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WEIGHTED NORM INEQUALITIES FOR DERIVATIVES
AND THEIR APPLICATIONS

NHAN NGUYEN Du Vi, Duc DiINH THANH AND TuaN VU Kim

Abstract

In this paper we establish several weighted norm inequalities for derivatives of
products of composition and Laplace convolution of functions. Some generalizations
including Yamada’s and Opial-type inequalities are discussed. As applications we give
L,-weighted estimates for solutions of some integral equations.

1. Introduction

For an absolutely continuous complex valued function f on [0,b] with
f(0) =0 the following Opial’s inequality holds (see [1] and their references):

b b
(L) | 1rrias< 5[ 1P a
Opial-type inequalities involving integrals of functions and their derivatives are
essential and in fact indispensable in the theory of differential equations. In [12],
Yamada considered an elementary integral inequality which extended a norm
inequality of Saitoh [11] and yielded some well-known Opial-type inequalities (see
[1)).

Independently, some results of Saitoh in [11] were also generalized by the
authors [8], in which we presented some weighted norm inequalities for a non-
linear transform in different normed spaces.

Recently, the first two authors [4] considered some norm inequalities for
derivatives of products of functions which generalize Saitoh’s result [10] and
provide an effective tool to estimate Fourier sine and Fourier cosine transforms.

In this paper, we will obtain weighted norm inequalities for derivatives of
products of composition of functions which generalize some results from ([4], [8]),
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Yamada [12] and [1]. Moreover, we will also establish a norm inequality for
derivatives of Laplace convolution and its applications to obtain L,-weighted
estimates for solutions of some integral equations.

Let p be a positive and continuous function on [a,b]. Let 1 < p,g < oo be
conjugate exponents 1/p+1/g=1. By L,(p) we denote the Lebesgue space
of complex valued measurable functions f on [a,b] such that |f]|, ) < oo,
where

(1.2) 171

Lp) = (Jb /() p(x) dx>l/p.

Let o/%a,b] be the space of functions f which are complex valued and
absolutely continuous on [a,b]. For a positive integer n we denote by /%" [a, b]
the space of complex valued functions f(x) which have continuous derivatives up

d
to order n — 1 on [a,b] such that D"~'f e .</%[a,b], where D =

For a weight p and n € N, we denote by W"(p) the weighted space consisting
of all functions f €./%"[a,b] such that D*f(a) =0 for all derivatives of order
0<k<n-—1and D"f e L,(p). This space is characterized by the following [5,
Lemma 1.1].

Lemma 1.1. - The space W' (p) consists of those and only those functions f(x)
which can be represented in the form

Y(x—p)"!

(1.3) f(x) = J Wﬁﬁ(f) dt,
where ¢ € L,(p).

It follows from (1.3) that

(1.4) p(x) = D’f(x), x€la,b].
Hence, if we define on W)'(p) a norm

b

1/p
(15) 1l = 10", ) = (j D" (x)|7p(x) dx) ,

a

then, (W, (p). lIllw»(,)) is a Banach space.

2. Norm inequalities for products of composition of functions

In this section, we combine the methods of [4] with the ideas of Yamada
[12] to yield a norm inequality for derivatives of products of compositions of
functions which extends and generalizes some recent results of Nhan, Duc and
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Tuan [8], Nhan and Duc [4], Yamada [12], Saitoh [11, 10], and some earlier
results on Opial-type inequalities [1].

THEOREM 2.1.  Let m and n be two positive integers. Let G;, 1 < j <m, be
of class C" on an interval (—R, R), 0 < R < o0, satisfying the following conditions

(i) D*G;(0)=0 for all 0 <k <n-—1,

(i) |D"Gi(x)| < D"G;(|x]) for all xe (—R,R), and

(i) if x<y'PzV4 0<x y,z<R, then 0< D"Gi(x)<[D"Gi(y)]'"-

[D"G; (=),

Then, for fi € W) (tup;) such that fi([a,b]) = (=R, R) and ||f]l} () < R, where
Py, 1 < j <m, are some weights and

b _ n—1
() —%, x e la,b],
we have [[L, Gjo fi e W”(rny), and moreover,
m
1) < TG )
wp) =
where

1-p
D”{HG(L xn__’l) pl/( >(t)dt>H . xelab).

If, in addition, we assume that D"G;, 1 < j < m, are strictly increasing on (0, R),
then the equality in (2.1) holds only if

min(x,y -l
) ﬁ(X>EjG;<C_;J ”)%ﬂj‘““’”(z)m), celab

where C; and E; are complex constants, and y is an arbitrary, but fixed real
number on [a,b].

The proof of Theorem 2.1 is derived from Theorems 2.4 and 2.7.

COROLLARY 2.2. Let r,s > 0 be such that 1/p+1/r=1/s. We assume that
the hypotheses in Theorem 2.1 are valid. Then, for a weight ¢ such that

K= UbTn(X)[y(X)]_"/”[90(36)]"/ ’ dX]l/’ < o0,

a

m

1/p
H v/ )1 :
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Proof.  Applying Holder’s inequality with conjugate exponents p/s and r/s
we have

b
J To(x
b
:J Tn s/p
b
<K’ J Tu(x)| D"
a

which is, by using (2.1),

)D”<ﬁ@0ﬁ>(x) olx
=l
(H

J=1

(ﬁcf> e

Jj=1

Q
O
=
v

<K*

o ([ wwrosrne dx)rp.

This concludes the proof of the corollary. O

Remark 2.3. From Corollary 2.2 we can derive many known results.
These include the results of Opial (1.1) (for n=m=1, p=r=2, s=1, p=
p; =1 and Gi(x) = x> on [0,5]), Hua [1, Theorem 2.3.1] (for n=m=1, s =1,
p=p, =1 and G(x) = |x]” on [a,b]), Yang [1 Theorem 2.5.6] (for n=m =1,
¢ = p, be increasing on [a,b] and G)(x) = |x|?/* on [a,b]), Beesack [1, Theorem
2.10.1] (for n=m =1 and G;(x) = |x|p/5 on [a,b]), Yamada [12, Theorem 4.1]
(for n=m=1), Lin and Yang [1, Theorem 2.15.1] (by letting n =1, m =2,
¢ = p, = p, be decreasing on [a,b], Gi(x) = Gy(x) = |x|”* on [a,b] and by using
the Cauchy-Schwarz inequality).

THEOREM 2.4.  Let m and n be two positive integers, and p;, 1 < j < m, be
some weights on [a,b]. Put

moex (-l 1—p
D" (H L ﬁp}/(lw(l) dt>‘| , xelab).

J=1

p(x) =

Then, for fje le’(rnpj), 1 <j<m, we have ]_[}":Ifj € Wp”(r,,p), and more-
over,

m

117

J=1

(2.4)

m
< H ||ﬁ||W;(w,-)'
j=1

VV[,” (Tnp)
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Unless m =1, the equality in (2.4) holds if, and only if

min(x,y) (X _ l) n—1

(2.5) fi(x) = ch ijl/(l_p)(t) di, xela,b,

where C; are complex constants and y is an arbitrary, but fixed number on
[a, b].

Proof. First, we need to prove that p is a positive and continuous weight on
[a,b]. Since p; are positive and continuous on [a,b], and

1/(1—17)(t)

J

= Jx (X _ l)nilinijl/(lfp)
o (m=1—n)t"/

if nj=n

(ydi if 0<m<n—1

X n—1

. ! -1 _

we derive that D" J %p}m p)(l) dt|, for 0<m <n, 1<j<m, are
a - .

positive and continuous on [a,b]. By the fact that

m ex _ pan-l
D" (H J ()(Cn t)1)rpjl/ ") dt)

j=1

" Vo J (=0"" iy
= Dn/ w9 Ll P ; dt ’
”H"Z;m:n <n1>'--7nm>jl._[1 < u (I’l—])' Pj ()

n n! . . . . . .
where ( ) =———— Is the multinomial coefficient, we imply p is
Ny eey iy nys e My

positive and continuous on [a, b].
o tiletxt, for fj e Wp”(r,,pj), 0<n<n-—1,1<j<m, it follows from Lemma
.1 tha

Y(x— )"t

D"fi(x) = . mani(f) dt, xe€la,bl,
and therefore,
X _p\n—l-n
(2.6) |D"fi(x)] < | %’@)HD%(Z” dt, xe€la,b].

By applying Holder’s inequality to (2.6), we get
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¢ 1/q
ni g A(X—l)n_l_n/ Uil
(2.7) |D ff]<x)| < (Ja mpj/( P)(l) dt
—l=n 1/p
x ()C 7 t)n 1—n; " )
g <J 1=y PO )
for all x € [a, b].
Now, from the generalized Leibniz rule for m functions fi,...,f,, we
have
n L n m .
(28) D (Hﬁ) = > (n ; )Hszj
J=1 ny+-+ny=n Iy+-sMm o
m n m
,ZfoHf,ﬁ 3 ( >HDn,ﬁ
k+#j l’l(;+~“+n,,,:ln iy, ... 0y =1
<nj<n—

Using (2.7) in (2.8) to give

m m — 1/q
D"<H.ﬁ<x)> < > IDilx |H<J p,i/“ ) dz)
J=1 j=1

k#j

x n—1 1/p

T(x—t "
([t emora dt)

m x l)n—l—nj L) 1/q
~ 7 P
+n|+~;m—n( ni, )H(Ju f’l—l—n)|pl (t) dl)
0<nij<n-—1

Y(x -t 1/p
- (J %_m)!w”ﬁ(t)l”pj(r) dt) ,

that, by Holder’s inequality, yields

k#j-4

(- Tx=0"" s
2”]‘/( m(x)HJ kam P (1) de
=
1/q

n m x(x_t)n—l nj /(1)
+ Z (nl,...,nn)HJ (n—l—nj)!pj (1) at

i+ =n
0<n;<n—1
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m

X(x — n—1
> D00 T | 5= 0o )
=

iz a 1)!

n
2
TR — Niyee ey iy

0<n;<n—1

- (S ([ St

k#j7d
1/q
n a x(x—t)rkl 1/(1-p)
+ ( > D" Ji/)- (1) dt
nl+';m:n Aly..., 0y 11:[1 (0 (l’l—l)' J
0<nj<n—1

m X n—1 Y(x — nl

J=1

1/p
p3 ( ; )ﬁD"f JXWID”J‘U)IPP (1) dr
T e — Hl,...,0y i a (n_l)l JJ j )
OSn/gn—l

which is, in view of the generalized Leibniz rule,

moex (o n—1 g
D(HJ ((n_’)l)!pjl/(l—p)(l) dt)]

Jj=1

. m )”(X—Z)YHI o ) 1/p
<o (11| S P o a

j=17a

Therefore,
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(1)

for all x € [a,b]. Taking integration with respect to x over [a,b] to both sides of
(2.9) and using the formula for integration by parts we obtain

el

and so

(2.9)

moeX (o n—1
(s <>3mwv<Hjﬂn”)|%OP<>Q,

jerda

p

—ijv w0 0) dr,

which yields (2.4).

Finally, we determine under what conditions equality can hold in (2.4). The
case of m =1 is trivial. Let m > 2. A straightforward calculation shows that
equality holds in (2.4) if f; is given by (2.5). Conversely, equality in (2.4) implies
that equalities hold in (2.6) and (2.7) for each xe€[a,b], 0 <n; <n—1, and
1 <j<m. Suppose D*f; #0 for all 0 <k <n—1and 1 < j <m (otherwise, it
is suffices to take C; =0). Putting

y=esssup{x € [a,b) : D"f;(x) #0 for all 1 <j<m},

we have y e (a,b]. If equality holds in (2.4), then y must be a cluster point of
the set {xe[a,b) : D"f;(x) #0 for all 1 < j<m}. Hence, by continuity

n—1-n;
D = | 2=

ﬁID"f( )| dt

and

y _an—1-n 1/q
|D"/];(y)| = (L %p}/um(,) dt)

y _ pn—l-n 1p
g (L ((IJ;—?—HJ)' |an/'(t)|ppj(f) dl)

for all 0 <m<n—1 and 1 <j<m. Then, from the equality condition of
Hoélder’s inequality, these above equalities happen only if for 0 <n; <n—1,

1<j<m,
y B o y n—1—n;
@10 [ G d) = [ G a
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and

1/(1—
(2.11) 4D py(1) = Bip/" (1) ae. tea ),

where A4; and B; are complex constants. By continuity of p; on [a,b] and the
fact that D"f;(x) =0 a.e. x € [y, b] (by definition of y), the conditions (2.10) and
(2.11) imply that there exist some complex constants C; #0, 1 < j <m, such
that

D"fi(x) = Cip}/ " P (x)x(x;[a, ¥])  ae. x € a,bl,

which, by Lemma 1.1, establishes the formula (2.5). O

Remark 2.5. Theorem 2.4 generalizes a recent result of the first two authors
[4] and an earlier result of Saitoh [10].

Now, we consider the following transform

fr=Gof

for a suitable function f, and a function G of class C" on the interval (—R, R) o
f([a,b]) satisfying the conditions (i), (ii), and (iii) as in Theorem 2.1.

Remark 2.6. Since D"G is continuous, from (iii) we notice that the
function D"G is positive and increasing on the interval (0, R). Moreover, for
0<k<n,

(2.12) ID¥G(x)| < D*G(|x[), xe(-R,R),
and if x < y'/7z'4, 0 < x,y,z < R, then
(2.13) 0 < D*G(x) < [D*G(»))"P[D*G(2))".

Indeed, we only need to prove (2.12) and (2.13) in the case of k=n—1.
Since D"G is positive and increasing on the interval (0, R) and

D" (x) = J D"G(1) dt,
0
we have

D716 = < | Do =060, ve-rR)

JV D"G(r) dt
0

Assume that x < y'/7z1/4, 0 < x,y,z < R. Then,

X yl/l’zl/t/
D" 'G(x) :J D"G(t) dt < J D"G(t) dt.
0 0
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yl/pzl/q

s, we have

ylipz\/a 1p 1/q px 1/p,1/q
J D"G(1) dt:LJ D"G(”s) ds,
0 X Jo X

By letting ¢ =

which is, from (iii),

1/p 1/q (x 1/p 1/q
< y 'z J {D”G(ZQ] [D”G(Esﬂ ds,
X 0 X X

that is, by Holder’s inequality,

1/p1/q [ ¢x Uprpex 1/q
< y 'z U D"G(Zs) ds] U D"G<£s> ds}
X 0 X 0 X

concluding that

ylirzl/e y I/prez 1/q
J D"G(¢) dt < U D"G(1) dz} U D"G(1) ds} ,
0 0 0

which gives
D"'G(x) < [D"'G(»))'"[D" G(2)) V1.

The following theorem generalizes a recent result of Yamada [12, Theorem
2.1].

THEOREM 2.7. Let G be of class C" on an interval (—R,R) > f([a,b]), 0 <
R < o0, satisfying the conditions (i), (i), and (iii). For a weight p we define a new

weight
x(x_ t)nfl 17‘”
Dn{G<J Wl)l/(lip)(t) dt) }] , X € [a, b]

Then, for f e W, (tup) satisfying 7 e w(ep) < R we have
p \In

(2.14) 1Go f1I} (t,0) < G115 [)”(‘[”p))'

If, in addition, we assume that D"G is strictly increasing on (0,R), then the
equality holds in (2.14) only if

w(x) =

(2.15) )= ijm,y)%pw%) d, xelab)

where C is a complex constant, and y € [a, b].
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Proof. 1t is easy to see that w is really a weight, i.e. positive and con-
tinuous, on [a,b]. Now, for 0 <k <n—1, we have

X _ pan-l-k
16 D)= | D) di

X _ p\n-l-k
o (n=1-k) = J e D ()

« (m=1—=k)!

that, by Holder’s inequality, yields

r (x— 1)1k

1/p
(2.17) DA ()] < [ T PO dr]

1 1/q
x(xit)n o 1/(1-p)
U R

From (2.12), we see that

(D*G)(f(x))| < (D*G)(If (x))),

which is, in view of (2.17),

X (v pn—l Urr oo yn-t 1/q
S(DkG)< J ()(Cn_l)l)l |an(l)|pp(l) dl‘| lj ()(Cn_l)l)l pl/(l—p) dl:| >’

and so, by using (2.13), we obtain

k k Yx—n"! 1/(1-p) .
@18) (D)) = (046 | L p o d

Xy — n—1 1/p
x {(ch;) (J ﬁww)w(z) dr) }

for all 0 <k <n. Notice that

(2.19) D"(Go f) =[(D"G) o fI(Df)"] + -+ + [(DG) o f][D"f]

is the sum of positive coefficients. So, using (2.17) and (2.18) in (2.19) and then
applying Holder’s inequality, we get

x n— 14
(5]

X (X _ t)n—l 1/p
D"{G(L S0t dz) H ,

[D"(Go f)(x)| <

X
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which gives

X (X _ Z‘)n—l

(220) 7, (x)|D"(G o £)(x) o(x) < fn(x)D”{G<L S Pt dt> }

for all x € [a,b]. Taking integration with respect to x over [a,b] to both sides of
(2.20) and using the formula for integration by parts and the monotonicity of
D"G we obtain (2.14).

If, D"G is strictly increasing on (0,R) and so are D¥G for 0 <k <n— 1,
then the equality holds in (2.14) only if equality hold in (2.16) and (2.17).
Hence, by putting

y =esssup{x € [a,b) : D"f(x) # 0},

and by an argument analogous to that used for the proof of Theorem 2.4 we see
that f has the form (2.15) as required. O

Remark 2.8. In Theorem 2.7, by taking

Xy — n—1 o
6t = | [((_’)1),; |ak|t’<] d, xe(-RR),

where > 7 axx¥ is an absolutely convergent power series with radius of
convergence R, we derive previous result of [8] and an earlier result of Saitoh
[11].

3. A convolution norm inequality

In this section, let us consider Q = (0,b) and the Laplace convolution
product [[°; *f; defined by

1 2 X
lH *ﬁ} (x) = fi(x), [H *fj] (x) = [fi* fal(x) = JO N fa(x—1)di, xeQ,

Jj=1 j=1

and for each m > 2,

m m—1
H*f] = [H *ﬁ] * fn.
J=1

J=1

The main result in this section is the following.

THEOREM 3.1. Let n;, 1 < j < m, be positive integers, n =ny + - - -+ n,,, and
let p;, 1 < j <m, be some weights on Q. Define wy = p,, and set

1/(1- 1/(1=p)y1-
a)j(x):[a)jﬁ p)*pj/( Mr(x), xeQ,
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for j=2. Then, for f;e W,,"j(pj), 1 <j<m, we have T[]}, xf;j € W)(wn), and
moreover, '

m

[1+5

J=1

(3.1)

m
= H Hﬁ” W, (p;)"
wpon) =1 ’

Unless m =1, the equality holds in (3.1) if, and only if,
min(x,y) (X _ Z)nj_l
_ at ,1/(1-p)
(32) ];(x) = q o W(fypj (l) dl7 X € Q7
where o € R is a constant and y is an arbitrary point on Q, which is independent

of J.

Proof. Since D'f;(0) =0 for i=0,1,...,n;,—1 and 1 < j <m, we have

D"[H*fj](m—o, i=0,1,....,n—1,

Jj=1
and

m

H *D"f;

J=1

(3.3) D" (x).

11 f] () =

J=1
We prove (3.1) by induction. With H}:l «D"f; = D™f, inequality (3.1) holds
for m =1, so we suppose that k > 2, [, |D"f;j(x)|"p;(x) dx < o0, j=1,2,... Kk,
and that inequality (3.1) has been verified for m=k —1. Set Hy_1(x) =
15! «D"£)(x). Then [q[Hy—1(x)]ax—1(x) dx < oo, and

X p
(34) JO Hk,1(1>anﬁc(x - [) dt
[ o (D™ F (x — 0pV P (x — ! ’
- J Hicr (D0 (D" i = /"5 = ) ey

< UO HAO 010" il = 0y =) |

by Holder’s inequality. Fubini’s theorem shows that the last integral is finite

(3.5) JQ JO \Hy 1 (0)Poone 1 (0| D" fi(x — )| py(x — 1) direlx
b
= LJ [Hy 1 (1)) or_1 ()| D™ fre(x — 1) " pie(x — 1) dxdt

sj Hir (1) (1) dzj D" fi ()7 e () dx < .
Q Q
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Thus, (3.4) shows that H;_; * D"f exists. Combining (3.3), (3.4), and (3.5)
yields

|, ﬁﬂm

which gives inequality (3.1) for m = k. This completes the proof by induction
of (3.1).

Next, we determine under what conditions equality holds in (3.1). Equality
n (3.1) implies that equality holds in (3.4) for each positive integer k. This
happens only if equality holds in Holder’s inequality, i.e. only if for a.e. x >0
there is a complex valued function g; such that for almost x € Q

Hy_1(t) D™fi(x—1)
/(1= /(1=
wk/—<1 p>(f) Pk/< p)(X—f)

The condition (3.6) implies that (see [3] or [2, Lemmal]) there exists a constant
o€ C such that

k—1

P
D" o (x) dx <

jwmmwwijmw%wm
Q Q

J=1

(3.6) =gr(x) a.e. 1€(0,x].

H
(3.7) #lp()) = Ep_1e” ae. t1e(0,x],
.y (1)
and
D™
(3.8) 1/(%1;5[) = Cre™ ae. te(0,x],
Pr (1)

where E;_; and Cj are complex constants. Then, in the same way as in the
proof of the equality statement in Theorem 2.4, we obtain

min(x,y) X —t ne—1
(3.9) fk(x>:ckjo ﬁ )00 () a1 xeQ,

where
y =esssup{x € (0,b) : D™ fi(x) # 0}.

The necessity of (3.2) may now be proved by induction. Taking k =2 in (3.6)
shows, in view of (3.7), (3.8) and (3.10), that (3.2) holds for j =1,2. To com-
plete the induction, suppose (3.2) has been verified for j=1,...,k —1. Then,

k-1

H «*D"if; | (

=1
and hence (3.6), (3.8) and (3.10) show that
3.10 k(x)=C —_—
Thus (3.2) holds for j = k. O

Hk,l(l) =

min(x, y) (x _ l) ni—1
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Remark 3.2. Theorem 3.1 also holds for n; = 0 for one or more integers j
in the sense that

an/ZO(Pj) = Ly(p))-
See [2] and [7] for more details.

4. Applications to integral equations

We now apply Theorem 3.1 to obtain L,-weighted estimates for solutions of
some integral equations.

Example 4.1 (The Riemann-Liouville fractional derivative [5]). Let o > 0 be
such that f=1— p(a—[o]) >0, and f e W} (p), n=[o] + 1, where [o] denotes
the integral part of «. Then, the Riemann-Liouville fractional derivative

@) DLW = =5 D" (j L dt)
satisfies the following estimate

‘ b/f/pﬂ—l/p
(4.2) 197 1,00 < Fm =g 1 I

where
X I—-p
w(x) = U P12 (1) dt} , xeQ.
0
Example 4.2 (Volterra integral equations of the first kind [9]). Let us

consider the integral transform

(4.3) f(x) = G)"Dm <J0 I(Av/x —t)g(1) dt)

which yields the solution f(x) of the integral equation
(4.4) J (x = 0" LOVx = 0 f (1) dt = g(x), (n=0,1,2,...).
0

Here, J,(z) is the Bessel function of the first kind and 7,(z) is the modified Bessel
function of the first kind.
By the inequality of Hardy, Littlewood and Pdlya (see [6, p. 106]), we have

b /p o 2k kp+1 \1/P
» 4/2] b*
(L [l (Av/x)] dX> T kT (k+1) \kp + 1

A

< b'PIy(|A|Vb).
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Therefore, the formal solution f satisfies the following inequality

n
b I (VD) gl ez .

2
(45) iy <5

provided g e W,;**(p) and

w(x) = U:pl/(lp>(t) dt}lp, xeQ.
Similarly, the solution /(x) of the integral equation
(4.6) J:(x — "2, x = Dh(1) dt = u(x)
is given by
(4.7) h(x) = G)nmﬂ (JO Jo(/x — yu(?) dt>,

which also satisfies the following estimate

2}1
(@5) iy < ] 2P B

provided u e W,;**(p) and

X I—p
J pM0=r) (1) dt} , xeQ.
0

w(x) = [

Example 4.3 (A Volterra integral equation of the second kind [9]).
consider the Volterra convolution integral equation of the second kind

X

(49) fuwy[Ku—nﬂﬂngux

0

where K and g are given functions.
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Let us

Let & = h(x) be the solution of the simpler auxiliary equation with g = 1:

(4.10) h(x) + JXK(X — Oh(e) di = 1.
0

Then, the solution of the original integral equation with arbitrary g = g(x) is
expressed via the solution of the auxiliary equation (4.10), which can be derived

by the use of Laplace transform, as

0

(4.11) f(x) = D(th(x ~ )g(1) dz).
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For he L,(p) and g e Wp1 (y), we have f e L,(w) and

(4.12) 1y < Il 61
where

x 1-p
m@:UfWHWWNWu—nm . xeQ
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