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A NOTE ON THE GEOMETRICITY OF OPEN HOMOMORPHISMS
BETWEEN THE ABSOLUTE GALOIS GROUPS OF p-ADIC LOCAL
FIELDS

YuicHIRO HoOsHI

Abstract

In the present paper, we prove that an open continuous homomorphism between
the absolute Galois groups of p-adic local fields is geometric [i.e., roughly speaking,
arises from an embedding of fields| if and only if the homomorphism is HT-preserving
[i.e., roughly speaking, satisfies the condition that the pull-back by the homomorphism
of every Hodge-Tate representation is Hodge-Tate].

Introduction

Let p be a prime number. Write Q, for the p-adic completion of the field

of rational numbers Q. For e {o,e}, let kg be a p-adic local field [i.e.,

a finite extension of Q,] and km an algebraic closure of k. Write G &ef

Gal(ED/kg). Let
o Gko — Gk.

be an open continuous homomorphism. In [1], [2], S. Mochizuki discussed
the geometricity [cf. [2], Definition 3.1, (iv)] of such an o. In particular,
Mochizuki proved that the following conditions are equivalent [cf. [2], Theorem
3.5, ()

(i) o is geometric, i.e., arises from an isomorphism of fields k, = k, that
determines an embedding k, — k.

(i) « is of CHT-type [cf. [2], Definition 3.1, (iv)], i.e., o is compatible with
the respective p-adic cyclotomic characters of Gy, Gy, and, moreover,
there exists an isomorphism of topological modules [but not necessarily
the topological fields] k) — k}—where, for [Je {o,e}, we write kp
for the p-adic completion of kg—that is compatible with the respective
natural actions of Gy, G, on k., k) [relative to o].
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(i) o is of 01-gLT-type [cf. [2], Definition 3.1, (iv)], i.e., for every pair of
open subgroups H, < Gy, H, < Gy, of Gy, Gy, such that a(H,) < H,,
and every character ¢ : H, — E* of qLT-type [cf. [2], Definition 3.1,
(iii)]—where E is a p-adic local field all of whose Qp-anjugates are

contained in the fixed fields k#-, k#-—the composite H, — H, — E*
is Hodge-Tate, and the set of Hodge-Tate weights of this composite is
contained in {0, 1}.

We shall say that o is HT-preserving [cf. Definition 1.3, (i)] if o preserves
the Hodge-Tate-ness of p-adic representations, i.e., for every finite dimensional
continuous representation ¢ : Gy, — GL,(Q),) of Gy,, if ¢ is Hodge-Tate, then the
composite Gy, % G, — GL,(Q,) is Hodge-Tate. Then it is immediate that

if o is of CHT-type, then o is HT-preserving.

Moreover, since a character of gLT-type is Hodge-Tate, and its set of Hodge-Tate
weights is contained in {0,1}, one verifies easily that

if o is not only HT-preserving but also preserves the sets of Hodge-Tate
weights of Hodge-Tate representations, then o is of 01-gLT-type.

On the other hand, it does not seem to be clear that the following assertion
holds:

If o is HT-preserving, then o is either of CHT-type or of 01-gLT-type.

In particular, the following question may be regarded as a natural question con-
cerning the geometricity of open continuous homomorphisms between the abso-
lute Galois groups of p-adic local fields:

Is every HT-preserving open continuous homomorphism between the
absolute Galois groups of p-adic local fields geometric?

In the present paper, we answer this question in the affirmative by refining the
argument of Mochizuki applied in [1], [2]. The main consequence of the present
paper is as follows [cf. Corollaries 3.4; 3.5].

THEOREM. Let p be a prime number. For e {o,e}, let kg be a p-adic
local field and ko an algebraic closure of k.  Write G &ef Gal(kp/kp). Let

o Gko - Gk.
be an open continuous homomorphism. Then o is geometric [cf. [2], Definition 3.1,

(iv)] if and only if o is HT-preserving [c¢f. Definition 1.3, (1)]. In particular, if we
write

Emb(k. /ke, ko /k.)
for the set of isomorphisms of fields ke = k. that determine embeddings ky — k.;

Emb(k., k)
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for the set of embeddings of fields ko, — ko;
HOl’nOpen(Gk Gk‘)

for the set of HT-preserving open continuous homomorphisms Gy, — Gy, , then we
have a commutative diagram of natural maps

Emb(k. /ke, Ko /ko) ———— Hom ™" (G, Gr.)

l |

Emb(k,, ks) ———— Homyy (G, G,)/Inn(Gy,)

—where the vertical arrows are surjective, and the horizontal arrows are bijective.

Remark. The various discussions given in the present paper may be
regarded as just slight modifications or improvements of the discussions of
[1], [2]. From this point of view, one may consider that some arguments in §2
and the observation that a similar technique of [1], §4, can be available in the
situation of the proof of Theorem 3.3 are essentially the only new contributions
of the present paper.

1. HT-preserving homomorphisms

In the present §1, we define the notion of an HT-preserving [i.e., “Hodge-
Tate-preserving”’| homomorphism [cf. Definition 1.3, (i), below]. Let p be a
prime number. Write Q, for the p-adic completlon of the field of rational
numbers Q. For I:Ie{o o,0}, let ko be a p-adic local field [i.e., a finite
extension of Q,] an(%1 ko an algebraic closure of k. Write oy for the ring of
integers of kg, Gi, = Gal(kg /ko), I, S Gy, for the inertia subgroup of Gy,
and Py, < Ii, for the wild inertia subgroup of Gi,. Now let us recall from local
class field theory that we have a natural isomorphism

Gab ~ ()
—where we write (kK*)" for the profinite completion of the topological group
k*—that determines an isomorphism
(G 2) Im(lx — G — Gi°) = of (= (K)").
In the following, let us regard o} as a closed subgroup of G,jb by means of this

isomorphism, i.e., o} = Gi®.

ProrosiTION 1.1.  Let a: Gr, — Gy, be an open continuous homomorphism.
Then a(Iy,), a(Pk,) = Gk, are open subgroups of I,, Py, respectively. Moreover,
it holds that Ker(a) < Py..

Proof. This follows immediately from [2], Proposition 3.4 [cf. also the proof
of [2], Proposition 3.4]. O
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DEFINITION 1.2.

(1)

(i)

Let A be a topological group; ¢;,¢,: Gy — A continuous homomor-
phisms. Then we shall say that ¢, is inertially equivalent to ¢, if ¢, and
¢, coincide on an open subgroup of I = Gy [cf. the discussion preceding
[4], Chapter III, §A.5, Theorem 2].

Let E be a finite Galois extension of Q, that admits an embedding
oc:E— k. Let meo, be a uniformizer of o,. Then we shall write

for the continuous character obtained by forming the composite
Gi — G S (k)" 5 0f X Z — 0 — 0} = 0} — E*

—where the first arrow is the natural surjection, the second arrow is
the natural isomorphism arising from local class field theory, the third
arrow is the isomorphism determined by the uniformizer 7 € o, the
fourth arrow is the first projection, the fifth arrow is the homomorphism
induced by the norm map k* — E* [with respect to the embedding o],
the sixth arrow is the isomorphism given by mapping a to a~!, and
the seventh arrow is the natural inclusion [cf. [4], Chapter III, §A.4].
Since I < Gy surjects onto o X {1} < o, x Z [cf. the discussion at the
beginning of §1] one verifies casily that the inertial equivalence class
[cf. ()] of ){a » does not depend on the choice of 7 € vg. Thus, we shall
often write )(LT to denote y T for some unspecified choice of 7 € oy.

DeriNITION 1.3, Let a: Gy, — Gy, be an open continuous homomorphism.

(1)

(ii)

We shall say that o is HT-preserving [i.e., “Hodge-Tate-preserving”] if,

for every finite dimensional continuous representation ¢ : Gy, — GL,(Q,)

of Gy, that is Hodge-Tate, the composite Gy — Gy, 4, GL,(Q,) is

Hodge-Tate.

We shall say that « is of HT-qLT-type [i.e., “Hodge-Tate-quasi-Lubin-

Tate” type] (respectively, of weakly HT-qLT-type [i.e., “weakly Hodge-

Tate-quasi-Lubin-Tate” type]) if, for

+ every pair of respective finite extensions k! (S k), k. (S k.) of ko, ke
such that o«(Gr/) = G,

+ every finite Galois extension E of Q, that admits a pair of embeddings
0o:E—kl, gs: E— k],

the composite

[cf. Definition 1.2, (ii)] is Hodge-Tate (respectively, is inertially equivalent
[cf. Definition 1.2, (i)] to a continuous character Gy, — E* that factors
through the natural open injection Gy — Gal(k,/ E) determined by the
embeddlngs E& k! — k) [cf. Proposmon 1.1]. [Here, we note that, as
is well-known—cf., e.g., [4], Chapter III, §A.1, Corollary 2—the issue of
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whether or not a finite dimensional continuous representation is Hodge-
Tate depends only on the inertial equivalence class of the given represen-
tation.]

Lemma 1.4. Let o: Gy, — Gy, be an open continuous homomorphism. Con-
sider the following four conditions:
(1) o is HT-preserving [cf. Definition 1.3, (i)].
(1) For every pair of respective finite extensions k! (S k.), k. (S k.) of ko, ke
such that o(Gy:) < Gy, the restriction a G Gi: — Gy, is HT-preserving.
(2) o is of HT-qLT-type [cf Definition 1.3, (ii)].
(3) « is of weakly HT-qLT-type ¢/ Definition 1.3, (ii)].
Then we have an equivalence and implications

(1) & 1) =02)= )

Proof. The implication (1’) = (1) is immediate. Next, let us verify that
the implication (1) = (1’) follows from the following well-known argument: Let
k! (ck.), k. (=k.) be respective finite extensions of k,, k., such that
u(Gyr) € Gyis ¢ Giy — GL,(Q,) a finite dimensional continuous representation
of Gy, that is Hodge-Tate. Now let us observe [cf., e.g., [4], Chapter III, §A.1,
Corollary 2] that, to verify that the composite ¢ooc|Gk, is Hodge-Tate—by
replacing k!, k. by suitable finite extensions of k!, k!, respectively—we may
assume without loss of generality that k/, k. are Galois over k,, k., respectively.
Write ¢, for the finite dimensional continuous representation of Gy, obtained
by inducing ¢ from Gi; to Gi,. Then since [one verifies easily that] ¢k.|G,(/ is
isomorphic to the direct product of [k, : k,] copies of ¢, it holds that ¢, is
Hodge-Tate. Thus, since o is HT-preserving, it holds that ¢, o«, hence also
(¢r, ©@)lg,,» is Hodge-Tate. On the other hand, one verifies easily that ¢ o |,
is isomorphic to a subrepresentation of (¢, 0 o)] G- In particular, we conclude
that ¢ooc\Gk, is Hodge-Tate. This completes the proof of the implication
(1) = (1.

The implication (1') = (2) follows from the fact that “yL1” defined in
Definition 1.2, (ii), is Hodge-Tate [cf. [4], Chapter III, §A.5, Corollary]. Finally,
we verify the implication (2) = (3). We shall apply the notational conventions
established in Definition 1.3, (ii). Then since o is of HT-qLT-type, the character
x: G — E* obtained by forming the composite

%\Gk, LT
Gy — G —— E*
is Hodge-Tate. Thus, since E is Galois over Q,, it follows immediately from [4],
Chapter III, §A.5, Corollary, that y is inertially equivalent [cf. Definition 1.2, (i)

to the character

IT i)™ : G — E
aeGal(E/Q,)
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for some choices of integers n,. On the other hand, one verifies easily from local
class field theory that this character is inertially equivalent to the restriction to
Gi <= Gal(k,/E) of the character

(xEM™ . Gal(k./E) — E*.
ceGal(E/Q,)

This completes the proof of the implication (2) = (3), hence also of Lemma 1.4.
O

Remark 1.4.1. In the notation of Lemma 1.4, consider the following four
conditions:

(4) a is of qLT-type [cf. [2], Definition 3.1, (iv)].

(5) a is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].

(6) o is of CHT-type [cf. [2], Definition 3.1, (iv)].

(7) a is of HT-type [cf. [2], Definition 3.1, (iv)].
Then we have equivalences and implications

N<@eB)e6) (=0)e1)=(2)=03).

Indeed, the equivalences (4) < (5) < (6) follow from [2], Theorem 3.5, (i); the
implications (6) = (1) and (6) = (7) are immediate. If, moreover, o is injective,
then we have equivalences and implications

@B e 0= (=0)e)=02)=03).

Indeed, the implication (7) = (6) follows immediately from [1], Proposition 1.1.

2. Injectivity result

In the present §2, we prove that every open continuous homomorphism of
weakly HT-qLT-type is injective [cf. Proposition 2.4 below]. We maintain the
notation of the preceding §l.

DErINITION 2.1.
(i) Let G be a profinite group. Then we shall write

(G _») Gp—ab—free

for the maximal pro-p abelian torsion-free quotient of G.
(i) Let A be an abelian topological group and ¢: Gy — 4 a continuous
homomorphism. Then we shall write

iner-dim (¢) (g‘ dlme (¢ (Ik ) p-ab-free ®ZP Qp)

[cf. (i)] and refer to iner-dim(¢) as the inertial dimension of ¢.

LemMMa 2.2. Let A be an abelian topological group and ¢ : Gy — A a con-
tinuous homomorphism. Then the following hold:
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(i) 1t holds that
0 < iner-dim(¢) < [k : Q,]

[¢f. Definition 2.1, (ii)).
(i) Let H = Iy be a closed subgroup of Ir. Suppose that H contains an open
subgroup of Py le.g., H is an open subgroup of I or Py]. Then

iner-dim(¢) = dimq, (¢(H )p-ab-ﬁee ®z, Q)

[¢f. Definition 2.1, (i)].
(iii) Let ¢’ : Gy — A be a continuous homomorphism that is inertially equiv-
alent to ¢ [c¢f. Definition 1.2, (1)]. Then

iner-dim(¢) = iner-dim(¢’).
(iv) In the notation of Definition 1.2, (ii), it holds that
iner-dim(LT) = [E : Q,]
(of (i)}

(v) Let o: Gy, — Gy be an open continuous homomorphism. Then it holds
that

iner-dim(¢) = iner-dim(¢ o o).

Proof. First, 1 claim that the following assertion holds:

Claim 2.2.A: The natural surjection I — ¢(It)"*>™ factors through
the natural surjection Iy — 0} — (07)7**™ [cf. the discussion at the

beginning of §1].

Indeed, this follows immediately from our assumption that A4 is abelian. This
completes the proof of Claim 2.2.A.

Assertion (i) follows immediately from Claim 2.2.A, together with the fact
that (o} )70 ®z, Q, is of dimension [k :Q,]. Assertion (ii) follows immedi-
ately from Claim 2.2.A, together with the [easily verified] fact that the composite
Py — I, — o is open. Assertion (iii) follows immediately from assertion (ii).
Assertion (iv) follows immediately from the definition of the character yLT,
together with the fact that (o})?"e ®z, Q, is of dimension [E: Q,]. Finally,
we verify assertion (v). Let us first observe that it follows from Proposition 1.1
that o determines an open homomorphism Py, — P;. Thus, assertion (v) follows
immediately from assertion (ii). This completes the proof of assertion (v). [

Lemma 2.3. Let N = Gy be a nontrivial normal closed subgroup of Gy.
Then there exists an open subgroup H = Gy of Gy such that the image of the
composite NN H — H — HP? < [cf Definition 2.1, (i)] is nontrivial

Proof. Assume that, for every open subgroup H = Gy of Gy, the image of
the composite NN H «— H — HPee s ripial ie., if we write Jy < H for the
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kernel of the natural surjection H — HP?> then NN H < Jy. Now since N
is nontrivial, it is immediate that there exists a normal open subgroup H < Gy
such that the composite N — Gy — Gy/H is nontrivial. In particular, one
verifies easily that, to verify Lemma 2.3, by replacing G, by the inverse image
of the image of N in Gy/H via Gy, — Gy/H, we may assume without loss of
generality that the composite N — Gy — Gi/H is [nontrivial and]| surjective.
Thus, since [we have assumed that] NN H < Jy, it follows immediately that
the composite N — Gy — Gi/Jy determines a splitting of the exact sequence of
profinite groups

1 — HPabfree Gy — Gy JH — 1.

[Here, we note that since H = Gy is normal, and Jy < H is characteristic, one
verifies easily that Jy is normal in Gi.] In particular, since N < Gy is normal,
the natural action [determined by the above exact sequence] of Gy/H on
HP2Tee hence also on HP ™ ®, Q,, is trivial. On the other hand, if we
write k' (< k) for the finite Galois extension of k corresponding to H < Gy, then
it follows immediately from local class field theory that there exists a Gy/H
(= Gal(k'/k))-equivariant injection of Q,-vector spaces k' <— H/** @, Q,,
which contradicts the fact that the action of Gy/H on HP-bfree ®z, Q, 18 trivial.
This completes the proof of Lemma 2.3. O

Next, we prove the main result of the present §2. Note that the injectivity
result was shown in the proof of the implication (c¢) = (d) of [2], Theorem 3.5, (i),
for homomorphisms of gL T-type, and that Proposition 2.4 is its improvement for
homomorphisms of weakly HT-qLT-type.

PrOPOSITION 2.4. Let o : Gy, — Gy, be an open continuous homomorphism.
Suppose that o is of weakly HT-qLT-type [c¢f. Definition 1.3, (ii)]. Then o is
injective.

Proof. Assume that the homomorphism « is not injective. Then it follows
immediately from Lemma 2.3 that there exists a finite Galois extension E of Q,
that admits a pair of embeddings E — k., E — k, such that if we write E, S k.,
E, =k, for the respective images of these embeddings [so E, — E — E,|, then
ko € E,, ks < E,, and, moreover, the image of the composite Ker(x)N Gg, —
Gp, — G [cf. Definition 2.1, (i)] is nontrivial.

Let k! (S k.) be a finite extension of k. such that E, < k!, and, moreover,
%(Gy:) < Gg,. Write y for the composite

x‘ck, ZLT
Gy, —> Gp, — E (= E* — ET)

[cf. Definition 1.2, (ii)]. Then since «|;, is open, it follows from Lemma 2.2,
(iv), (v), that °

iner-dim(y) = iner-dim(z5") = [E. : Q,]
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[cf. Definition 2.1, (ii)]. On the other hand, since o is of weakly HT-qLT-type,
the character y is inertially equivalent to the continuous character factors as the
composite

Gk'—>C‘7E0£’1*70X (— E* = E)

of the natural open injection Gi; — Gg, and a continuous character yp : Gg, —
EX. Thus, it follows from Lemma 2.2, (iii), (v), that

([E. : Q,] =) iner-dim(y) = iner-dim(y, ).

Now let us recall from Proposition 1.1 that Ker(x) = P;,. In particular, it
holds that Ker(a) = Ker(a) N 1;,, which thus implies that Ker(a) NIy is open in
Ker(x). On the other hand, it follows from the definition of y that Ker(o) N Iy
(= Ker(2) N Gi;) = Ker(y). Thus, since y is inertially equivalent to yg |g ,, we
conclude that there exists an open subgroup J < Ker(x) of Ker(x) such’ that
J = Ker(yp ) = Gg,. Now since J < Ker(a) is open in Ker(x), and [we have
assumed that] the image of the composite Ker(x) N Gg, — Gg, — Gf T
nontrivial, it follows that the image of the compos1te J — Gg, — Gp rabree o
nontrivial. Thus, one verifies easily that the image of the homomorphlsm
J — 0} (S GP) [cf. the discussion at the beginning of §1] determined by the
comp051te J — Gg, — GE [where we recall that J = Iy ] is infinite. In partic-
ular, since J < Ker(y ), we conclude that the kernel of the character (Iz, —)
oy — EJ* determined by the restriction of y; to Ig, S Gg, is infinite. Thus, we
obtain an inequality

(E.: Q=) iner-dim(xy,) < dimg ((05)"*™™ ®7, Q,) = [E. : Q]

which contradicts the fact that E, < E = E,. This completes the proof of
Proposition 2.4. ]

3. The main results
In the present §3, we prove the main theorem of the present paper [cf.
Theorem 3.3 below]. We maintain the notation of §l.

DerINITION  3.1. Let «: Gy, — Gi, be a continuous isomorphism and
B ke =k, an isomorphism of fields. Then we shall say that f is inertially
compatible with o if the composite

of, = kI Sk = (k)"
—where the second arrow is the isomorphism determined by f—and the
composite

o = Gi* = G = (k)"
—where the first arrow is the natural inclusion arising from local class field
theory [cf. the discussion at the beginning of §l], the second arrow is the
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isomorphism determined by o~!, and the third arrow is the isomorphism arising
from local class field theory—coincide on an open subgroup of o/ .

LeEMMA 3.2. Let a: Gy, = Gy, be a continuous isomorphism; 8,5, : ke — ke
isomorphisms of fields. Suppose that f,, , are inertially compatible with o [cf.
Definition 3.1].  Then B, = f,.

Proof.  Since f,, B, are inertially compatible with «, one verifies easily from
the various definitions involved that there exists an open subgroup S, < o/ of o/
such that f|g = f,|s,- On the other hand, let us recall from [1], Lemma 4.1,
that the sub-Q,-vector space of k. generated by S. coincides with k.. Thus, the
equality fB|s = B,|s, implies the equality f; = f,. This completes the proof of
Lemma 3.2. ]

Next, we prove the main theorem of the present paper. Note that the
argument given in the proof of Theorem 3.3 is essentially the same as the
argument applied in [1] to prove the main theorem of [1].

THEOREM 3.3.  Let p be a prime number. For 1€ {o,e}, let kg be a p-adic
local field and ko an algebraic closure of ko.  Write Gy, &ef Gal(kp/ko). Let

o Gko - Gk.

be an open continuous homomorphism. Suppose that o is of HT-qLT-type [cf.
Definition 1.3, (ii)]. Then o is geometric [cf. [2], Definition 3.1, (iv)], ie., arises
from an isomorphism of fields ko = k, that determines an embedding k, — k.

Proof. First, let us observe that it follows from Proposition 2.4, together
with the implication (2) = (3) of Lemma 1.4, that « is injective. Next, let us
observe that, to verify Theorem 3.3, by replacing Gy, by the image of «, we may
assume without loss of generality that « is an isomorphism.

Now I claim that the following assertion holds:

Claim 3.3.A: Suppose that k, is Galois over Q,. Then there exists
a(n) [necessarily wunique—cf. Lemma 3.2] isomorphism of fields
Br. . i ke = ko that is inertially compatible with o [cf. Definition 3.1].

Indeed, let E be a finite Galois extension of Q, that admits embeddings £ — ko,
E — k, such that if we write E, < k,, E, Sk, for the respective images of
these embeddings [so E, < E = E,], then k, < E,, k, < E,. Let k! (S k,) be a
finite Galois extension of k, such that k] contains E,, and, moreover, the finite
[necessarily Galois] extension k. (< k,) of k, corresponding to the open subgroup
u(Gy:) < Gk, contains E,. For e {o,e}, write o : Eg — k; for the natural
inclusion. Write y for the composite

o
l6,/ "

G — Gu 2“5 Ef (& EX S EX).
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Then since o is of HT-gLT-type, it holds that y is Hodge-Tate. Thus, since E,
is Galois over Q,, it follows from [4], Chapter III, §A.5, Corollary, that y is
inertially equivalent to the character

(et )" Gy — EX (& EX S E))
oeGal(E,/Q,)

for some choices of integers #,.

For (e {o,e}, write Very i, : Gi* — G,?é’ for the Verlagerung map with
respect to the finite Galois extension ky/km.  Then since y is inertially equivalent
to [, ccae /Q,,)( Le Oa)"” and [one verlﬁes easily from local class field theory that]
Very ! Jky Maps A Gk [cf. the discussion at the beginning of §1] to ok, c G,i,
we conclude that there exists an open subgroup S, < o/ (S Gi®) of o} such thgt
if we write S, < o; for the image of S, = o; by the isomorphism

(G 2) o o (=G

induced by o [where let us recall from Proposition 1.1 that o induces an iso-
morphism I, = I ], then the diagram of topological modules

Verys i, [occaz /o )(X;il;a)“ﬂ -
S, Gi® Gap ! EX & EX
Very/ . LT
o/ke Xoe ~
S. G Gy EX & EX

—where the left-hand vertical arrow is the isomorphism induced by «, and
the left-hand horizontal arrows are the natural inclusions—commutes. On the
other hand, it follows immediately from local class field theory, together with
Definition 1.2, (ii), that, for [ e {o, o}, if we write Im(f;) = G,jb for the image
of the composite [, — Gy, — G‘lb [i.e., “D,j 7 e G,‘jb—cf the discussion at
the beginning of §l1], then we have commutative diagrams of topological

modules

Verk/ : H al(E. (}{LT )nﬂ
L ko ceGal(Eo /Q)) \Aaoca ~
Im(Z;.) Im(Iké) ? EX — E*
[secaes /0, (7! oNmy/ )" N
o) 0} - EX & EX,

Verk//k_ ZJ_T N
Im(Ik.) — Im(Ik./) — E.>< — E*

T

o} of, Ef & EX
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—where the left-hand and middle vertical arrows are isomorphisms that arise
from local class field theory; the lower left-hand horizontal arrows are the homo-
morphisms induced by the natural inclusions k, — k!, k, — k., respectively;
we write “Nm” for the norm map. In particular, if, for [Je {o, e}, we write
Im(Sh) < EX for the image of Sp in EX, then the following hold:
(a) Since k, = E, < k!, and k, is Galois over Q, [which thus implies that
every g € Gal(E,/Q,) preserves k, S E], it holds that

Im(S,) = H (67" o Nmyyp )(So)"™
oeGal(E,/Q,)

= Il ol ek
oceGal(E./Q,)

e., that the subgroup Im(S,) € ES is contained in kX = EX.
(b) Since k. = E, < k], it holds that the subgroup Im(S,) = EX coincides
with the subgroup (o .)V": Bl E[, which thus implies that the subgroup
Im(S,) < ES is an open subgroup of o S E.
For each [ e {o, e}, write V5 < E for the sub—Qp-vector space of Er generated
by Im(Sp) < En.  Now we have a commutative diagram of topological modules

Im(S,) —— EX & EX

| |

Im(S,) —— EX & EX

—where the left-hand vertical arrow is the isomorphism induced by «, and the
left-hand horizontal arrows are the natural inclusions. Thus, it is immediate that
the isomorphisms of fields E, < E = E, determine an isomorphism V, = V.,
which thus implies that dimq, (V.) = dimg,(V,). Moreover, it follows from (a)
(respectively, (b), together with (1], Lemma 4. 1) that V, < k, = E, (respectively,
Ve =k € E,). Thus, since [k, : Q,] = [ke : Q,] [cf. [1], Proposition 1.2], we con-
clude that V., = k., V, = k., and, moreover, the isomorphism of Q,-vector spaces
V, = V, |determined by the isomorphisms of fields E, <— E = E,| is compatible
with the structures of fields of k., k,. In particular, we obtain an isomorphism of
fields P ke =Ve—= V,=k,. On the other hand, it follows from the defini-
tion of B, , , together with the above discussion concerning Im(Sp), that f, , is
inertially compatible with «. This completes the proof of Claim 3.3.A.
Next, I claim that the following assertion holds:

Claim 3.3.B: For every pair of respective finite extensions k! (< k),
k. (= ke) of ke, ke such that a(Gy/) = Gy, there exists a(n) [necessarlly
unzque—cf Lemma 3.2] 1somorphlsm of fields B, K k] = k. that is
inertially compatible with the restriction o|g, : Gk, = G-

Indeed, let k! (< k,) be a finite extension of k that is Galois over Q,. Write
k! (< k.) for the finite [necessarily Galois] extension of k. corresponding to the
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open subgroup a(Gir) < Gi,. Then it follows from Claim 3.3.A that there exists
an isomorphism of ﬁelds Bir gr = k! = k! that is inertially compatible with the
restriction «|g , : Giy = G Then one verifies easily from Lemma 3.2, together
with the fact that f, ., is inertially compatible with the restriction oc|G , that

Bry kv is compatible with the respective natural actions of Gal(k!'/k! ) Gal( k! /kl)
on k!, k! [relative to the isomorphism Gal(k!/k!) = G/ /Grr = G /Grr =
Gal(k! [k ) induced by «|g,]. Thus, we conclude that the isomorphism S, ;.
determines an isomorphism [)’k K :k! = k!.  On the other hand, again by Lemma
3.2, together with the fact that /fk,, K 18 mertzally compatible W1th the restriction
oc|G ,» it follows immediately that ‘this isomorphism f, 1, 1s inertially compatible
w1th the restriction oc|GA This completes the proof of Claim 3.3.B.

Now, by applying ‘Claim 3.3.B to the various finite extensions of k,, we
obtain an isomorphism of fields f; ¢ : ke = k. that determines an isomorphism
ke = k,. Moreover, again by applymg Claim 3.3.B, one verifies easily that o
arises from this isomorphism f; . This completes the proof of Theorem 3.3.

O

Remark 3.3.1. Theorem 3.3 leads naturally to the following observation:

Let p be an odd prime number and Qp an algebraic closure of the
p-adic completion Q, of the field of rational numbers Q. Write G, =
Gal(Q,/Q,). Then there exist an automorphism o of Gg, and a finite
dimensional continuous representation ¢ : Go, — GL,,(Q[,) of Ggq, such
that ¢ is potentially locally algebraic, i.e., the restriction of ¢ to an open
subgroup of Gq, is locally algebraic [cf. [4], Chapter III, §1, Definition]
[hence Hodge-Tate], the set of Hodge-Tate weights of ¢ is contained in
{0,1}, but ¢ooa is not Hodge-Tate.

Indeed, let us first observe that it follows immediately from the discussion given
at the final part of [3], Chapter VII, §5, that we have an automorphism o of Gq,
that is not geometric [cf. [2], Definition 3.1, (iv)]. Thus, it follows from Theorem
3.3 that o is not of HT- qLT-type [cf. Definition 1.3, (ii)]. In particular, since the
character “yLT” defined in Definition 1.2, (ii), is locally algebraic [cf. [4], Chapter
I11, §1, Example (2)], and the set of Hodge Tate weights is contained in {0,1}
[cf., e.g., [4], Chapter III, §A.5, Theorem 2], it follows from the definition of
a homomorphism of HT-gLT-type that there exist normal open subgroups
Hi,H, = Gg, and a finite dimensional continuous representation ¢y, : Hy —
GL,(Q,) of 'H, such that w(Hy) S Ha, ¢y, is locally algebraic, the set of Hodge-
Tate weights of ¢, is contained in {0,1}, and, moreover, ¢y, oo: Hj —
GL,(Q,) is not Hodge-Tate. Thus, it follows immediately from a similar argu-
ment to the argument applied in the proof of the implication (1) = (1") of
Lemma 1.4 that if we write ¢ for the finite dimensional continuous representation
of Ggq, obtained by inducing ¢, from H, to Gq,, then ¢ is potentially locally
algebraic [cf. also [4], Chapter III, §A.7, Theorem 3], the set of Hodge-Tate
weights of ¢ is contained in {0,1}, but ¢oa is not Hodge-Tate.
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COROLLARY 3.4. In the notation of Theorem 3.3, consider the following nine
conditions:

(1) o is HT-preserving [cf Definition 1.3, (i)].
is of HT-qLT-type [¢f Definition 1.3, (ii)].
is geometric [cf. [2], Definition 3.1, (iv)]
is of qLT-type [cf. |2], Definition 3.1, (iv)].
is of 01-qLT-type [cf [2], Definition 3.1, (iv)].
is of CHT-type [cf. [2], Definition 3.1, (iv)].
is of HT-type [cf. [2], Definition 3.1, (iv)].
s |an isomorphism and] RF-preserving [cf. (2], Definition 3.6, (iii)].
is [an isomorphism and] uniformly toral [c¢f. [2], Definition 3.6, (iii)].
Then we have equivalences and implications

@e@=>01=2eB)e@d=0)e(6)=0).

If, moreover, o is an isomorphism, then the above nine conditions are equivalent.

R R R KR R KR KR KR
~.

Proof. Let us recall from Remark 1.4.1 that we have implications
4)=05)=0)=(1)=(2) and (6)= (7).
The implication (2) = (3) follows from Theorem 3.3. The implication (3) = (4)
follows from [2], Theorem 3.5, (i). The equivalence (8) < (9) and the implica-
tion (8) = (3) follow from [2], Corollary 3.7. Finally, the implication (7) = (6)
(respectively, (3) = (8)) in the case where « is an isomorphism follows immediately
from [1], Proposition 1.1 (respectively, [2], Corollary 3.7). This completes the
proof of Corollary 3.4. O
COROLLARY 3.5. Let p be a prime number. For e {o,e}, let kg be a
p-adic local field and ko an algebraic closure of kp.  Write Gy &f Gal(kn/kp);
Emb(k, ks, k. /ks)
for the set of isomorphisms of fields ke = k. that determine embeddings ke — k.;
Emb(k,, k)
for the set of embeddings of fields k, — ko;
HomyY" (Gr., Gr.)
for the set of open continuous homomorphisms o : Gy, — Gy, that are HT-
preserving [cf. Definition 1.3, (i)], ie., for every finite dimensional continuous

representation ¢ : Gy, — GL,(Q,) of Gy,, if ¢ is Hodge-Tate, then ¢ o o is Hodge-
Tate. Then we have a commutative diagram of natural maps

Emb(ks /ke, ko/ks) ——— Hom®P"(Gy., Gr.)

J l

Emb(k,, ko) = Hom{r" (G, , Gr.)/Inn(Gy,)
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—where the wvertical arrows are surjective, and the horizontal arrows are
bijective.

Proof. The injectivity of the horizontal arrows follow immediately from the
injectivity portion of [1], Theorem 4.2 [cf. also the proof of [1], Theorem 4.2].
The surjectivity of the horizontal arrows follow immediately from Theorem 3.3,
together with the implication (1) = (2) of Lemma 1.4. This completes the proof
of Corollary 3.5. O
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