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SOME SECTIONS ON RATIONAL ELLIPTIC SURFACES AND
CERTAIN SPECIAL CONIC-QUARTIC CONFIGURATIONS

Hiro-0 TOKUNAGA

Introduction

In this article, we continue to study quadratic residue conics to an irreducible
quartic, which was our main subject in [17]. We first recall some of results in
[17]. Note that all varieties throughout this article are defined over the field of
complex numbers, C.

Let C be a smooth conic in P? and let f¢ : Z¢ — P? be a double cover with
branch locus A;. = C. We denote the covering transformation of f¢ by ay,.
Let D be an irreducible curve on P2, which is different from C. The pull back
f&D s either irreducible or reducible with two irreducible components D and
D~ such that a;‘-CDJr = D~. Following to [17], we say that C is a “quadratic
residue conic mod D if f/D is reducible. In [17], we introduce notation (C/D)
such that

+ (C/D) =1 if C is a quadratic residue conic mod D, and

+ (C/D)=—1if C is not a quadratic residue conic mod D

We first remark the following: Let I,(C, D) denotes the intersection mul-
tiplicity at x e CN D. If there exists a point x € CN D such that I,(C, D) is odd,
then (C/D) = —1. In fact, if such a point x exists, then f induces a double
cover on the normalization of D which has the non empty branch set.

Hence if (C/D) =1, then I,(C,D) is always even. In the following, we
always assume that

(¥) For Yxe CND, I.(C,D) is even and D is smooth at x.

Under the condition (), as we see in the Introduction of [17], one can easily
determine (C/D) if deg D < 3, and the first interesting case is deg D =4. In
fact, in [17], we obtain the following

THEOREM 0.1. Let C be a smooth conic, let Q be an irreducible quartic
satisfying (x), and Z¢ denotes the set of types of singularities of Q. Here we use
the notation in [3] in order to describe the types of singularity.

Then we have the following:

* If Bg # {24:},{43}, then (C/Q) is determined by Eo.

* There exist smooth conics Cy, Cy and irreducible quartics Q1, Qy such that
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(i) G and Q; (i=1,2) satisfy (x),
(11) : = ‘—'Qz = {2A1} {A3} and
(iii) (Cl/Ql) =1, (G/0r) =

Moreover, in [17], we also show that the topological fundamental group
71 (P?\(Cy + Q1),*) is not isomorphic to 7;(P?\(Cy + 01), %).
We here introduce a terminology for later use:

DEerFINITION 0.1. (i) Let C and Q be a smooth conic and an irreducible
quartic as in Theorem 0.1. We call such C + Q a conic-quartic configuration (a
CQ-configuration for short).

(i) A CQ-configuration such that Zg = {24} (resp. = {43}) is said to be
type 1 (resp. type II).

n [17], however, we do not care about how many points are in CN Q. In
this paper, we consider this problem.

Put CNQ={xy,...,x,} and we define a r-ple of natural numbers I(C, Q)
to be (1,(C,0),...,I,(C,0)). We call I(C,Q) the intersection multiplicity
sequence between C and Q. Without loss of generality, we may assume that
I, (C,0)>--->1,(C,Q). There are five possible cases for I(C,Q): (2,2,2,2),
(4,2,2),(4,4),(6,2),(8).

Now we state our main result in this article:

THEOREM 0.2. Let (ey,...,e.) be any r-ple of natural numbers such that
er>--->¢, ¢ (i=1,...,r): even and ) ,e;=8. There exist pairs of CQ-
configurations (C + Q,C' + Q') of types I and II satisfying the following properties:

I(C,Q)=1(C", Q) = (e1,...,e)

- (C/O) =1 and (C'/Q") = 1.

Note that the pairs (C + Q, C’' + Q') are all Zariski pairs (see [1] for Zariski
pairs). All of Zariski pairs in Theorem 0.2 can be found in [12]. However, our
method to see that they are Zariski pairs is totally different from that in [12],
which is our justification.

We now give a brief explanation of our strategy to obtain the CQ-
configurations in Theorem 0.2, which is main ingredient of this paper.

Let B, and B, be plane curves in P2, Let X be a rational surface such that
there exists a birational map @ : P? -——» X so that the proper tansforms B; and B,
of By and B, resepectively, are linearly equivalent. Let Ap 5, be a pencil on X
generated by B; and B;. Let v: W — X be the resolution of the indeterminancy
and we denote the induced fibration by ¢p . p : W — P!. Note that

(i) the proper transforms v~'B; and v~'B, are contained in some fibers of

¢, +p,» and

(i) the way how B, and B, intesect reflects the configuration of singular

fibers of g p .
Conversely, suppose that a fibered rational surface ¢ : W — P! and a birational
morphism v: W — X are given in such a way that some part of fibers F; and F;
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give rise to By and B, as above. By considering the proper transforms of B;
and B, by @', we obtain B) + Bs.

In this article, we apply the above idea to the case when B; = C and
By = Q, where C+ Q is a CQ-configuration of either type I or II.

As we see in §3, T =P' x P! in the case when Ep = {24;}, while T = the
Hirzebruch surface of degree 2 in the case when Zp = {43}. For both cases,
we consider a pencil of curves of genus 1. Hence p¢ p: W — P! is a rational
elliptic surfaces.

The group of sections, MW(X), of ¢: X — P! is called the Mordell-Weil
group. MW(X) has been studied by many mathematicians mainly from the
viewpoint of arithmetic interest. In this article, however, we make use of the
group structure of MW(X) in order to find sections which play essential roles
to construct prescribed CQ configurations. This is a feature of this article. As
for rational elliptic surfaces, many detail results about the configurations of
singular fibers, the groups of sections called the Mordell-Weil groups are well-
known (see [9], [10], [11] and [14], for example). These results make the author
possible to consider the above application of MW (X).

We hope our method to construct curves with prescribed conditions can be
considered as another new application of theory of elliptic surfaces.

This article consists of 6 sections. In §1, we summarize some basic facts on
elliptic surfaces. We show that the existence of CQ-configurations of types I and
IT is reduced to that of pencils of genus 1 on P! x P! and P? in §2. In §3, we
consider some rational elliptic surfaces and certain special sections, which play
important roles in constructing CQ-configurations with prescribed 7(C, Q). We
prove Theorem 0.2 in §§4 and 5. We construct Zariski triples given in [12] via
our method in §6.

1. Preliminaries from the theory of elliptic surfaces

As for details on the results in this section, we refer to [6], [7], [8], [9] and
[13].

1.1. General facts
Throughout this article, an elliptic surface always means a smooth projective
surface X with a fibration ¢ : X — C over a smooth projective curve, C, such
that (i) ¢~'(v) is a smooth curve of genus 1 for ve C except no empty finite
points Sing(p) = C, (ii) there exists a section O : C — X (we identify O with its
image in X), and (iii) there is no exceptional curve of the first kind in any fiber.
We call F, = ¢ !(v)(veSing(p)) a singular fiber over v. We denote the
irreducible decomposition of F, by
my—1
Fv = ®v‘0 + Z av,i®v,ia
i1
where m, is the number of irreducible components of F, and ©, ¢ is the irreduc-
ible component with ®, 00 = 1. We call ©, the identity component. We also
define a subset Red(p) of Sing(¢) to be Red(¢p) := {v € Sing(¢p) | F, is reducible}.
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Let MW(X) be the set of sections of ¢: X — C. By our assumption,
MW (X) # 0. On a smooth fiber F of ¢, by regarding F N O as the zero element,
we can consider the abelian group structure on F. Hence for s1,5 € MW(X),
one can define s;+s, on C\Sing(¢). By [6, Theorem 9.1], s; +s, can be
extended over C, and we can consider MW(X) as an abelian group. On the
other hand, we can regard the generic fiber X, of X as a curve of genus 1 over
C(C), the rational function field of C. The restriction of O to X, gives rise to
a C(C)-rational point of X,,, and one can regard X, as an elliptic curve over C(C),
O being the zero element. By considering the restriction to the generic fiber for
each sections, MW(X) can be identified with the set of C(C)-rational points of
X,. For se MW(X), s is said to be integral if sO =0. It is known that any
torsion element in MW (X)) is integral (¢f [8]). In the following, we call MW(X)
the Mordell-Weil group of X. As for later use, we see how s; + s on C\Sing(¢p)
is extended briefly. For details, see [6], §9. For a singular fiber F, = ", a, 0, ;,
veSing(p), we put F¥ =), _, 07, where O, :=0,,\(singular points of
(F)),)- For se MW(X), sF,=1. Hence sNF* #(. Note that we have
the following table for F, where we label the irreducible components of F,
as below:

Type of F, F?
b—T
L Ui:() o7
I; (b: even) | OF, UOT, UG UOT,
I; (b: odd) | ®FUBFUBYUBY

IL, 11* oF
II1, 111" G)a# U @f
IV, 1v* eFuerues
Type I Type I; (b:even) Type I} (b: odd)
O3
Oy
y A O3
6
©o O10
N O
Oy
©00
—_IT— O
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Type 11 Type I11
O
CH)
o
Type IIIT* Type IV Type IV*

Under these labeling, we have the following isomorphisms of abelian groups and
we define a finite abelian group G+ as follows (see [6] for details):

Type of F, Group structure Gy
I, Ff ~C* xZ/bZL Z7/bZ
tp — (tx, k), t;: a local coordinate of ®,f ~C*
I} (b: even) | F¥ =~ C x (2)22)%* (2.)22.)%*
tr — (tu, k, 1), tiy: a local coordinate of ®Z§ ~C
I, (b: odd) F#~CxZ/AZ 7/4Z
tx — (tx, k), t;: a local coordinate of G),f ~C*
I, 11" F*=~C {0}
to — Iy, lo: a local coordinate of ®f ~C
111, II1* Ff~CxZ/2Z 7/2Z
tx — (tk, k), t;: a local coordinate of @,’f ~C
IV, IV* F*~CxZ/3Z 7/3Z
te — (tr, k), t: a local coordinate of ®F =~
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Put Gging(y) = @veSing((p) Gps. Now we define a homomorphism y : MW (X)

— Gsing(y) to be the composition of the restriction morphism MW(X) —
veSing(p) F? and the natural morphism @L‘ESing(q)) F# — Gsing(y)- Note that
y(s) describes at which irreducible component s meets on F,.

We next summarize some results on the theory of the Mordell-Weil lattices
studied by Shioda in [13]. In [13], a Q-valued bilinear form <, ) called the
height pairing on MW(X) with the following property is defined:

+ 5,5 >0 for Vse MW(X) and the equality holds if and only if s is an

element of finite order in MW(X).

« More explicitly, <si,$) (s1,52 € MW(X)) is given as follows:

51,820 = x(Ox) + 510 + 5,0 — 5155 — Z Corr,(s1,52),
veRed(p)

where Corr,(s;,s2) is given by
50, 1
COI’I‘U(Sl,Sz) = (S1®L‘71, .. .Sl®vﬁmv_1)(—Av)7l .
52®v.m,.71
Here O, 1,...,0, ,,—1 are irreduicble components of F, (v € Red(p)) and
A, is the intersection matrix (@, 0, ;) As for explicit values of

Corr,(s1,s2), we refer to [13, (8.16)].
The following lemma is also immediate from the explicit formula:

1<i,j<m,—1°

LemMma 1.1. If y(s) = 0, then Corr,(s,s) = 0 for Vv € Sing(p). In particular,
if v(s) =0, then <{s,sy > 2y(Ox) unless s = O.

COROLLARY 1.1. Let s be a torsion of order n in MW(X). Then the order
of y(s) is n.

Proof. Suppse that my(s) = y(ms) =0 for some m < n. As {ms,ms)y =0,
we have ms = O by Lemma 1.1, but this contradicts to our assumption. []

1.2. Rational elliptic surface

An elliptic surface ¢: X — C is said to be rational if X is a rational
surface. Note that C = P! if ¢ : X — C is a rational elliptic surface. Also it is
well-known that X is obtained as the resolution of the base points of a pencil of
cubic curves in P2, i.e., X is obtained from P? by 9-time blowing-ups. As for
more properties, we refer to [9]. Let us start with the following lemma:

LemMma 1.2. Let ¢ : X — P! be a rational elliptic surface. If C is a smooth
irreducible curve on X with C* < 0, then either C*> = —1 and C is a section of ¢ or
C? = -2 and C is an irreducible component of some reducible singular fiber.

Proof. By the canonical bundle formula for an elliptic surface, Ky ~ —F,
F being a fiber of p. Hence KyC <0. If KxC=0, i.e., FC =0, then C is
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an irreducible component of some reducible singular fiber. If KyC <0, as
C?+ KyC > -2, we have C? = —1 and KyC = —1, i.e., FC=1. Hence C is a
section of ¢. O

CorOLLARY 1.2. Let 9: X — P! be a rational elliptic surface and let
v:X — X be a composition of 8-times blowing downs. Then X is either
P! x P!, the Hirzebruch surface of degree 2, %,, or one point blowing up P2, X;.

Proof. Since the Picard number of X is 2, X is either minimal or X;. By

Lemma 1.2, we infer that X is either P! x P! or ¥, if X is not minimal.

O

For a rational elliptic surface ¢ : X — P! and s;,5, e MW(X), we have

(51,8 =14+50+ 50 — 515 — Z COI‘I'U(Sl,SQ).
veRed(p)

In particular,

(51,81 =2+ 250 — Z Corr,(sy,51).
veRed(p)

By these formulas, we easily obtain the following corollaries:

COROLLARY 1.3. If' >, ped(y) COITo(s,8) <2, then every se MW(X) with
{s,8) < 2 is integral.

COROLLARY 1.4. Let sy and sy be integral sections. If {s1,s2) > 0, s150 = 0.
Proof. As Corr,(s1,s2) >0 for any F,, our statement is immediate. O

The following theorem is fundamental for MW(X) of a rational elliptic
surface.

THeorem 1.1 [13, Theorem 10.8]. The Mordell-Weil group of a rational
elliptic surface is generated by integral sections.

2. Rational elliptic surfaces and CQ-configurations of type I and II
In this section, we show that pencils of curves of genus 1 on P! x P! and the

Hirzebruch surface of degree 2, %,, canonically arise from CQ-configurations of
types I and II, respectively. Let us start with type L
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2.1. CQ-configurations of type I

We denote two nodes of Q by Py and P», and let L be the line through P,
and P,. Let g, : P> — P? be a composition of blowing-ups at P; and P,. We
denote the proper transform of L, the exceptional curves arising from P; and P,

by L, E; and E,, respectively. Let u, : P2 — P! x P! be the blowing down of
L. We denote the image of E; and E, by /; and b, respectively. We also
denote the linear equivalence class of divisors aly + bl, by (a,b). Under the
birational map @ := p, oy’ : P2 — P! x P!, we easily see the followings:

+ C is mapped to an irrreducible curve C with one node and C~(2,2).

+ Q is mapped to a smooth irreducible curve Q and Q ~ (2,2).

+ C and Q intersect in the same way as that of C and Q.

Let Acio be a pencil generated by C and Q. By resolving base points of
Acyto, we have a rational surface pc,o: Xcro — P! with a section. Note that
C gives rise to a singular fiber of type I;.

Conversely, if we choose a suitable rational elliptic surface ¢ : X — P! so
that (i) ¢ has at least one Ij-fiber F, and (ii) we can blow down X to P' x P!
so that the images of F, and a general fiber intersect the same way as in C and

Q. Then by considering (I)fl, we have a CQ-configuration of type I.

2.2. CQ-configurations of type II

Let ¥, be the Hirzebruch surface of degree 2, and let A,, be a section of
Y, with A2 =2. Let P; be the A3 singular point of Q and let L be the maxi-
mal tangent line at P;. Let py: (P?), P, — P? be a blowing up at P;. We
denote p; L and b;l\ be the proper transform of L and the exceptional divisor

of uy 1. Let py: P> — (P)p, be a blowing up at uillLﬂEl, and we put g, :=
IZRECICRR : P2 — P2. We denote the proper transforms of ,ul‘]L and E; by L
and E E\, respectively. By blowing down L, we obtain 22, and we denote it by

U P2 — 5. Under the birational map @y := g, o ﬂl , we infer that both C
and Q are mapped to irreducible curves both of which are linear equlvalent to
2A.,, which we denote by C and Q, respectively. Let Acyo be the pencil given
by C and Q. By resolvmg base points of Acyp, we obtain a rational elliptic
surface ¢c. o Xcrg — P! with a section. Conversely, if we choose a suitable
rational elliptic surface ¢ : X — P! so that (i) 4 has at least one I;-fiber F, and
(i) we can blow down X to X, so that the images of F, and a generdl fiber
intersect the same manner as in C and Q. Then by considering ®;;', we have a
CQ-configuration of type IIL.

We make use of our observation in this section to find CQ-configurations
with prescribed I(C, Q) in §4.

3. Some special sections on certain rational elliptic surfaces

We keep the notation introduced in §1. In this section, we look into exis-
tence or non-existence of sections for certain rational elliptic surfaces ¢ : X — P,
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In order to obtain CQ-configurations of type I and II, we blow down X to
either P! x P! or X,. Then, by considering birational maps from P! x P! or X,
to P? considered in §2, we see that a smooth fiber and an I,-fiber of ¢ give rise to
the desired CQ-configuration.

Letg,: X, — P! be a rational elliptic surface whose structure of the Mordell-
Weil lattice is the type No. n in [10]. Our proof of Theorem 0.2 is done by case-
by-case consideration. For this purpose, we choose 20 type rational elliptic
surfaces as in the table below. As for their existence, we refer to [10] and [11].
By [11], we can asssume that the configuration of singular fibers of X, is as
follows:

No | Singular | No | Singular | No | Singular | No | Singular
fibers fibers fibers fibers

9 | 15,61, | 24 | SL,2I; | 35| 2I,4L, | 49 | IV, 1,21
13 | 4L,41, | 26 | 13,41, | 38 | 1,312, | 53 | Ig,2I,,21
16 | 15,51, |27 | Iv:,4l, | 43 | 107,31 | 58 | 214, 1,21
18 | 15, 1,,41 | 28 | 1o, 1,41, | 44 | g4l | 65 | III*, 1,1,
21 | 14,215,481 | 30 | 17,015,310, | 48 | I3,1,21, | 70 | Ig, 1,21

By [10], we see the structures of MW(X,) in the above table are as fol-
lows:

No MW (X,) No MW (X,)

9 D; 35 UN®* @ 2/22
13| D;@®ZNRZ | 38 | A; ®<1/4)®L/)2Z
16 A 43 A;

18 (45)®’ 44 Ar ®Z)2Z
21 | A;@Z/22 | 48 Ar ® Z)2Z
24 | (AN @z/22 | 49 {1/6)

26 (4)®? 53 1/6) @ Z)2Z
27 A3 58 Ar ® 7./4Z.
28| A;®Z2Z | 65 Z/2Z

30 | A;@<1/4y | 70 Z/4Z
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In the above table, we use the same terminology as that in [10] in order to
describe the structure of MW(X,). For se MW(X,), —s denotes the inverse
element of s with respect to the group law on MW(X,). We denote the addition
on MW(X,) by +. Also y, : MW(X,) — Gsing(,) denotes the homomorphism
introduced in the previous section.

In order to obtain conic-quartic configurations in the Introduction with
prescribed properties, we consider a pencil of curves genus 1 on P! x P! and %,
as in §2. This can be done by 8-time blowing downs from rational elliptic
surfaces X, as above to P' x P! or %, in special manners. This means that we
need to find special configurations of 8 rational curves on X,, which willl be done
in the rest of this section for each case of X, in the above table.

No. 9: Since MW(Xy) =~ D;, by Theorem 1.1, we infer that there exist
integral sections s, s and s3 such that {(s;,s,> =1, (i=1,2,3) and (53,5 =1/2
(i #J).

By the correction term of the explicit formula for {, ), we infer that s, 55, 53
and irreducible components of singular fiber intersect as in the following figure of
No. 9.

O11 s
o, \

53

I 0

No. 9

No. 13: MW(X}3) = D} @ Z/2Z and Gsing(p,,) = (Z/22)®*. By Theorem
1.1, there exist integral sections sj, s7, s3 such that {s;;s;,> =1, (i=1,2,3) and
(siysi> =1/2 (i #j). We also denote a 2-torsion by 7. Let F;=0;9+ 0,
(i=1,2,3,4) denote the irreducible decomposition of singular fibers. Here we
label each irreducible component as in §l. From possible values of the cor-
rection terms of the explicit formula for {s;, s> (i,j=1,2,3), we may assume
that Siy Sj = 0 (l 7 ]): j/13(S1) = (17 17010)9 y13<S2) = (1707 170) and y13(S3) is either
(1,0,0,1) or (0,1,1,0). As y;5(r) =(1,1,1,1), by replacing s3 by s3+7, if
necessary, we may assume y;; = (1,0,0,1). Thus we obtain the following figure
for No. 13.



88 HIRO-O TOKUNAGA

\ \ S1
\ \
| |

No. 13

No. 16: Since MW(X14) = A3, by Theorem 1.1, there exist integral sections
s; and s such that <{sy,s1) =3/4, {s2,82) =1, {51, =1/2. From possible
values of the correction terms of the explicit formula for <{s;,s;> (i =1,2), we
infer that s; and s, meet the I;-fiber as in the figure for No. 16.

MR

52

o

No. 16
No. 18: As MW(Xg) = (47)®°, by Theorem 1.1, we infer that there exist
integral sections s;, s and s3 such that {s;,s5,>=1/2 (i=1,2,3), {s;,8>=0
(i # j). Put sq:=s1+52, s5:=5 +53, 56 :=53+s51. By the explicit formula for
{,>, we have

<s,~,s,~>:2+2s,-0—a,~—b,~:1 (i:4,5,6)

1
<Si,Sj>:1+Sl’0+Sj0—SiSj—Clij—bi/':§ (4SZ<JS6)

where a; € {0,1}, a; € {0,1,1/2}, b;,b;; € {0,1/2}. Hence we have ¢; =1, b; =0
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and 5;0=0 (i=4,5,6), and this implies that s;5; =0, a;=1/2, b; =0
(4 <i< j<6) by Corollaries 1.3 and 1.4.

Now by labeling irreducible components of the I fiber suitably, we have
the figure for No. 18 as below:

('-)11 s
O, \ o \

(_)1(]

S6
(ST ) 6

I | o

No. 18

No. 21: MW(Xy) = A3 @ Z/2Z and  Ggjng(y,,) = Z/4Z ® (Z/2Z)®2. By
Theorem 1.1, there exist integral sections s; and s, such that {s;,s;> =3/4
(i=1,2) and <s1,52) =1/4. We also denote a 2-torsion by 7. By Corollary
14, 5152 =0. Let 1 =0,0+0;1+0;2+0;3 be the I4 fiber and let F; =
Qi0+0;; (i=2,3) be L-fibers. By labeling the irreducible components of
these singular fibers as in §1, and the possible values of the correction terms of
the explicit formula for {s;,s;> (i =1,2), we may assume that y,,(s;) = (1,1,0)
and p,,(s2) is either (3,1,0) or (1,0,1). As y,,(r) = (2,1,1), by replacing s, by
s+ 1, if necessary, we may assume that y,,(s2) = (1,0,1). Thus we have the
figure for No. 21 as below:

|-
\

032

O1,
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No. 24: MW(Xo) = (4])®° @ Z/2Z and Ging(y,,) = (Z/22)®°. By Theo-
rem 1.1, there exist integral sections s, s» and s3 with {s;, 8> =1/2 (i=1,2,3)
and (s, 8> =0 (1 <i<j<3). By the explicit formula for {s,s'), 5,5 €
MW (X»), we have

k
<s,s'>:1+30+s'0—ss'—§, 0<k<s5s.

Also we denote a 2-torsion by 7. Note that the integer k& in the above formula
is equal to the number of common non-zero entries of y,(s) and p,(s’). In
particular, for {s,s), the integer k is equal to the number of non-zero entries of
724(s).  Without loss of generality, we may assume that y,,(7) = (0,1,1,1,1).
As {s1,81) = {s1+71,8 +1) = 1/2, three of five entries of yy(s;) and y(s; + 1)
are 1. Hence we may assume that y,,(s;) = (1,1,1,0,0). Similarly, three of
five entries of y,,(s2) are 1 and the first entry is 1. Hence by Corollaries 1.3 and
1.4, we infer that s;s, =0 and the integer k in the above formula for {s,s;)
is 2. Therefore y,4(s;) and y,4(s2) have two non-zero common entries, and we
may assume that y,4(s2) = (1,1,0,1,0). Under these circumstances, we infer that
724(s3) is either (1,1,0,0,1) or (1,0,1,1,0). If p,4(s3) = (1,1,0,0,1), we replace
s3 by s3+7. Thus we may assume 7,4(s3) = (1,0,1,1,0). Now put

S4:=81+8H+7T, S5:=85H+53+7T, S6:=853+5+7,

and we have yy(s4) = (0,1,0,0,1), y54(s5) = (0,0,0,1,1), p4(s6) = (0,0,1,0,1).
As (siysiy =1 (i=4,5,6) and (s;,5)=1/2 (4<i<j<6), s; (i=4,506) are
integral and si5; =0 (4 <i < j < 6) by Corollaries 1.3 and 1.4. Thus we obtain
the following figure for No. 24:




RATIONAL ELLIPTIC SURFACES 91

No. 26: As MW(Xa) = (47)®%, by Theorem 1.1, there exists an integral
section s with {s,s) = 1/2. Hence the unique correction term of {s,s) is 3/2.
Thus we have the following figure for No. 26 below:

0 |

No. 26

No. 27: As MW(X»7) = 45, by Theorem 1.1, there exists a section s with
{s,sy =2/3. The correction term of <s,s) is 4/3. Thus we have the following
figure for No. 27:

No. 27
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No. 28: MW (X2) = 45 ® Z/2Z and Gjng(y,,) = Z/6Z ® Z/2Z. By Theo-
rem 1.1, there exists an integral section sy with {sp,s0> =2/3. Also we denote
a 2-torsion by 7. By the explicit formula for {s,s) for se MW(Xas), we
have

ki k
(5,8 = 2+2s0—€1—?2, ki €{0,5,8,9}, kye{0,1}
By the above formula for {s,s), y(so) is either (2,0), (4,0), (1,1) or (5,1) and
y(tr) = (3,1). Note that we can choose an integral section s; in such a way that
y(s1) = (1,1). 1In fact, we define s; as follows:

S0 if y(s0) = (1, 1),
o — 7S(?-i-‘[ if (so) = (2,0),
so+7 if p(s0) = (4,0),
—S0 if y(s0) = (5,1).

One see that s is integral for every case as above by (s;,s;» =2/3 and
y25(s1) = (1,1). Thus we have the following figure for No. 28 as below:

O1.1 O1,2
/] N
51
013 2,1
™ O15 r
O1.4 O2.0
O1
o]
No. 28

No. 30: MW(X3) = 4] @ <1/4) and Gging(p,) = Z/4Z ® Z/2Z. By Theo-
rem 1.1, there exist integral sections s; and s, with {s1,51)> = 1/2, (55,5 =1/4
and <s;,s5) =0. By considering possible values of the explicit formula for
{s,8), s€ MW(X30), y30(s1) = (2,1) and p;35(s2) is either (1,1) or (3,1). By
considering —s,, if necessarily, we may assume that y;)(s2) = (3,1). Now put
s3:=s81+5 and sq:=s5,+(—s2). Then we have y5(s3) = (1,0) and ys(s4) =
(3,0). Since {s3,53) = {84,584y = 3/4 and <s3,54) = 1/4, by Corollaries 1.3 and
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1.4, we infer that both s; and s, are integral and s;s; = 0. Thus we have the
following figure for No. 30:

\
\

-—/

S4

No. 35: MW(X35) = (4])®* @ Z/2Z and Giing(y,,) = (Z/4Z)®*. By Theo-
rem 1.1, there exists an integral section s such that {s,s) = 1/2. After suitable
lableling of irreducible components of Is-fibers, we may assume that y;5(s) =

(1,1). Thus we have the following figure for No. 35:

2.1
O1.1
/ X s
A yd
(‘)1 2 (-)2,2
e /(‘)2.3
/ O3 /
d yd
O10 ©20
(0]
No. 35

No. 38: MW(X35) = A; ©<1/4) D Z/2Z and Ging(y,) = Z/4Z D (2./2Z)®”.
By Theorem 1.1, there exist a 2 torsion 7 and integral sections s; and s, with
{s1,81) =1/2, {s5,8) =1/4 and <s1,s5,) =0. By possible values of the cor-
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rection terms of <s,s», we may assume that p;5(s2) =(1,1,1,0). Since
(t,7) =0 and {s;+71,50+71) =1/4, p3(t) is either (2,1,0,1) or (2,0,1,1).
If y38(f) = (21 15 05 1): by <S1,S1> = <Sl -i_Ta 51 +T> = 1/29 y38(sl) is either
(2,0,1,0) or (0,1,1,1). Similarly, if yp35(7) =(2,0,1,1), 7y(s1) is either
(2,1,0,0) or (0,1,1,1). Thus, by replacing s; by s; + 7 if necessary, we may
assume that

yag(s1) = (0, L1 1), p3g(s2) = (1, 1,1,0), y38(7) = (2,0, 1,1).
Now put
s3:=51+ (=) +1, s4:=51+5,
Then we have p35(s3) = (1,0,1,0) and ypsg(ss) = (1,0,0,1). Since {s3,53) =

{(Sa,54y =3/4, {53,584y =0, s3 and s4 are integral and s3s4 =0 by Corollaries
1.3 and 1.4. Therefore we have the following figure for No. 38:

o, Vo
A | \

O41 .
“

No. 38

No. 43 and 44: For each case, we label irreducible components of its unique
reducible singular fiber as in §1.

No. 48: MW (Xys) = A @ Z/2Z and Ggjng(y,,) = (Z/ZZ)@2 @®Z/2Z. By
Theorem 1.1, there exist a 2-torsion 7 and an integral section s with {s,s) = 1/2.
As {(z,7) =0, we may assume 7,5(7) = (I,1,1). Since {s,s) = {s+1,5+1) =
1/2, we may assume that y,5(s) = (0,1,0), after exchange s and s+ 7, if necess-
ary. Thus we have the following figure for No. 48:
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| o

No. 48

No. 49: MW (Xy) = <1/6) and Gesing(y) = Z/3Z ® Z/2Z. By Theorem 1.1,
there exists an integral section s with {(s,s) = 1/6. By possible values of the
explicit formula for {, ), we may assume that y,(s) = (1,1). Put s; := 25, then
we have p,(s1) = (2,0). Since <s1,s1) =2/3, s is integral by Corollary 1.3.
Thus we obtain the following figure for No. 49:

S1

O

No. 49

No. 53: MW(Xs3) = <1/6) @ Z/2Z and Gsjng(y) = Z/6Z ® (Z/2Z)®*. By
Theorem 1.1, there exist a 2-torsion 7 and an integral section s with {s,s)> = 1/6.
Since (z,7) =0, we may assume that ys;(7) = (3,1,0). As {s,5) = 1/6, we may
assume that ys;(s) is either (1,1,1) or (£2,0,1). If ys3(s) = (1,1,1), ps3(s+7) =
(=2,0,1) and ps3(—(s+7)) =(2,0,1). Hence we may assume that ys;(s) =
(2,0,1). Now put sy :=2s+7. Then ys3(s;) = (1,1,0) and s, is integral. Thus
we have the following figure:
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O1,2 o
O2,1
©
A AN 3,1
S1
O13
N
O15 o, r
O20
O1) O30
Jo |
No. 53

No. 58: MW(Xss) = A; @ Z/4Z and Gingp) = (Z/4Z)P* ® Z/2Z. Let ©
be a 4-torsion. Since any torsion section is integral (see [8]), by Corollary 1.1,
we may assume that ps(7) = (1,1,1). Let s be a generator of 4;. By Theorem
1.1, we may assume that s is integral. As {s,s) = {s+1,5+1) = 1/2, we infer
that ys(s) is either (2,0,1) or (1,3,0). If p55(s) = (2,0, 1), then ysg(s+ (—7)) =
(1,3,0). Hence we may assume that ysg(s) = (1,3,0)l. Thus we have the fol-
lowing figure for No. 58:

/
O29 O Q

JC/@M PN

O O

\

@)

No. 58

No. 65 and 70: For each case, we label irreducible components of a III*
(resp. Ig) singular fiber for No. 65 (resp. No. 70) as in §l.
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4. Construction of CQ configurations of types I and II via rational
elliptic surfaces

We keep our notation in the previous sections. As we have seen in the last
section, given a CQ-configuration of type I or II, we canonically obtain a rational
elliptic surface ¢, : Xcro — P!. In order to obtain a CQ configuration with
prescribed I(C, Q), we consider the converse:

(i) Take an appropriate rational elliptic surface ¢ : X — P!

(ii) Blow down X to P! x P! (resp. X,) for the case of type I (resp. type II)

in a suitable way.

(iii) Choose a singular fiber F, of type I} and a smooth fiber F. Let Cp,

andl Qr be their proper images under the birational map ®; ' (resp.
D).

We then infer that Cg, + Qp is the desired CQ configuration. More

precisely, we have the following proposition:

ProposITION 4.1. Let ¢, : X, — P! be the rational elliptic surface as in §2.
Let F, and F be as above. After the procedure (1)—(iii), we obtain a CQ config-
uration of Type I or Il as in the table below:

No. of X, | Type | I(Cr,, Qr) | No. of X, | Type | I(Cp,, OF)
9 I (2,2,2,2) 35 I (4,4)
13 I (2,2,2,2) 38 II (4,2,2)
16 I (4,2,2) 43 I (8)
18 II (2,2,2,2) 44 I (8)
21 I (4,2,2) 43 11 (4,4)
24 II (2,2,2,2) 49 I (6,2)
26 I (4,4) 53 I (6,2)
27 I (6,2) 58 I (4,4)
28 | (6,2) 65 I (8)
30 II (4,2,2) 70 1T (8)

Proof. For each X, let v, : X, — X, be a birational morphism obtained by
blowing down the curves in the middle column of the table below from the left to
the right. By Corollary 1.2, we infer that X, is either P! x P!, 3, or ;. We
show that

+ X, is as in the right column in the table below, and

* Cp, + Qp gives the desired CQ-configulration, if we choose F, and F

suitably.
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This will be done by case-by-case.

No of X, Exceptional curves of v X,
9 0,0, 51,0911, 52, Oy, 53, O19 P' x P!
13 0,010,5,01,5,031,53,0,; | P! xP!
16 0,0y, 5,0,,51,0,05,0; P! x P!
18 0, ®q, 54,011, 55, O1, 56, O19 Y}
21 0,01,0,013,0,,5,0,1,5,05; | P' xP!
24 0,0s50,54,02,1,55,04 1,5, 03 | pY)
26 0,0, 04,09, 5,00, O, O P! x P!
27 0,0y, 5,0,0,,0,0s,0, P' x P!
28 0,01,0,015,04,0,3,0,,5,0,; | P! xP!
30 0,0, 04,0,,s3,01, 54,03 pY)
35 0,010,013,02,50,1,0,,,0,3 | P! x P!
38 0,010,091 3,012,53,03 1,54,04 1 pY)
43 0,0, 0,,05,0,,0,07,0, P! x P!
44 0,0y,0,0,,0;,04,05,0 P! x P!
48 0,0, 04,09, 5,091, O, O po}
49 0,0y, 51,0,,05,04,04,0, po}
53 0,01,,015,01 4,01 3,0 2,5,0,; %
58 0,01,0,03,017,5013,0,,,0, %
65 0,00,0,,03,04,04,07,0 po}
70 0,0y,07,04,05,0,,03,0, pos

No. 9: By its definition of vy, and we easily see that vo(s)> =0 for Vse
MW (Xo)\{O, 51, 5,53} and vo(©4)> = 2. Hence by Lemma 1.2, there is no curve
with negative self-intersection number.
I, and 1, be two lines on P! x P! such that 112 =0(G(=12),hih=1and [N is
Since v, !(1;) (i =1,2) are double sections of ¢, : Xo — P!,
Now by considering

the node of vy(F,).

we may assume that F meets both /; and /, transversely.

the proper images of vy(F,) and vo(F) under ®;', we have the desired CQ-

configuration.

Hence we infer that Xy ~ P! x P!,
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For the cases n=16,26,27,43, we similarly obtain the desired CQ-
configurations, so we omit their proof.

No. 13. By Lemma 1.2, we infer that there is no curve whose self-
intersection number is —2. Hence X3 # X;. We show that X3 #%;. Sup-
pose that X3 = X;. Then the unique (—1) curve gives rise to an integral section
§ with y5(8) = (1,0,0,0), and we have <§,§) =3/2. On the other hand, as
MW (X3) @ Dy @ Z/2Z, {s,s) is an integer for Vs € MW(Xj3). This leads us to
a contradiction. Hence X3 =~ P! x P!. Now similar argument to the case of
No. 9 shows the existence of the desired CQ-configuration.

No. 21. We only need to show that X»; = P! x P! as the remaining state-
ment can be proved in a similar manner to the previous cases. By Lemma 1.2,
X1 #£3,. Suppose that X5; = X;. Then the (—1) curve gives rise to an integral
section § with y,,(s) = (1,0,0). Then p, (s+7)=(3,1,1), where t denotes a
2-torsion. Thus we have <§,§) = 5/4, and {(§+1,§+1) =1/4+2(s+7)0. On
the other hand, by the property of the height pairing, we have (§+7,5§+7) =
{§,5>. This leads us to a contradiction. Hence X, =~ P' x P!.

No. 28. It is enough to show that X, ~P!xP!. By Lemma 1.2,
X3 £35. Suppose that Xog = X;. Then the (—1) curve gives rise to an integral
section § with y5(5) = (1,0). Hence we have {5,§) = 7/6, but this is impossible
as MW(Xy) =~ A5 @ 7/27.

No. 35. It is enough to show that X35 ~P!xP!. By Lemma 1.2,
X3 £X. Suppose that X35 = X;. Then the (—1) curve gives rise to an integral
section § with ys5(5) = (1,0). Hence we have {§,§) = 5/4, but this is impossible
as MW (Xss5) = (47)®* @ Z/2Z.

No. 44. It is enough to show that X4 ~P!xP!. By Lemma 1.2,
X4 #£35. Suppose that X449 = ;. Then the (—1) curve gives rise to an integral
section § with y4,(§) = (1). Hence we have {(§,§) =9/8, but this is impossible
as MW (Xu) = A7 @ Z/2Z.

No. 18, 24, 30, 38, 48, 49, 53, 58, 65, 70. For these cases, one can easily
see that there exists a (—2)-curve on X,. Hence by Corollary 1.2, X, =3,.
Choose a fiber, f,, of X, passing through the node of v,(F,). Since v,!(f,) is
a double section of ¢,, we may assume v,(F) meets f, transversely. Now by
considering the proper images of v,(F,) and v,(F) under @', we have the

desired CQ-configuration. O

In the following, we denote the CQ-configuration obtained from ¢, : X, — P!
as above by C,+ Q,. In the next section, we determine the value (C,/Q,).
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5. Proof of Theorem 0.2

We keep our notation as before. In this section, we consider the value of
(C,/Qy) for the CQ-configurations given in §4. By combining Proposition 4.1,
we obtain Theorem 0.2. Let us start with the following lemma.

Lemma 5.1. Let C,+ Q, be the CQ-configuration in the previous section.
Let L, be the line passing through two nodes (resp. the maximal tangent line) for
type I (resp. type II). If (C,/ Q) = 1, then Q, is given by an equation of the form

9 +11,9¢,
where g, is a homogeneous polynomial of degree 2 and gc, and I, are defining
equations of C, and L,, respectively.

Conversely, if there exists an irreducible conic C, , such that I.(C, ,, C,) =
1/2Ix(Qn7 Cn): Ix(Co,naLn) = 1/2I‘C(Qna Ln) fOl" Vx e (Cn N Qn) U (Ln N Qn)a then
(Cu/Qn) = 1.

Proof Let g¢,: P! xP! — P? be the double cover with A, =C,. We
choose affine coordinates (x,y) and (u,v) of P! x P! and P? so that

¢n: P x Pl 5 (x,9) — (u,0) = (x + y,xy) € P,

If (C,/On) =1, 1ie, ¢;0,=0+0,, O #0,, we may assume that QF are
given by

ni :gz(u,v) igl(u>v)(x_y):07 gi(u7v)€C[u,U]7 deggl:l

Hence Q, is given by g3 — g?(u*> — 4v) = 0. Since any point satifying g; = ¢g» = 0
is a singular point of Q,, we infer that L, is given by g, = 0.

Conversely, if such an irreducible conic C,, as above exists, we infer that
2C, » is a member of the pencil generated by Q, and 2L, + C,. This means that
0O, is given by an equation of the form

géu.n + Zzngc”7

where gc,, is a defining equation of C,,,L, and C,. Hence (C,/Q,) = 1.
O

Now we determine the value of (C,/Qy).

ProposITION 5.1.  We have the following table:

n 9,16,18,26,27,30,43,48,49,65 | 13,21,24,28, 35, 38,44,53,58,70
(Cn/Qn) 1 -1

Proof. Suppose that (C,/Q,) = 1. Since ¢, : X, — P! is determined by the
pencil generated by Q, and C, + 2L,, it has a singular fiber which is not of type
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I,, In fact let C/ , be a conic given by g» = 0 in Lemma 5.1 and let C’U ,» be the
image of C, , under the birational maps ®; and @y as in §3. Then we see that
2C’, , is contained in a member of the pencil generated by Q, and C’,. Hence
any irreducible component of C’, , gives rise to a non-reduced irreducible com-
ponent of a singular fiber. Hence C, + Q, for n = 13,21,24, 28, 35,38,44,43,58
and 70, we have (C,/Q,) = —1.

For n=9,16,18,26,27,30,43,48,49 and 65, the irreducible component in
the table below gives rise to an irreducible conic satisfying the conditions in
Lemma 5.1. Hence our statement follows:

Singular fiber | the irreducible component
I; 04 (n=9,18)
Iy Q4 (n=16), Os (n=30)
I 05 (n=26,48)
v 04 (n=24,49)
I Q4 (n=43,65) 0

Let ¢, : Z,(= P! x Pl) — P? be the double cover with branch locus C,.
For n such that (C,/Q,) =1, we see that ¢0,=QF+ 0, and O} ~ O, ~
(2,2). Hence by [17, Theorem 0.2, Corollary 0.2], we have

PROPOSITION 5.2. Let k be an integer > 2 and let 9y denote the dihedral
group of order 2k.
< If (C /0y) =1, there exists an epimorphism from the fundamental group
i (PA\(C, + Qn),*) — Doy for any k.
. If (C /On) = —1, there exists no epimorphism from the fundamental group
1 (PP\(Cy 4 Qn), %) — Do for any odd k.

Now the following corollary is immediate:

COROLLARY 5.1.  The pairs of sextic curves

(Co+ Q9, Ci3+ Q13),  (Cig+ O16,Ca1 + 021),  (Cas + O, C35 + O3s),
(Cy7+ 027, Cog + 02%), (Ca3+ Qu3, Cag + Qua), (Cig + Q18, Coa + On),
(C30 + Q30, C3g + Q38),  (Cag + Qug, Csg + Osg),  (Cao + Qa9, Cs3 + Os3),
(Ces + Qss, Cro + Om0)

are Zariski pairs.

Remark 5.1. Zariski pairs in Corollary 5.1 can be found in [12]. Our
justification is that their construction is different from that in [12].
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We consider two more examples of CQ-configurations related to Zariski

triples given in [12].

We label irreducible components of singular fibers and sections on rational

elliptic surfaces Xg, and Xgs as follows:

7
0 Os
O5
Oy
O3
@2 @1
/(‘)0

/

We blow down

07 ®0,®17®2; ®3a®47®57®8

and

Oa ®07®27®37S>®17®7; ®6

in this order. Then for both cases we have rational surfaces X with Picard
number 2 and the images of ®; for Xg and ®s for Xgs are (—2) curves. Hence
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by Corollary 1.2, ¥ =%,. Now for both cases, let F;, be one I;-fiber and let F;
be a general smooth fiber. Let C, and Q, (n = 62,65) be the proper transform
of the birational map pog~' of type II. Then by our construction, the following
statement is immediate.

PropOSITION 6.1. (i) For n =62, 1(Ce, Q) = (8) and the tangent line at
Ce2N Qgy passes through the tacnode of Oso-

(ii) For n = 65, I(Css, Qgs) = (4,4) and the two points in Ces N Qgs and the
tacnode of Qgs are collinear.

~ Renjark 6.1. (i) Note that (Cug + Qus, Csg + Oss, 6'65 + Qés) and
(Ce2 + Qg5 Cos + Ogs, Cro + O7) are Zariski triples given in [12].

(i) By taking the affine coordinate as in the proof of Lemma 5.1, we can
choose deﬁnlng equations of Qg and Qg of the form I* + g1 (u, v)( —4v),
where / is a defining equation of the tangent line at Cs2N O, for No. 62 and
the line connecting Ces N Q¢s and the tacnode of Qgs.
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