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ZEROS OF WITTEN ZETA FUNCTIONS AND ABSOLUTE LIMIT

NoOBUSHIGE KUROKAWA AND HIROYUKI OCHIAI

1. Introduction

The Witten zeta function

{g (5) =) _deg(p) "

peG

was introduced by Witten [W] in 1991, where G is a compact topological group
and G denotes the unitary dual, that is, the set of equivalence classes of
irreducible unitary representations. The example

]

o0

(o) = 3 deg(Sym™) = 3 0 = (),
m=0

n=1

where {(s) denotes the Riemann zeta function, suggests fine properties for general
case. In fact, Witten showed arithmetical interpretation for CS”{](,,)(Zm) (m=
1,2,3,...) containing Euler’s result ([El] 1735)

C?I/](z)(Zm) e 1?"Q.

In this paper we look at the opposite side: special values at negative integers such
as

[ . 2 1
(1) C;{/(z)(—l): Z" BEREE
n=1
2) CSWZ/(z)(—z) =" Z”z” =0
n=1

due to Euler [E2] (1749). We notice that the value

N 1
> )

n=1
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appears as the one-dimensional Casimir energy: see Casimir [C] and Hawking
[H]. The equality

o0
(13 § n2” — 0
n=1

means the vanishing of the two-dimensional Casimir energy.
We notice that

{5 (-2) =G|
when G is a finite group. We conjecture that
3) (G (-2)=0

for infinite groups G.
For deeper understanding of the situation, we introduce a new zeta function
(Witten L-function)

@ ¥ (5.9) Z“ﬁfg dea(p)”

where G is a compact topological group, ¢ is an element of G, G is the set
of equivalence classes of irreducible (C-valued) representations of G, deg(p) is
the degree (the dimension) of an irreducible representation p € G. Note that
trace(p(g)) is the character of the representation p. This Witten zeta function
¢ (s,g) reduces to the (usual) Witten zeta function when we specialize g to the
identity element 1 € G:

(G () =g (s,1).
In the case of a finite group G we have
G| if g=1

CW _27 = {l . ’

¢ (=2:9) 0  otherwise.
We conjecture that
() (G (=2,9)=0
when G is an infinite group. The following result treats the case G = SU(2).

i0
THEOREM 1. Suppose g € SU(2) is conjugate to (e E)I.H) with 0 < 0 <.
(1) We have an expression 0 e

CSU (S g9) =

in Re(s) > 1. The function su)(s,9) in s has a meromorphic contin-
uation to the whole complex plane
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(2) For a positive even integer m, we have CS”{M)(—M g) =0 for all g € SU(2).

Moreover, s = —2 is a simple zero of { S”{](z) (s,9), and the first derivative at
s = —2 is given as
{3) .
T yo=0
65%(2) 1 0 72
2.4) = YN__ = .
0Os (=2.9) 47 sin 0 C<2’2n> .2 0 >0 f 0<f<m,
2 sin” —
2
7¢(3 ,
47(12) if 0=m.

Here {(s,x) denotes the Hurwitz zeta function.

(3) The special value at s = —1 is given as
1 .
- E lj( 0= 0;
1
w if 0<0<n
—1 — )
éSU(Z)( ) 4 sin? Q
2
1 .
Z lf 0=m.
We now introduce a ‘multi’-version of Witten L-function. For gi,...,¢, €
G, we define
trace(p(g1))  trace(p(gr)) -5
CWS;gh...,g = Xdegp
00V gy ety )
_ - trace(plgn) - race(p(s,)
S+r °
oy deg(p)

It is natural to ask whether the vanishing () (-2:g1,...,9,) 20 of the
special value at s = —2 for this generalization holds. We have a partial answer
to this question.

THEOREM 2. We have C;’{,(z)(—m;gl,gz) =0 for g1,92 € SU(2), and a pos-
itive even integer m.

We also give an example of the non-vanishing for the case r = 3: for some
g€ SU(2), we prove that C%<2)(—2;g,g,g) # 0. These results related with the
Lie group SU(2) are given in Section 2.

We report further examples of zeros of Witten zeta functions for infinite
groups.
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w
THEOREM 3. (gy(3)(s) =0 for s=—1,-2,....

The proof of this theorem is given in Section 3.
The next example is not a Lie group, but a totally disconnected group. Let
Z, be the p-adic integer ring for a prime number p.

THEOREM 4. Suppose p # 2. Then CSVEZ(Z,,)(S) =0 for s=-1,-2.

Now we consider the congruence subgroups. For a positive integer m, we
define a subgroup of SL3(Z,) of finite index by

SL3(Zy)[p"] = ker(SLs(Z,) — SL3(Z,/(p™)))-

THEOREM 5. Suppose p # 3.
(1)

w g (= p (1 —p)
stz 8) = P (T )

% (1 + (p71 +p72)p7s + (1 —|—p71)p723 +p72733)'
% Cstaizpm(8) =0 for s =—1,-2

(s+1D)(s+2)

Sty =7 7
(-3)(-3)

Here we interpret that if C&3<Zp)[l,m](s) has an expression as an analytic
function on p, and there is a limit p — 1, then its limit is denoted by

w W
sy (8) = 11)13} stz (5)-

These results on totally disconnected groups are given in Section 4.

2. SU(2)

2.1. Parametrization of irreducible representations of SU(2)
The set of equivalence classes, G, of irreducible unitary representations of
G = SU(2) is parametrized by the set of natural numbers. For a natural number
n, we denote by p =p, € G, the corresponding irreducible representation of G.
e 0
For a g:( 0 o0

(6) trace(p(g)) — ei(n—l)f) + ei(n—3)0 NS ei(3—n)0 + ei(l—n)ﬁ

)e G, we have the character formula

and the degree
(7) deg(p) = trace(p(1)) =,
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1 0
where 12:( 0 1)eSU(2) is the identity matrix. We also see that

trace(p(—h)) = (—=1)"'n.
We start from g =+ € SU(2). In these cases, C?{m)(s, g) is written in
terms of the Riemann zeta function. We see that ( %(2) (s, ) ={(s), and

(1"

nS

®) (s —b) =Y — (1= 2")).

n=1

2.2. Poly-logarithm function
We recall the poly-logarithm

which is written also as Li(x) in literature. This series converges if |x| < 1 and
seC, or |x| =1 and Re(s) > 1. In the following, we restrict to the case |x| = I.

THEOREM 6. Suppose |x| =1 and x # 1. Then Z(s,x) is analytically con-
tinued to a holomorphic function on se€ C. Moreover, for every non-negative
integer m, the function Z(—m,x) can be expressed by a rational function in x.
The first several examples are
Yzl =z =
(1 -x) (1 -x)

Z(0,x) =
(0,%) =
Proof. For Re(s) > 1, we have
2 DO y.n
=3

X X
Z(S,X) ZX+F+ZF

2 0 n+1

—xd Y

R (n+1)°

2 o0
X . s
:x—i—;—i—g X"+

n=2
& L\ [—s
= x4+ = xn+1n7s nfk
()

x? 2 [(—s
=x+-+ Z(s+k,x) —
X+ x;(k>( (s X) — X)

2 0

— x+%+x(2(s,x) - X) —|—xz (_ks) (Z(s+ k,x) — x).

k=1
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This shows

(9) (1 —x)Z(s,x) = x + x>(2 +xz< ) (s 4k, x) — x).

By the estimates of binomial coefficients, the right-hand side converges absolutely
on the right-half plane Re(s) > 0. This shows the analytic continuation of
Z(s,x) to Re(s) > 0. Repeating this argument, we obtain the analytic continua-
tion to whole se€ C. To substitute s=—m with m=0,1,..., we have the
recursion equation

(10) (1 =x)Z(-=m,x) = x+x*(2" -1 —&—xi() (m—k),x)—x). O

First several examples show

x(1 +4x + x?) x(1 4 x)(1 + 10x + x?)

Z(_?’,x) = ) Z<_4vx) =

(1-x° (1-x)° ’
1+ 26x + 66x% + 26x3 + x*
Z(—S,x):x( + 26x + 66x —|; X +x).
(I-x)
These examples seem to show
LemMa 7. Suppose |x| =1 with x # 1. Then
(11) Z(0,x) + Z(0,x71) = —1,
and for every positive integer m,
(12) Z(—m,x) + (=1)"Z(-m,x" ) = 0.
Proof.  We start from [Jonquiére 1880]
1 77113/22 i0 nm/ZZ =iy _ ( 1 -5 —
(13) e (5,€") +e™"Z(s,e7") F(S)C S5
in Milnor [M]. Putting s = —m with m=1,2,..., we have
em’m/2Z(_m, ei&’) + efnim/ZZ(_n%efiH) =0. 0

We remark that Z(0,1) = {(0) = —1/2. In this sense, the formula (11) is
valid also for x =1.

2.3. An example

A 1 1
(14) 2t e e
(e=i0/2 — ¢i0/2) 4 sin”(0/2)
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and this shows
(15) Lij(e7™) = Li_(e"),
an even function in 6.
2.4. Proof of Theorem 1(1) and analytic continuation

Now we consider regular elements in SU(2). Suppose 0 < § < 7. Then we
have, for Re(s) > 1,

i0 0 ,in0 —in0
w e 0 _ e —e 1
Esu) (S< 0 em)) =D

n=1

1 ©_ /[ eind e—in0
il — effaz s+l st

n=1

1 . .
= m{Z(s—i— L,y — Z(s+1,e7)}

=5rsn Q{Z(s—i— 1,e)y — Z(s+1,e7)},

and the right-hand side has meromorphic continuation to whole s € C.
Note that we interpret

sin(nd) {1 if =0,

(16) nsind  \(=D)""' if 0=n.

2.5. Proof of Theorem 1(2); vanishing

For g = +1, and for positive even integer m, we obtain CSWZJQ)(—M, +5) =0
from {(—m) =0.

For g # +1I,, suppose 0 <6< n. Then for a positive integer m, we
have

1 A A
(17) Cgt/f(z)(—%g) = m(Z(l - m,e’”) -Z(1 - mje*IO))‘

This is zero for even m by the formula (12).

2.6. Proof of Theorem 1(2), first derivative

We see that
1 s(s+1)
(18) I(s) T(s+2)
shows that
(19) L:f(erl)nLO((erl)z), (s — —1).

I(s)
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We again start from the formula (13)

. . 27)*
e—rus/ZZ(s7 x) + emS/ZZ(S,X_l) _ ( 775) C(l _ S,i

1(}

with x =e¢ in this formula, we have

Taking %
s=—1

0Z 0Z

447

ig(—l,x) + (—i)g(—l,x_l) + (=i /2) () Z(—1,x) + (=i/2)(—i)Z(~1,x7")

<2n>‘lc—1>c(z,§;).

Then
acy 1
(20) i x 2isin 0 x Sal;(z) (~2.9) = —nZ(~1,e") — c(z 2‘1)
and
21 4'905%‘2)2 22 Z(~1,e" 2.0
o) woin 0% S0 (-2,) = 202(-1.6%) +¢(2.51).
We have
2
(22) C(27 t) + C(zv 1 - [) = 2
sin”(7¢)
since the left-hand side is equal to
23
@3) ,; 0? Zon+1_, ,,:Zm(nﬂ)2
which is equal to the right-hand side. This shows
. CSU 0 0
(24) 87 sin 0 x 2 ( 2,9) = C(Z’E) C(Zl—%>>0
since ﬁ <1- 2
2n 2r’
2.7. Proof of Theorem 1(3)
1
25) o (-1 B) = (=) = — 35
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00 Z(0,x) — Z(0,x71)

-x 1
(1-x)> 4sin’(0/2)’

where x = e for all 0 < 0 < 7.

2.8. An average over the group
Let G be a finite group. The normalized Haar measure dg on G is, by
definition,

27) JG ) dg = ‘G|Zf

geG

Then we see that, for all se C,

(28) J (¥ (s,g)dg =1,

since the left-hand side is equal to

(29) S (| race(pto) ) ()"

peG

where the average is non-zero only for the trivial representation p.

Now we consider the case where G is a compact group which is not
necessarily a finite group. Again let dg be the normalized Haar measure of G so
that [.dg=1. We ask the value

(30) JG Cg/(s, g) dg.

We can give some example;

(1) | a20a=o
sUQ2)

(32) | acroa=1
SU(2)

The latter formula is proved by the Weyl integral formula;

n i0 0 2
33 J Lo (=1, 9) d :J 4 (1,<e .>)sin26d81.
(33) sv) SU(Z)( g) dg o SU(2) 0 it .
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29. r=2
We now discuss the properties of a generalization of Witten zeta functions
with several characters. We give a proof of Theorem 2.

Proof.

x"—x" =y
trace(p(g1)) = T trace(p(g2)) = y— pl

with x = e y=e¢™. 1In the cases g» =+, we have

(34) 5?{/(2)(&91712) = ég‘/lz](z)(svgl)a

(35) C;,%(z) (s,91,—h) = gswz/](z) (s, —g1)-

Then the problem on the special values is reduced to the case treated in Theorem
1(2).

Now we may suppose x,y # +1. Then

(36) Ll (5.91.92)

"y ) = (xy)"
nx+2

1 ()" + ('
(x=xN(y-»y") ;
CZ(s+2,xp) + Z(s+2,x 'y ) = Z(s+2,xp7") — Z(s +2,x71y)
- (x=xHy—»")

This shows

(Z(0,xy) + Z(0,x" 'y~ ")) = (Z(0,xp~") + Z(0,x"'y))
(x—=xN(y—-y"

(37) C;‘f](z)(—Z,ghgz) =
= ()7
where we have used the formula (11). O

2.10. r=3
By the similar computation, we obtain

_ Z(s+3,x%) =3Z(s+3,x) +3Z(s+3,x7") — Z(s+ 3,x7)

B (x —x—1)°

If x =1, then

4z(1,—i)—4Z(1,i) 27 =
w ) )

2. — _” )
CSU(Z)( agvgvg) ( 1)3 = 3 = #0
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3. SU(3)
3.1. On analytic continuation

Let G be a compact semisimple Lie group. Then the Witten zeta g/ (s) has
a meromorphic continuation to C. This is a special case of

(39) > Q... m)P(my,...,m,)"".

Analytic continuation of these zeta functions is discussed in [Mellin 1900],
[Mahler 1928].

3.2. A special value at a negative integer
Let n be a positive integer. Let M =2n+2, and suppose Re(s) >

1 .
—n _§+§’ with ¢ > 0. By [Ma], we have
1
(40) ¥ o (s)=2° _—
SUG) ";1 m*n*(m + n)*

J2s—1DI(1 —v)

=2 o) {(B3s—1)
Y ?;1(_1)““ P ot D o4 gtk
b2 JR6(2>_2”+ZSW+F27§(‘Z)Q<2s +2)(s-2) d.
Reminding
41) % = (-1 2(#'“),

we can put s = —n in this identity and obtain

42) (& (-ny=27"(-)"" %c(—w —1)

k!
(—n)(1—n)---(=1)-1---
(2n+1)!

This shows (¢, 3)(—n) = 0 for a positive odd integer n, since {(—3n —1) =0 and
{(=2n+k){(-n—k)=0 for k=0,1,...,n. On the other hand, for a positive
even integer n, we have

+ 2-"§1:(—1)k (=) —m)-(k—1-mn) ((=2n+ k) (—n—k)
k=0

+27"(-1)

nl
EC(—Sn—l).



ZEROS OF WITTEN ZETA FUNCTIONS AND ABSOLUTE LIMIT 451

2
(43) Csu{/@)(—n) = —2_”%5(—% -1

"\ /n
427" =2n+k){(—n—k) =0,
> (et +hogton -0
where the last equality follows from the following lemma:

LemMMmA 8. For a positive even integer n, we have

n!

1
M cl(—n = K){(—n = 1) = = {(=3n— 1),
() k+1:nZ,I;,lek!l!C( n =k =) (2n+1)!c( n—1)
Equivalently,
(45) L Btk Buriq _ n! By,
k+/:n.k.120k!l!n+1+kn+1+l 2n+4+1)!3n42"

This follows from [CW, Theorem 2] when we substitute « =y=nrn—1 and
o=¢=1. O

This concludes the proof of Theorem 3.

4. The groups over Z,

4.1. SL,

Let p be an odd prime. We denote by Z, the ring of integers in the non-
archimedean local field Q,. Jaikin-Zapirain [J] obtains the following explicit
formula:

(46) {Staz,)(8) = Zo(s) + Zoo (s),
with
(47) Zy(s) = ngzw,,)(s)
_ p—-1\" P+’ p—1
1+2<—2 > +2(—2 > t (p—1)
—s p—3 —s
tpr =+
1 PPN -1,
(48) Zw(s)—m<4p< > ) t— (p™—p)
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This deduces

(49) Zo(=2) = p(p*> — 1) = [SLy(F,)| = p(p+ 1)(p — 1),
(50) Zo(=2) = —p(p* = 1),

(51) Zo(=1) =p(p+1),

(52) Zo(=1)=—p(p+1),

(53) 2(0) = p+ 4.

(54) 2,0 =2 p-d

This shows

(55) {staz,)(—2) =0,

(56) {Staz,)(—1) =0,

(57) Ctazy (0) = = ﬁ

which concludes the proof of Theorem 4.

4.2. Congruence subgroups of SL,

In this subsection, we assume that p is an odd prime.

obtain

m 1 - p—Z—s
(58) Estaayipm () = P e
This shows
(59) gspzz(zp)[pm](*z) =0,
(60) Stz pm(—1) = =™ (p+1).
By taking an “absolute limit” p — 1, we obtain

s+ 2

(61) Cstaaonm () =7

4.3. Congruence subgroups of SL; and SU;

In this subsection, we assume that p is a prime with p # 3.

have

By [AKOV], we

By [AKOV], we

s LA u(p)p > > +ulp )p 2> 4 p>¥

(62) gsuzg(z,,)[pw](s) =P

(T=p (A=)

Y

where u(X) =X+ X?>—-X —1-X"'. We notice that it can be factorized as
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w(1=p (1 =p ')
(63) §£3(zp)[p/n](s) R e T Y

x(+(p +p)p~ + (L+p™)p ™+ p727%),
We see that
EStazy)pm (=2) = Cstyzypm (—1) = 0.
The formula (64) shows
(s+ D(s+2)

. w o
(64) ilf} Csta(z,)1pm (8) = 7N/ 2\’
YA

which is considered to be “an absolute Witten zeta function ( SVZ(ZI)“,"](S)”.
Also by [AKOV],

1+u< ) —3— 2s+u( ) 2—3s+p—5—5s
8m
(65) CSU; Z,) [p”’]() p (1—pl-2)(1—

pr)
_ 8m(1 _p—2fs)(1 - P 5) 1+p71 5)
=p (1= pl=2)(1 — p> )
(66) X(I+(0=p ' +p)p~+p ),

where u(X)=—-X3+X? - X +1—X"'. This shows

LStz ipm (—2) = Lsty 2,y (0) =0,
while

w Casm2 Pl g 1
(67) {styz)pm (1) =2p Pr 2p B,

n__
is non-zero where [n]p i ] is a p-analogue of an integer n. This shows
p j—

. w _ _z
(68) ;EI}CSU3<Z,,)[pm]( 1) 3

By the formula (67), we have

. w ~7 1N/ 2\
i Cs, 7)) (5) = =) (s-3)
5 3
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