
Y. NAGAHATA
KODAI MATH. J.
36 (2013), 397–408

TAGGED PARTICLE DYNAMICS IN STOCHASTIC RANKING
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Abstract

We consider a stochastic ranking process, which is a mathematical model of the

ranking in the web page of online bookstores or posting web pages. We give a scaling

limit of tagged particle dynamics. In this limit the scaled tagged particles jumps to the

top of the list when its own Poisson clock rings and moves deterministically along a

curve otherwise. This curve is characteristic curve of a system of quasi linear PDE,

which is mentioned in [11, 14]. We also give a scaling limit of multi-tagged particle

dynamics, in which the motion of the particles are independent.

1. Introduction

We consider a stochastic ranking process or Poisson embedding of the move-
to-front rules, which is an algorithm for a self-organizing linear list of a finite
number of items. The list is updated in the following way. Each item has an
independent Poisson clock, whose rate depends on type of the item. If the
Poisson clock of the i-th item rings, then we move it to the top of the list and
accordingly each of the items located in front of the i-th item backwards
simultaneously by one rank; those behind do not move at all. In this paper,
we treat this process as an ‘‘interacting particle system’’. We fasten a tag to a
‘‘particle’’ (or tags to ‘‘particles’’) and observe the motion of ‘‘tagged particle’’
(or ‘‘tagged particles’’). We give a scaling limit of tagged particle dynamics
as the number of the items tends to infinity. In this limit the scaled tagged
particle jumps to the top of the list when its own Poisson clock rings and moves
deterministically along a curve otherwise. This curve is characteristic curve of
a system of quasi linear PDE, which is mentioned in [11, 14]. We also give a
scaling limit of multi-tagged particle dynamics, in which the motion of the par-
ticles are independent.

The move-to-front rule is introduced by Tsetlin [24] and studied [5, 16, 19,
20, 21]. It is also studied as least-recently-used cashing [1, 2, 3, 6, 7, 8, 9, 10, 17,
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18, 22, 23]. Recently it is reintroduced and studied as a mathematical model of
the ranking in the web page of online bookstores or in the posting web pages [11,
12, 13, 14, 15].

The distribution of the scaling limit of tagged particle dynamics is dis-
cussed and obtained in [1, 9, 17] (as the scaling limit of search cost for the
move-to-front rules). Precisely, the stationary distribution is obtained [1, 9, 10,
17]. In [1, 9, 17] the distribution of stationary search cost for the move-to-front
rules is discussed and the scaling limit (a fluid limit) is obtained. Furthermore in
[1] the distribution of the scaling limit of general search cost and the indepen-
dence of the motion of the multi-tagged particle (propagation of chaos) is
obtained.

Let fni; i A Ng be independent Poisson random measures on ½0;yÞ with
intensity wiðsÞ ds. We assume that the set of intensities is finite, i.e., there exists
K such that fwi; i A Ng ¼ f~ww1; ~ww2; . . . ; ~wwKg. Let ðxN

1 ; xN
2 ; . . . xN

N Þ be a permuta-
tion of 1; 2; . . .N. We define stochastic ranking process X N ¼ ðXN

1 ;XN
2 ; . . . ;

XN
N Þ by

XN
i ðtÞ ¼ xN

i þ
XN
j¼1

ð t
0

1ðXjðs�Þ > Xiðs�ÞÞnjðdsÞ þ
ð t
0

ð1� Xiðs�ÞÞniðdsÞð1Þ

where 1ðAÞ is the indicator function of A. We regard XN
i ðtÞ and xN

i as posi-
tions of the i-th particle at time t and at time 0 respectively. Each particle has
an independent Poisson clock with intensity wi. If i-th particle’s Poisson clock
rings, then i-th particle jumps to the top. If a Poisson clock of a particle located
behind the i-th particle rings, then the i-th particle jumps backward by one
step.

We define the normalized position of X N by

Y N
i ðtÞ ¼ 1

N
ðXN

i ðtÞ � 1Þ:

Let us define dxe ¼ dxeN and bxc ¼ bxcN for x A ½0; 1� by

dxeN ¼ l

N
; bxcN ¼ l � 1

N
such that l A Z and

l � 1

N
< xa

l

N
:

We define UN ¼ ðUN
1 ðx; sÞ;UN

2 ðx; sÞ; . . .UN
K ðx; sÞÞ by

UN
l

k

N
; s

� �
:¼ 1

N

XN
i¼1

1ðwi ¼ ~wwlÞ1 Y N
i ðsÞb k

N

� �
;

for k ¼ 0; 1; 2; . . . ;N and

UN
l ðx; sÞ :¼ UN

l ðbxc; sÞ þNðx� bxcÞfUN
l ðdxe; sÞ �UN

l ðbxc; sÞg;
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for 0a xa 1 and x B f0; 1=N; 2=N; . . . ðN � 1Þ=N; 1g. Namely if x A f0; 1=N;
2=N; . . . ðN � 1Þ=N; 1g then UN

l ðx; sÞ denotes the normalized number of scaled
particles in ½x; 1� at time s whose intensity is ~wwl . If x B f0; 1=N; 2=N; . . .
ðN � 1Þ=N; 1g then it is given by linear interpolation of fUN

l ð0; sÞ;
UN

l ð1=N; sÞ;UN
l ð2=N; sÞ; . . . ;UN

l ððN � 1Þ=N; sÞ;UN
l ð1; sÞg.

Let us consider the Cauchy problem for a system of quasi linear PDE

q

qt
ulðx; tÞ ¼ �ulðx; sÞ~wwlðsÞ �

XK
m¼1

umðx; sÞ~wwmðsÞ
q

qx
ulðx; sÞ;ð2Þ

ulð0; tÞ ¼ flð0Þ;
ulð1; tÞ ¼ 0;

ulðx; 0Þ ¼ flðxÞ;

for l ¼ 1; 2; . . . ;K where the initial functions fl , 1a laK are smooth and
decreasing, and satisfies that fl b 0 and

PK
l¼1 flð0Þ ¼ 1. In [13] it is proved that

this system of PDE has a unique global classical solution. From now on, we
denote by uðx; tÞ ¼ ðu1ðx; tÞ; . . . ; uKðx; tÞÞ the unique global solution of (2).

The following result is already proved in [11].

Proposition 1.1. Assume that U Nðx; 0Þ ! uðx; 0Þ ðN ! yÞ uniformly in
x A ½0; 1� almost surely. Then the process U Nðx; tÞ ! uðx; tÞ ðN ! yÞ uniformly
in x A ½0; 1� and t A ½0;T � for all T with probability one.

We give a scaling limit of tagged particle dynamics.

Theorem 1.2. Assume that UNðx; 0Þ ! uðx; 0Þ ðN ! yÞ uniformly in

x A ½0; 1� almost surely, and
1

N
xN
1 ! y1 ðN ! yÞ almost surely. Then the scaled

tagged particle motion Y N
1 ðtÞ ! Y1ðtÞ uniformly in t A ½0;T � almost surely for all

T b 0, where Y1 is the solution of

Y1ðtÞ ¼ y1 þ
XK
l¼1

ð t
0

ulðY1ðs�Þ; sÞ~wwlðsÞ ds�
ð t
0

Y1ðs�Þn1ðdsÞ:

Furthermore, assume that U Nðx; 0Þ ! u0ðxÞ ðN ! yÞ uniformly in x A ½0; 1Þ

almost surely, and for some L,
1

N
xN
1 ;

1

N
xN
2 ; . . . ;

1

N
xN
L

� �
! ðy1; y2; . . . ; yLÞ

ðN ! yÞ almost surely. Then the scaled tagged particle system ðY N
1 ðtÞ;

YN
2 ðtÞ; . . . ;Y N

L ðtÞÞ ! ðY1ðtÞ;Y2ðtÞ; . . .YLðtÞÞ uniformly in t A ½0;T � almost surely
for all T b 0, where Yi, i ¼ 1; 2; . . . ;L are the solutions of

YiðtÞ ¼ yi þ
XK
l¼1

ð t
0

ulðYiðs�Þ; sÞ~wwlðsÞ ds�
ð t
0

Yiðs�ÞniðdsÞ:
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The last equation expresses what is mentioned previously: a scaled particle
moves deterministically obeying the same ODE as for the corresponding char-
acteristic curve of the system of PDE (2) except for its successive Poisson epochs
at each of which it jumps to the top independently of the motion of the other
tagged particles.

2. Proof of the main results

2.1. Proof of the Proposition 1.1
As being mentioned in Introduction Proposition 1.1 is already proved in

[11]. Here we give another proof, where we derive PDE (2) directly from the
stochastic integral equation (1) by using Itô formula.

In order to define the characteristics of the quasi linear PDE

q

qt
ulðx; tÞ þ aðx; t; uÞ q

qx
ulðx; tÞ ¼ hlðx; t; uÞ

for l ¼ 1; 2; . . . ;K , with some boundary conditions for f ¼ ð f1; f2; . . . ; fKÞ, we
follow [4, Chap. 3]. In our case, aðx; t; uÞ ¼

PK
m¼1 umðx; tÞ~wwðtÞ and hlðx; t; uÞ ¼

�ulðx; tÞ~wwlðtÞ. Let us consider the system of ODE

d

dt
z ¼ aðz; t; vÞ;

d

dt
vl ¼ hlðz; t; vÞ;

8>><
>>:

for l ¼ 1; 2; . . . ;K with initial condition

zðt0Þ ¼ y0; vðt0Þ ¼ f ðy0Þ

where ðt0; y0Þ and f ðy0Þ corresponds to the boundary conditions of PDE.
We assume that for each fixed ðx; tÞ, there is an unique initial condition

ðt0; y0Þ such that zðtÞ ¼ x, entailing that our quasi linear PDE has an unique
global solution ulðx; tÞ ¼ vlðzðtÞ; tÞ (see [13]).

We extend UN
l ðx; tÞ by

UN
l ðx; tÞ ¼ UN

l ð0; tÞ if xa 0;

UN
l ð1; tÞ if xb 1;

�

for notational convenience. We define VN;nðx; tÞ ¼ ðVN;n
1 ðx; tÞ;VN;n

2 ðx; tÞ; . . .
VN;n

K ðx; tÞÞ by

VN;n
l ðx; tÞ :¼ 1

2
n

N

ð xþn=N

x�n=N

UN
l ðy; tÞ dy
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for 1f nfN. By the definition of UN , we have jUN
l ðx; tÞ �UN

l ðy; tÞja jx� yj
for all l and t. Therefore we have

jVN;n
l ðx; tÞ �UN

l ðx; tÞja 1

2
n

N

ð xþn=N

x�n=N

jUN
l ðy; tÞ �UN

l ðx; tÞj dya n

2N
;ð3Þ

for all 1a laK , x A R, tb 0.
We note that

q

qx
UN

l ðzðsÞ; sÞ ¼ NfUN
l ðdzðsÞe; sÞ �UN

l ðbzðsÞc; sÞg;

due to the definition of UN , especially linear interpolation. We also note
that

�NfUN
l ðdzðsÞe; sÞ �UN

l ðbzðsÞc; sÞgð4Þ

¼
XN
j¼1

1ðwj ¼ ~wwlÞ1ðY N
j ðsÞ ¼ bzðsÞcÞ

¼ 1ðl-th particle is located between zðtÞ � 1 and zðtÞÞ:

Increment of V
N;n
l ðzðtÞ; tÞ is divided into following five factors; (i) due to

increment of zðtÞ and increment of V
N;n
l ðzðtÞ; tÞ is

dz

dt

q

qx
V

N;n
l ðzðtÞ; tÞ dt, (ii) due

to jump of a particle located behind zðtÞ þ x

N
(in the sense of normalized position)

when one of the l-th type particle is located between zðtÞ þ x� 1

N
and zðtÞ þ x

N
for �na xa n and increment of VN;n

l ðzðtÞ; tÞ is
1

2nN
, (iii) the error of (ii) which

is caused by the linear interpolation at the edge of mollifier and the order of the

error is O
1

nN

� �
, (iv) due to jump of l-th type particle located behind zðtÞ þ n

N
and increment of V

N;n
l ðzðtÞ; tÞ is � 1

N
, (v) due to jump of l-th type particle

located behind zðtÞ þ x

N
for �na xa n� 1 and increment of V

N;n
l ðzðtÞ; tÞ is

� nþ x

2nN
. Therefore by using Itô formula, we have

VN;n
l ðzðtÞ; tÞ

¼ V
N;n
l ðy0; t0Þ þM

N;n
l ðtÞ þO

1

n

� �
þ
ð t
t0

dz

dt
ðs�Þ q

qx
V

N;n
l ðzðs�Þ; s�Þ ds

�
ð t
t0

1

2nN

Xn
x¼�n

N UN
l bzðs�Þc þ x

N
; s�

� �
�UN

l dzðs�Þe þ x

N
; s�

� �� �
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�
XN
j¼1

1 Y N
j ðs�Þ > zðs�Þ þ x

N

� �
wjðs�Þ ds

�
ð t
t0

1

N

XN
j¼1

1ðwj ¼ ~wwlÞ1 YN
j ðs�Þ > zðs�Þ þ n

N

� �
wjðs�Þ ds

�
ð t
t0

1

N

XN
j¼1

Xn
x¼�n

nþ x

2n
1ðwj ¼ ~wwlÞ1 YN

j ðs�Þ ¼ bzðs�Þc þ x

N

� �
wjðs�Þ ds;

where M
N;n
l is martingale term defined by

M
N;n
l ðtÞ :¼ �

ð t
t0

1

2nN

Xn
x¼�n

N UN
l bzðsÞc þ x

N
; s

� �
�UN

l dzðsÞe þ x

N
; s

� �� �

�
XN
j¼1

1 Y N
j ðs�Þ > zðs�Þ þ x

N

� �
~nnjðdsÞ

�
ð t
t0

1

N

XN
j¼1

1ðwj ¼ ~wwlÞ1 YN
j ðs�Þ > zðs�Þ þ n

N

� �
~nnjðdsÞ

�
ð t
t0

1

N

XN
j¼1

Xn
x¼�n

nþ x

2n
1ðwj ¼ ~wwlÞ1 YN

j ðs�Þ ¼ bzðs�Þc þ x

N

� �
~nnjðdsÞ

and ~nnjðdsÞ ¼ njðdsÞ � wjðs�Þ ds.
Since wj ¼

PK
l¼1 1ðwj ¼ ~wwlÞ~wwl for all j, by using the definition of UN we

have

XN
j¼1

1

N
1ðY N

j ðs�Þ > xÞwjðs�Þ ¼
XK
l¼1

XN
j¼1

1ðwj ¼ ~wwlÞ
1

N
1ðYN

j ðs�Þ > xÞ~wwlðs�Þ

¼
XK
l¼1

UN
l ðdxe; sÞ~wwlðs�Þ:

By using this identity and the definition of VN;n
l , we have

VN;n
l ðzðtÞ; tÞ

¼ VN;n
l ðy0; t0Þ þMN;n

l ðtÞ þO
1

n

� �
þ
ð t
t0

dz

dt
ðs�Þ q

qx
V N;n

l ðzðs�Þ; s�Þ ds

�
ð t
t0

1

2n

Xn
x¼�n

N UN
l bzðs�Þc þ x

N
; s�

� �
�UN

l dzðs�Þe þ x

N
; s�

� �� �
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�
XK
m¼1

UN
m dzðs�Þe þ x

N
; s�

� �
~wwmðs�Þ ds

�
ð t
t0

V
N;n
l ðzðs�Þ; s�Þ~wwlðs�Þ ds

We recall that

q

qx
UN

l ðzðsÞ; sÞ ¼ NfUN
l ðdzðsÞe; sÞ �UN

l ðbzðsÞc; sÞg:

Hence we have

q

qx
V N;n

l ðzðsÞ; sÞ ¼ 1

2n

Xn
x¼�n

N UN
l dzðsÞe þ x

N
; s

� �
�UN

l bzðsÞc þ x

N
; s

� �� �
:

By the definition of z, we have

d

dt
zðtÞ ¼ alðz; t; vÞ ¼

XK
m¼1

vmðzðtÞ; tÞ~wwmðtÞ:

We also recall that

jVN;n
l ðx; tÞ �UN

l ðx; tÞja n

2N
:

By using these two identities and inequality, we have

V
N;n
l ðzðtÞ; tÞ

¼ V
N;n
l ðy0; t0Þ þM

N;n
l ðtÞ þO

1

n

� �

þ
ð t
t0

1

2n

Xn
x¼�n

N UN
l dzðs�Þe þ x

N
; s�

� �
�UN

l bzðs�Þc þ x

N
; s�

� �� �

�
XK
m¼1

vmðzðs�Þ; s�Þ~wwmðs�Þ �
XK
m¼1

VN;n
m ðzðs�Þ; s�Þ~wwmðs�Þ þO

n

N

� �( )
ds

�
ð t
t0

V
N;n
l ðzðs�Þ; s�Þ~wwlðs�Þ ds:

We set WN
l ðx; tÞ :¼ sup0asatjUN

l ðx; sÞ � vlðx; sÞj. By using (3), (4), we
have
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WN
l ðzðtÞ; tÞaWN

l ðy0; t0Þ þ jMN;n
l ðtÞj þO

1

n

� �
þO

n

N

� �

þ
ð t
t0

XK
m¼1

WN
m ðzðs�Þ; s�Þ~wwmðs�Þ ds

þ
ð t
t0

WN
l ðzðs�Þ; s�Þ~wwlðs�Þ ds;

for 1f nfN.
By using (4), it is standard to estimate the martingale term M

N;n
l ðtÞ by

E sup
t A ½t0;T �

MN;n
l ðtÞ2

" #

a 4E½hMN;n
l iT � ¼

4

N

ðT
t0

E

2
4 1

N

XN
i¼1

(
1

2n

Xn
x¼�n

1 YN
i ðs�Þ > zðs�Þ þ x

N

� �

�
XN
j¼1

1ðwj ¼ ~wwlÞ1 YN
k ¼ bzðs�Þc þ x

N

� �

� 1 Y N
i ðs�Þb zðs�Þ þ n

N

� �
1ðwi ¼ ~wwlÞ

�
Xn
x¼�n

nþ x

2n
1 Y N

i ðs�Þb zðs�Þ þ x

N

� �
1ðwi ¼ ~wwlÞ

)2

wiðsÞ

3
5 ds:

It is easy to see that the absolute value of the expression in the large braces is at
most 1. Hence we have

E sup
t A ½t0;T �

M
N;n
l ðtÞ2

" #
a

4

N

1

N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

wiðsÞ2 ds

s
a

C

N
;

for some constant C.
We conclude that

XK
l¼1

E½WN
l ðzðTÞ;TÞ2�a 6

XK
l¼1

E½WN
l ðy0; t0Þ2� þ

6KC

N
þO

1

n

� �
þO

n

N

� �

þ
ðT
t0

6ðK þ 1Þ
XK
l¼1

E½WN
l ðzðsÞ; sÞ2�~wwlðsÞ ds;
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for 1f nfN. By using Gronwall’s inequality, we have

XK
l¼1

E½WN
l ðzðtÞ; tÞ2�

a 6
XK
l¼1

E½WN
l ðy0; t0Þ2� þ

KC

N
þO

1

n

� �
þO

n

N

� �( )
ð1þ C 0TeC

0TÞ

for some constant C 0 and 1f nfN. Note that C 0 is independent of ðy0; t0Þ.
We also note that z depends on the boundary condition ðy0; t0Þ. Since
UN

l ðy0; t0Þ ! vlðy0; t0Þ uniformly in ðy0; t0Þ, we have UN
l ðzðtÞ; tÞ ! ulðzðtÞ; tÞ

in L2 uniformly in t A ½t0;T � and uniformly in ðy0; t0Þ. If we take A ¼
ð½0; 1�VQ� f0gÞU ðf0g � ½0;T �VQÞ, which is a countable subset of the bound-
ary of ½0; 1� � ½0;T �, then it is easy to see that B ¼ fðzðtÞ; tÞ; t A ½t0;T �; ðy0; t0Þ A
Ag is a dense subset of ½0; 1� � ½0;T �. By taking subsequence, we have
UN

l ðx; tÞ ! ulðx; tÞ uniformly in ðx; tÞ A B a.s.. Since UN
l and ul are non

increasing and continuous functions of x, we have UN
l ðx; tÞ ! ulðx; tÞ uniformly

in t A ½0;T � and x A ½0; 1� a.s.. r

2.2. Proof of the Theorem 1.2
It is easy to see that Y N

i has an expression

Y N
i ðtÞ ¼ yN

i þ
XN
j¼1

ð t
0

1

N
1ðYN

j ðs�Þ > YN
i ðs�ÞÞwjðs�Þ ds

�
ð t
0

Y N
i ðs�ÞniðdsÞ þMN

i ðtÞ

where yN
i ¼ xN

i � 1

N
, MN

i ðtÞ ¼
PN

j¼1

Ð t
0

1

N
1ðYN

j ðs�Þ > YN
i ðs�ÞÞ~nnjðdsÞ and ~nnjðdsÞ ¼

njðdsÞ � wjðs�Þ ds. Since wj ¼
PK

l¼1 1ðwj ¼ ~wwlÞ~wwl for all j, by the definition of
UN , we have

XN
j¼1

1

N
1ðYN

j ðs�Þ > YN
i ðs�ÞÞwjðs�Þ

¼
XK
l¼1

XN
j¼1

1ðwj ¼ ~wwlÞ
1

N
1ðY N

j ðs�Þ > YN
i ðs�ÞÞ~wwlðs�Þ

¼
XK
l¼1

UN
l ðdY N

i ðs�Þe; sÞ~wwlðs�Þ:

Therefore we have
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Y N
i ðtÞ ¼ yN

i þ
XK
l¼1

ð t
0

UN
l ðdY N

i ðs�Þe; s�Þ~wwlðs�Þ ds

þ
ð t
0

YN
i ðs�ÞniðdsÞ þMN

i ðtÞ:

We define ZN
i ðtÞ :¼ YN

i ðtÞ � YiðtÞ, then we have

ZN
i ðtÞ ¼ ðyN

i � yiÞ þ
XK
l¼1

ð t
0

fUN
l ðdY N

i ðs�Þe; s�Þ � ulðYiðs�Þ; s�Þg~wwlðs�Þ ds

�
ð t
0

ZN
i ðs�Þwiðs�Þ dsþMN

i ðtÞ �
ð t
0

ZN
i ðs�Þ~nniðdsÞ

Since UN
l ðx; sÞ ! ulðx; sÞ uniformly in x A ½0; 1�, s A ½0;T � a.s. and ul A C 1,

jUN
l ðdYN

i ðs�Þe; s�Þ � ulðYiðs�Þ; s�Þj

¼ julðY N
i ðs�Þ; s�Þ � ulðYiðs�Þ; s�Þ þ oð1Þj

aCjZN
i ðs�Þj þ oð1Þ;

where constant C is given by

C ¼ sup
x A ½0;1�; t A ½0;T �; l A f1;2;...;Kg

q

qx
ulðx; tÞ

����
����;

and oð1Þ ! 0 as N ! y. It is standard to see that
Ð t
0 Z

N
i ðsÞ~nniðdsÞ and MN

i ðtÞ
are martingales and

E

ð t
0

ZN
i ðsÞ~nniðdsÞ

� �2" #
¼
ð t
0

E½ZN
i ðsÞ2�wiðsÞ ds;

E½MNðtÞ2� ¼ E
1

N 2

XN
j¼1

ð t
0

1ðY N
j ðs�Þ > Y N

i ðs�ÞÞwjðs�Þ ds
" #

a
1

N

ð t
0

1

N

XN
j¼1

wjðs�Þ ds:

Since yN
i ! yi, by using Cauchy-Schwarz inequality we have

E sup
t A ½0;T �

ZN
i ðtÞ2

" #
a oð1Þ þ ðK þ 4ÞC2

ðT
0

E½ZN
i ðs�Þ2� ds

ðT
0

XK
l¼1

~wwlðsÞ ds
 !

þ ðK þ 4Þ
ðT
0

E½ZN
i ðs�Þ2� ds

ðT
0

wiðs�Þ2 ds
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þ 4ðK þ 4Þ 1
N

ðT
0

1

N

XN
j¼1

wjðs�Þ ds

þ 4ðK þ 4Þ
ðT
0

E½ZN
i ðs�Þ2�wiðs�Þ ds

a oð1Þ þ C 0
ðT
0

E sup
u A ½0; s�

ZN
i ðuÞ2

" #
ds:

for some constant C 0. By using Gronwall’s inequality, we have

E sup
t A ½0;T �

ZN
i ðtÞ2

" #
a oð1Þð1þ C 0TeC

0T Þ;

i.e., YN
i ! Yi in L2 and uniformly in t A ½0;T �. By taking subsequence,

YN
i ! Yi uniformly in t A ½0;T � a.s.. r
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