convex sets.

It may be shown that if V is locally convex its filter of neighbourhoods of
zero also admits a basis formed by absolutely convex subsets [13, §18.1].

The higher topology on KððtÞÞ is defined following the procedure outlined in
§3.1. In this case, we consider the disks of K centered at zero and of rational
radius; this defines a countable basis of convex neighbourhoods of zero for the
euclidean topology on K. Denote

Dr ¼ fa A K; jaj < rg; r A Q>0 U fyg:

Given a sequence ðriÞi AZ HQ>0 U fyg such that there is an index i0
satisfying that ri ¼y for all ib i0, consider the set

U ¼
X
i AZ

Dri t
i HF :ð17Þ

The sets of the form (17) form a basis of neighbourhoods of zero for the
higher topology on F .

Proposition 8.2. The higher topology on F is locally convex, in the sense of
Definition 8.1.

Proof. As the discs Dri are convex, given two elements x; y A U, it is easy
to check that the segment

flxþ my; l; m A Rb0; lþ m ¼ 1g

is contained in U by checking on each coe‰cient separately.
Thus, the basis of open neighbourhoods of zero described by the sets of the

form (17) consists of convex sets, and hence the higher topology on F is locally
convex. r

As we have done in the rest of cases, we may now describe the higher
topology in terms of seminorms.
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Proposition 8.3. Let k A Z. Given a sequence ri A Q>0 U fyg for every
ia k, such that rk < y, consider the seminorm

k � k : KððtÞÞ ! R;
X
ibi0

xit
i 7! max

iak

jxij
ri

;ð18Þ

having in mind the convention that a=y ¼ 0 for every a A Rb0. The higher
topology on F is defined by the set of seminorms specified by (18).

Proof. We will show that the seminorm k � k defined by (18) is the gauge
seminorm attached to the basic open neighbourhood of zero U given by (17).

Let x ¼
P

ibi0
xit

i A F and r > 0. If k < i0, we may take r ¼ 0 and deduce
that qðxÞ ¼ 0.

Otherwise, x A rU if and only if xi A rDri for every i0 a ia k.
From this, we may deduce that x A rU if and only if

jxij
ri

< r for every i0 a ia k:ð19Þ

Finally, the infimum value of r satisfying (19) is precisely the maximum of
the values jxij=ri for i0 a ia k. r

We have described the higher topology on KððtÞÞ in a fashion that matches
what has been done in the previous sections. However, this locally convex space
often arises in functional analysis in the following way. We write

KððtÞÞ ¼ 6
i AN

t�i:K½½t��;

Each component in the union is isomorphic to KN, topologized using the
product topology, and the limit acquires the strict inductive limit locally convex
topology.

It is known that K½½t�� is a Fréchet space, that is, complete and metrizable.
As such, the two-dimensional local field KððtÞÞ is an LF-space and many of its
properties may be deduced from the general theory of LF-spaces, see for example
[13, §19]. In particular, KððtÞÞ is complete, bornological and nuclear.

9. A note on the characteristic p case

Let k ¼ Fq be a finite field of characteristic p. In this section we will
consider the two-dimensional local field F ¼ kððuÞÞððtÞÞ. It is a vector space both
over the finite field k and over the local field kððuÞÞ.

The higher topology on F may be dealt with in two ways from a linear point
of view. The first approach was started by Parshin [19], and it regards F as a
k-vector space. In this approach, k is regarded as a discrete topological field and
the tools used are those of linear topology, see [11, §1] for an account. Linear
topology was first introduced by Lefschetz [14].
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The work developed in the previous sections of this work may be applied
and we may regard F a locally convex kððuÞÞ-vector space. In this section we
will explain that in this case we have obtained nothing new.

A topology on a k-vector space is said to be linear if the filter of neigh-
bourhoods of zero admits a collection of linear subspaces as a basis. A linearly
topological vector space V is said to be linearly compact if any family Ai HV ,
i A I of closed a‰ne subspaces such that 7

i A J Ai 0j for any finite set JH I , then
7

i A I Ai 0j. Finally, a linearly topological vector space is locally linearly
compact if it has a basis of neighbourhoods of zero formed by linearly compact
open subspaces.

Let Vectk be the category of linearly topological k-vector spaces. Similarly,
let VectkððuÞÞ be the category of locally convex kððuÞÞ-vector spaces.

Proposition 9.1. The rule

VectkððuÞÞ ! Vectk;ð20Þ
which restricts scalars on kððuÞÞ-vector spaces along the inclusion k ,! kððuÞÞ and
preserves topologies and linear maps, is a functor.

Proof. Let V be a locally convex kððuÞÞ-vector space, and let L denote an
open lattice. As the lattice L is an OkððuÞÞ-module and we have the inclusion
k ,! OkððuÞÞ ¼ k½½u��, it is also a k-vector space by restriction of scalars.

As the collection of open lattices L is a basis for the filter of neighbourhoods
of zero, V is a linearly topological k-vector space and the first part of the
proposition follows. r

There is a strong analogy between the concepts of c-compactness for locally
convex kððuÞÞ-vector spaces and linear compactness for linearly topological k-
vector spaces; both definitions agree if in Proposition 1.7 we translate the words
closed convex subspace by closed a‰ne subspace.

However, it is not true in general that restriction of scalars on a c-compact
kððuÞÞ-vector space yields a linearly compact k-vector space: kððuÞÞ, being
spherically complete, is a c-compact kððuÞÞ-vector space [21, §12] which is not
a linearly compact k-vector space.

The lack of an embedding of a finite field into a characteristic zero two-
dimensional local field makes the linear topological approach unavailable in that
setting; the locally convex approach to these fields is therefore to be regarded
as analogous to the linear approach in positive characteristic. Similarly, the
language of locally convex spaces is to be regarded as one which unifies the
approach to the zero characteristic and positive characteristic cases.

10. Future work

We outline some directions which we consider interesting to explore in order
to apply and extend the results in this work.

574 alberto cámara



O-linear locally convex approach to higher topology. In this work we have been
able to deduce many properties about KððtÞÞ, either in an explicit or implicit way,
from the fact that it is an LF-space, i.e.: an inductive limit of Fréchet spaces.
This is not the case in mixed characteristics: the field Kfftgg is not a direct
limit of nice K-vector spaces. It is, however, a direct limit of O-modules by
construction.

The development of a theory of locally convex O-modules, with topologies
defined by seminorms, and the constructions arising within that theory, partic-
ularly those of initial and final locally convex topologies, would allow us to
recover on one hand the results we have established for KððtÞÞ, and on the other
hand they would let us describe Kfftgg as a direct limit of perhaps nice O-
modules; this could be an extremely helpful contribution to the study of mixed
characteristic two-dimensional local fields.

Generalization to higher local fields. If F is a characteristic zero n-dimensional
local field, then it is possible to exhibit a field embedding K ,! F and treat F as
a K-vector space. A higher topology on F may be constructed inductively
using the same procedures outlined at the beginning of §3, see [15]. Therefore, it
may be shown that these topologies define locally convex structures over K .
Although the situation is slightly more complex, a systematic study of the
functional theoretic properties of these locally convex spaces would be interesting
to develop. The first steps in this direction have been taken in [2].

Study of LðFÞ. As we have explained, the ring of continuous K-linear endo-
morphisms of a two-dimensional local field can be topologized and studied from
a functional analytic point of view. It contains several relevant two-sided ideals
defined by imposing certain finiteness conditions to endomorphisms. The most
important of such ideals is the subspace of nuclear maps. Nuclear endomor-
phisms of a locally convex space play a distinguished role in the study of the
properties of such space. In particular, the usual trace map on finite-rank
operators extends by topological arguments to the subspace of nuclear endo-
morphisms. Establishing a characterization of nuclear endomorphisms of two-
dimensional local fields is an a¤ordable goal.

Multiplicative theory of two-dimensional local fields. Multiplication m : F � F ! F
on a two-dimensional field F is not continuous as explained in §3.3. It is a
well-known fact that the map m is sequentially continuous, and the sequential
topological properties of higher topologies have been studied and applied suc-
cessfully to higher class field theory [7] and to topologize sets of rational points of
schemes over higher local fields [3].

However, for any x A F , the linear maps

mðx; �Þ : F ! F ;

mð�; xÞ : F ! F
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are continuous. This means that, in the terms of [21, §17], m is a separately
continuous bilinear map and therefore induces a continuous linear map of locally
convex spaces

m : F nK ; i F ! F ;ð21Þ

where F nK ; i F stands for the tensor product F nK F topologized using the
inductive tensor product topology.

This suggests that besides the applications of the theory of semitopological
rings to the study of arithmetic properties of higher local fields [23], we have the
following new approach to the topic: a two-dimensional local field F is a locally
convex K-vector space endowed with a continuous linear map m : F nK; i F ! F
satisfying the usual axioms of multiplication.

After Proposition 4.9 and Corollary 5.12, another possible way to look at
a two-dimensional local field and deal with its multiplicative structure is as a
bornological K-algebra, that is: F is a K-algebra endowed with a bornology
(that generated by bounded submodules or compactoid submodules) such that all
K-algebra operations

s : F � F ! F ðadditionÞ;
e : K � F ! F ðscalar multiplicationÞ;
m : F � F ! F

are bounded.
It is interesting to decide if the arithmetic properties of F can be recovered

from these contexts, and it would even more interesting to establish new con-
nections between this functional analytic approach to higher topology and the
arithmetic of F .

Functional analysis on adelic rings and modules over them. There are several two-
dimensional adelic objects which admit a formulation as a restricted product of
two-dimensional local fields and their rings of integers, which in our characteristic
zero context were introduced by Beilinson [1] and Fesenko [5] (see [16, §8] for a
discussion of the topic). From what we have exhibited in this work, at least in
dimension two, these adelic objects may be studied using the theory of locally
convex spaces, archimedean or nonarchimedean.

Topological approach to higher measure and integration. The study of measure
theory, integration and harmonic analysis on two-dimensional local fields is an
interesting problem. A theory of measure and integration has been developed
on two-dimensional local fields F by lifting the Haar measure of the local field
F [4], [18]. This theory relies heavily on the relation between F and F . The
approach to measure and integration on F using the functional theoretic tools
arising from the relation between F and K could yield an alternative integration
theory.
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