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SOME SECTIONS ON RATIONAL ELLIPTIC SURFACES AND

CERTAIN SPECIAL CONIC-QUARTIC CONFIGURATIONS

Hiro-o Tokunaga

Introduction

In this article, we continue to study quadratic residue conics to an irreducible
quartic, which was our main subject in [17]. We first recall some of results in
[17]. Note that all varieties throughout this article are defined over the field of
complex numbers, C.

Let C be a smooth conic in P2 and let fC : ZC ! P2 be a double cover with
branch locus DfC ¼ C. We denote the covering transformation of fC by sfC .
Let D be an irreducible curve on P2, which is di¤erent from C. The pull back
f �
CD is either irreducible or reducible with two irreducible components Dþ and
D� such that s�

fC
Dþ ¼ D�. Following to [17], we say that C is a ‘‘quadratic

residue conic mod D if f �
CD is reducible. In [17], we introduce notation ðC=DÞ

such that
� ðC=DÞ ¼ 1 if C is a quadratic residue conic mod D, and
� ðC=DÞ ¼ �1 if C is not a quadratic residue conic mod D
We first remark the following: Let IxðC;DÞ denotes the intersection mul-

tiplicity at x A C VD. If there exists a point x A C VD such that IxðC;DÞ is odd,
then ðC=DÞ ¼ �1. In fact, if such a point x exists, then f induces a double
cover on the normalization of D which has the non empty branch set.

Hence if ðC=DÞ ¼ 1, then IxðC;DÞ is always even. In the following, we
always assume that

(*) For Ex A C VD, IxðC;DÞ is even and D is smooth at x.
Under the condition (*), as we see in the Introduction of [17], one can easily

determine ðC=DÞ if deg Da 3, and the first interesting case is deg D ¼ 4. In
fact, in [17], we obtain the following

Theorem 0.1. Let C be a smooth conic, let Q be an irreducible quartic
satisfying (*), and XQ denotes the set of types of singularities of Q. Here we use
the notation in [3] in order to describe the types of singularity.

Then we have the following:
� If XQ 0 f2A1g; fA3g, then ðC=QÞ is determined by XQ.
� There exist smooth conics C1, C2 and irreducible quartics Q1, Q2 such that
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(i) Ci and Qi ði ¼ 1; 2Þ satisfy (*),
(ii) XQ1

¼ XQ2
¼ f2A1g; fA3g, and

(iii) ðC1=Q1Þ ¼ 1, ðC2=Q2Þ ¼ �1.

Moreover, in [17], we also show that the topological fundamental group
p1ðP2nðC1 þQ1Þ; ?Þ is not isomorphic to p1ðP2nðC2 þQ2Þ; ?Þ.

We here introduce a terminology for later use:

Definition 0.1. (i) Let C and Q be a smooth conic and an irreducible
quartic as in Theorem 0.1. We call such C þQ a conic-quartic configuration (a
CQ-configuration for short).

(ii) A CQ-configuration such that XQ ¼ f2A1g (resp. ¼ fA3g) is said to be
type I (resp. type II).

In [17], however, we do not care about how many points are in C VQ. In
this paper, we consider this problem.

Put C VQ ¼ fx1; . . . ; xrg and we define a r-ple of natural numbers IðC;QÞ
to be ðIx1ðC;QÞ; . . . ; IxrðC;QÞÞ. We call IðC;QÞ the intersection multiplicity
sequence between C and Q. Without loss of generality, we may assume that
Ix1ðC;QÞb � � �b IxrðC;QÞ. There are five possible cases for IðC;QÞ: ð2; 2; 2; 2Þ;
ð4; 2; 2Þ; ð4; 4Þ; ð6; 2Þ; ð8Þ.

Now we state our main result in this article:

Theorem 0.2. Let ðe1; . . . ; erÞ be any r-ple of natural numbers such that
e1 b � � �b er, ei ði ¼ 1; . . . ; rÞ: even and

P
i ei ¼ 8. There exist pairs of CQ-

configurations ðC þQ;C 0 þQ 0Þ of types I and II satisfying the following properties:
� IðC;QÞ ¼ IðC 0;Q 0Þ ¼ ðe1; . . . ; erÞ.
� ðC=QÞ ¼ 1 and ðC0=Q 0Þ ¼ �1.

Note that the pairs ðC þQ;C 0 þQ 0Þ are all Zariski pairs (see [1] for Zariski
pairs). All of Zariski pairs in Theorem 0.2 can be found in [12]. However, our
method to see that they are Zariski pairs is totally di¤erent from that in [12],
which is our justification.

We now give a brief explanation of our strategy to obtain the CQ-
configurations in Theorem 0.2, which is main ingredient of this paper.

Let B1 and B2 be plane curves in P2. Let S be a rational surface such that
there exists a birational map F : P2

a S so that the proper tansforms ~BB1 and ~BB2

of B1 and B2, resepectively, are linearly equivalent. Let LB1þB2
be a pencil on S

generated by ~BB1 and ~BB2. Let n : W ! S be the resolution of the indeterminancy
and we denote the induced fibration by jB1þB2

: W ! P1. Note that

(i) the proper transforms n�1 ~BB1 and n�1 ~BB2 are contained in some fibers of
jB1þB2

, and
(ii) the way how ~BB1 and ~BB2 intesect reflects the configuration of singular

fibers of jB1þB2
.

Conversely, suppose that a fibered rational surface j : W ! P1 and a birational
morphism n : W ! S are given in such a way that some part of fibers F1 and F2
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give rise to ~BB1 and ~BB2 as above. By considering the proper transforms of ~BB1

and ~BB2 by F�1, we obtain B1 þ B2.
In this article, we apply the above idea to the case when B1 ¼ C and

B2 ¼ Q, where C þQ is a CQ-configuration of either type I or II.
As we see in §3, S ¼ P1 � P1 in the case when XQ ¼ f2A1g, while S ¼ the

Hirzebruch surface of degree 2 in the case when XQ ¼ fA3g. For both cases,
we consider a pencil of curves of genus 1. Hence jCþQ : W ! P1 is a rational
elliptic surfaces.

The group of sections, MWðXÞ, of j : X ! P1 is called the Mordell-Weil
group. MWðXÞ has been studied by many mathematicians mainly from the
viewpoint of arithmetic interest. In this article, however, we make use of the
group structure of MWðXÞ in order to find sections which play essential roles
to construct prescribed CQ configurations. This is a feature of this article. As
for rational elliptic surfaces, many detail results about the configurations of
singular fibers, the groups of sections called the Mordell-Weil groups are well-
known (see [9], [10], [11] and [14], for example). These results make the author
possible to consider the above application of MWðX Þ.

We hope our method to construct curves with prescribed conditions can be
considered as another new application of theory of elliptic surfaces.

This article consists of 6 sections. In §1, we summarize some basic facts on
elliptic surfaces. We show that the existence of CQ-configurations of types I and
II is reduced to that of pencils of genus 1 on P1 � P1 and P2 in §2. In §3, we
consider some rational elliptic surfaces and certain special sections, which play
important roles in constructing CQ-configurations with prescribed IðC;QÞ. We
prove Theorem 0.2 in §§4 and 5. We construct Zariski triples given in [12] via
our method in §6.

1. Preliminaries from the theory of elliptic surfaces

As for details on the results in this section, we refer to [6], [7], [8], [9] and
[13].

1.1. General facts
Throughout this article, an elliptic surface always means a smooth projective

surface X with a fibration j : X ! C over a smooth projective curve, C, such
that (i) j�1ðvÞ is a smooth curve of genus 1 for v A C except no empty finite
points SingðjÞHC, (ii) there exists a section O : C ! X (we identify O with its
image in X ), and (iii) there is no exceptional curve of the first kind in any fiber.

We call Fv ¼ j�1ðvÞðv A SingðjÞÞ a singular fiber over v. We denote the
irreducible decomposition of Fv by

Fv ¼ Yv;0 þ
Xmv�1

i¼1

av; iYv; i;

where mv is the number of irreducible components of Fv and Yv;0 is the irreduc-
ible component with Yv;0O ¼ 1. We call Yv;0 the identity component. We also
define a subset RedðjÞ of SingðjÞ to be RedðjÞ :¼ fv A SingðjÞ jFv is reducibleg.
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Let MWðXÞ be the set of sections of j : X ! C. By our assumption,
MWðXÞ0j. On a smooth fiber F of j, by regarding F VO as the zero element,
we can consider the abelian group structure on F . Hence for s1; s2 A MWðXÞ,
one can define s1 þ s2 on CnSingðjÞ. By [6, Theorem 9.1], s1 þ s2 can be
extended over C, and we can consider MWðXÞ as an abelian group. On the
other hand, we can regard the generic fiber Xh of X as a curve of genus 1 over
CðCÞ, the rational function field of C. The restriction of O to Xh gives rise to
a CðCÞ-rational point of Xh, and one can regard Xh as an elliptic curve over CðCÞ,
O being the zero element. By considering the restriction to the generic fiber for
each sections, MWðX Þ can be identified with the set of CðCÞ-rational points of
Xh. For s A MWðXÞ, s is said to be integral if sO ¼ 0. It is known that any
torsion element in MWðXÞ is integral (cf. [8]). In the following, we call MWðX Þ
the Mordell-Weil group of X . As for later use, we see how s1 þ s2 on CnSingðjÞ
is extended briefly. For details, see [6], §9. For a singular fiber Fv ¼

P
i av; iYv; i,

v A SingðjÞ, we put Fa
v ¼ 6

av; i¼1
Ya

v; i, where Ya
v; i :¼ Yv; inðsingular points of

ðFvÞredÞ. For s A MWðXÞ, sFv ¼ 1. Hence sVFa
v 0j. Note that we have

the following table for Fa
v , where we label the irreducible components of Fv

as below:

Type of Fv Fa
v

Ib 6b�1

i¼0
Ya

i

I�b (b: even) Ya
00 UYa

10 UYa
01 UYa

11

I�b (b: odd) Ya
0 UYa

1 UYa
2 UYa

3

II; II� Ya
0

III; III� Ya
0 UYa

1

IV; IV� Ya
0 UYa

1 UYa
2
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Under these labeling, we have the following isomorphisms of abelian groups and
we define a finite abelian group GFa

v
as follows (see [6] for details):

Type of Fv Group structure GFa
v

Ib Fa
v GC� � Z=bZ

tk 7! ðtk; kÞ, tk: a local coordinate of Ya
k GC�

Z=bZ

I�b (b: even) Fa
v GC� ðZ=2ZÞl2

tkl 7! ðtkl ; k; lÞ, tkl : a local coordinate of Ya
kl GC

ðZ=2ZÞl2

I�b (b: odd) Fa
v GC� Z=4Z

tk 7! ðtk; kÞ, tk: a local coordinate of Ya
k GC�

Z=4Z

II; II� Fa
v GC

t0 7! t0, t0: a local coordinate of Ya
k GC

f0g

III; III� Fa
v GC� Z=2Z

tk 7! ðtk; kÞ, tk: a local coordinate of Ya
k GC

Z=2Z

IV; IV� Fa
v GC� Z=3Z

tk 7! ðtk; kÞ, tk: a local coordinate of Ya
k GC

Z=3Z
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Put GSingðjÞ :¼ 0
v A SingðjÞ GFa

v
. Now we define a homomorphism g : MWðX Þ

! GSingðjÞ to be the composition of the restriction morphism MWðXÞ !
0

v A SingðjÞ F
a
v and the natural morphism 0

v A SingðjÞ F
a
v ! GSingðjÞ. Note that

gðsÞ describes at which irreducible component s meets on Fv.
We next summarize some results on the theory of the Mordell-Weil lattices

studied by Shioda in [13]. In [13], a Q-valued bilinear form h ; i called the
height pairing on MWðXÞ with the following property is defined:

� hs; sib 0 for Es A MWðX Þ and the equality holds if and only if s is an
element of finite order in MWðXÞ.

� More explicitly, hs1; s2i (s1; s2 A MWðXÞ) is given as follows:

hs1; s2i ¼ wðOX Þ þ s1Oþ s2O� s1s2 �
X

v ARedðjÞ
Corrvðs1; s2Þ;

where Corrvðs1; s2Þ is given by

Corrvðs1; s2Þ ¼ ðs1Yv;1; . . . s1Yv;mv�1Þð�AvÞ�1

s2Yv;1

�
s2Yv;mv�1

0
B@

1
CA:

Here Yv;1; . . . ;Yv;mv�1 are irreduicble components of Fv (v A RedðjÞ) and
Av is the intersection matrix ðYv; iYv; jÞ1ai; jamv�1. As for explicit values of
Corrvðs1; s2Þ, we refer to [13, (8.16)].

The following lemma is also immediate from the explicit formula:

Lemma 1.1. If gðsÞ ¼ 0, then Corrvðs; sÞ ¼ 0 for Ev A SingðjÞ. In particular,
if gðsÞ ¼ 0, then hs; sib 2wðOX Þ unless s ¼ O.

Corollary 1.1. Let s be a torsion of order n in MWðXÞ. Then the order
of gðsÞ is n.

Proof. Suppse that mgðsÞ ¼ gðmsÞ ¼ 0 for some m < n. As hms;msi ¼ 0,
we have ms ¼ O by Lemma 1.1, but this contradicts to our assumption. r

1.2. Rational elliptic surface
An elliptic surface j : X ! C is said to be rational if X is a rational

surface. Note that C ¼ P1 if j : X ! C is a rational elliptic surface. Also it is
well-known that X is obtained as the resolution of the base points of a pencil of
cubic curves in P2, i.e., X is obtained from P2 by 9-time blowing-ups. As for
more properties, we refer to [9]. Let us start with the following lemma:

Lemma 1.2. Let j : X ! P1 be a rational elliptic surface. If C is a smooth
irreducible curve on X with C2 < 0, then either C2 ¼ �1 and C is a section of j or
C2 ¼ �2 and C is an irreducible component of some reducible singular fiber.

Proof. By the canonical bundle formula for an elliptic surface, KX @�F ,
F being a fiber of j. Hence KXCa 0. If KXC ¼ 0, i.e., FC ¼ 0, then C is
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an irreducible component of some reducible singular fiber. If KXC < 0, as
C2 þ KXCb�2, we have C2 ¼ �1 and KXC ¼ �1, i.e., FC ¼ 1. Hence C is a
section of j. r

Corollary 1.2. Let j : X ! P1 be a rational elliptic surface and let
n : X ! X be a composition of 8-times blowing downs. Then X is either
P1 � P1, the Hirzebruch surface of degree 2, S2, or one point blowing up P2, S1.

Proof. Since the Picard number of X is 2, X is either minimal or S1. By
Lemma 1.2, we infer that X is either P1 � P1 or S2 if X is not minimal.

r

For a rational elliptic surface j : X ! P1 and s1; s2 A MWðX Þ, we have

hs1; s2i ¼ 1þ s1Oþ s2O� s1s2 �
X

v ARedðjÞ
Corrvðs1; s2Þ:

In particular,

hs1; s1i ¼ 2þ 2s1O�
X

v ARedðjÞ
Corrvðs1; s1Þ:

By these formulas, we easily obtain the following corollaries:

Corollary 1.3. If
P

v ARedðjÞ Corrvðs; sÞa 2, then every s A MWðX Þ with
hs; si < 2 is integral.

Corollary 1.4. Let s1 and s2 be integral sections. If hs1; s2i > 0, s1s2 ¼ 0.

Proof. As Corrvðs1; s2Þb 0 for any Fv, our statement is immediate. r

The following theorem is fundamental for MWðXÞ of a rational elliptic
surface.

Theorem 1.1 [13, Theorem 10.8]. The Mordell-Weil group of a rational
elliptic surface is generated by integral sections.

2. Rational elliptic surfaces and CQ-configurations of type I and II

In this section, we show that pencils of curves of genus 1 on P1 � P1 and the
Hirzebruch surface of degree 2, S2, canonically arise from CQ-configurations of
types I and II, respectively. Let us start with type I.
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2.1. CQ-configurations of type I
We denote two nodes of Q by P1 and P2, and let L be the line through P1

and P2. Let m1 :
cP2P2 ! P2 be a composition of blowing-ups at P1 and P2. We

denote the proper transform of L, the exceptional curves arising from P1 and P2

by L, E1 and E2, respectively. Let m2 :
cP2P2 ! P1 � P1 be the blowing down of

L. We denote the image of E1 and E2 by l1 and l2, respectively. We also
denote the linear equivalence class of divisors al1 þ bl2 by ða; bÞ. Under the
birational map FI :¼ m2 � m�1

1 : P2
a P1 � P1, we easily see the followings:

� C is mapped to an irrreducible curve ~CC with one node and ~CC@ ð2; 2Þ.
� Q is mapped to a smooth irreducible curve ~QQ and ~QQ@ ð2; 2Þ.
� ~CC and ~QQ intersect in the same way as that of C and Q.

Let LCþQ be a pencil generated by ~CC and ~QQ. By resolving base points of
LCþQ, we have a rational surface jCþQ : XCþQ ! P1 with a section. Note that
~CC gives rise to a singular fiber of type I1.

Conversely, if we choose a suitable rational elliptic surface j : X ! P1 so
that (i) j has at least one I1-fiber Fo and (ii) we can blow down X to P1 � P1

so that the images of Fo and a general fiber intersect the same way as in ~CC and
~QQ. Then by considering F�1

I , we have a CQ-configuration of type I.

2.2. CQ-configurations of type II
Let S2 be the Hirzebruch surface of degree 2, and let Dy be a section of

S2 with D2
y ¼ 2. Let P1 be the A3 singular point of Q and let L be the maxi-

mal tangent line at P1. Let m1;1 : ðP2ÞP1
! P2 be a blowing up at P1. We

denote m�1
1;1L and E1 be the proper transform of L and the exceptional divisor

of m1;1. Let m1;2 :
cP2P2 ! ðPÞP1

be a blowing up at m�1
1;1LVE1, and we put m1 :¼

m1;1 � m1;2 :
cP2P2 ! P2. We denote the proper transforms of m�1

1;1L and E1 by L

and E1, respectively. By blowing down L, we obtain S2, and we denote it by

m2 :
cP2P2 ! S2. Under the birational map FII :¼ m2 � m�1

1 , we infer that both C
and Q are mapped to irreducible curves both of which are linear equivalent to
2Dy, which we denote by ~CC and ~QQ, respectively. Let LCþQ be the pencil given

by ~CC and ~QQ. By resolving base points of LCþQ, we obtain a rational elliptic
surface jCþQ : XCþQ ! P1 with a section. Conversely, if we choose a suitable
rational elliptic surface j : X ! P1 so that (i) j has at least one I1-fiber Fo and
(ii) we can blow down X to S2 so that the images of Fo and a general fiber

intersect the same manner as in ~CC and ~QQ. Then by considering F�1
II , we have a

CQ-configuration of type II.
We make use of our observation in this section to find CQ-configurations

with prescribed IðC;QÞ in §4.

3. Some special sections on certain rational elliptic surfaces

We keep the notation introduced in §1. In this section, we look into exis-
tence or non-existence of sections for certain rational elliptic surfaces j : X ! P1.
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In order to obtain CQ-configurations of type I and II, we blow down X to
either P1 � P1 or S2. Then, by considering birational maps from P1 � P1 or S2

to P2 considered in §2, we see that a smooth fiber and an I1-fiber of j give rise to
the desired CQ-configuration.

Let jn : Xn ! P1 be a rational elliptic surface whose structure of the Mordell-
Weil lattice is the type No. n in [10]. Our proof of Theorem 0.2 is done by case-
by-case consideration. For this purpose, we choose 20 type rational elliptic
surfaces as in the table below. As for their existence, we refer to [10] and [11].
By [11], we can asssume that the configuration of singular fibers of Xn is as
follows:

No Singular
fibers

No Singular
fibers

No Singular
fibers

No Singular
fibers

9 I�0 ; 6I1 24 5I2; 2I1 35 2I4; 4I1 49 IV�; I2; 2I1

13 4I2; 4I1 26 I�2 ; 4I1 38 I4; 3I2; 2I1 53 I6; 2I2; 2I1

16 I�1 ; 5I1 27 IV�; 4I1 43 III�; 3I1 58 2I4; I2; 2I1

18 I�0 ; I2; 4I1 28 I6; I2; 4I1 44 I8; 4I1 65 III�; I2; I1

21 I4; 2I2; 4I1 30 I�1 ; I2; 3I1 48 I�2 ; I2; 2I1 70 I8; I2; 2I1

By [10], we see the structures of MWðXnÞ in the above table are as fol-
lows:

No MWðXnÞ No MWðXnÞ

9 D�
4 35 ðA�

1 Þ
l2 lZ=2Z

13 D�
4 lZ=2Z 38 A�

1 lh1=4ilZ=2Z

16 A�
3 43 A�

1

18 ðA�
1 Þ

l3 44 A�
1 lZ=2Z

21 A�
3 lZ=2Z 48 A�

1 lZ=2Z

24 ðA�
1 Þ

l3 lZ=2Z 49 h1=6i

26 ðA�
1 Þ

l2 53 h1=6ilZ=2Z

27 A�
2 58 A�

1 lZ=4Z

28 A�
2 lZ=2Z 65 Z=2Z

30 A�
1 lh1=4i 70 Z=4Z
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In the above table, we use the same terminology as that in [10] in order to
describe the structure of MWðXnÞ. For s A MWðXnÞ, �s denotes the inverse
element of s with respect to the group law on MWðXnÞ. We denote the addition
on MWðXnÞ by _þþ. Also gn : MWðXnÞ ! GSingðjnÞ denotes the homomorphism
introduced in the previous section.

In order to obtain conic-quartic configurations in the Introduction with
prescribed properties, we consider a pencil of curves genus 1 on P1 � P1 and S2

as in §2. This can be done by 8-time blowing downs from rational elliptic
surfaces Xn as above to P1 � P1 or S2 in special manners. This means that we
need to find special configurations of 8 rational curves on Xn, which willl be done
in the rest of this section for each case of Xn in the above table.

No. 9: Since MWðX9ÞGD�
4 , by Theorem 1.1, we infer that there exist

integral sections s1, s2 and s3 such that hsi; sii ¼ 1, ði ¼ 1; 2; 3Þ and hsi; sji ¼ 1=2
ði0 jÞ.

By the correction term of the explicit formula for h ; i, we infer that s1, s2, s3
and irreducible components of singular fiber intersect as in the following figure of
No. 9.

No. 13: MWðX13ÞGD�
4 lZ=2Z and GSingðj13Þ G ðZ=2ZÞl4. By Theorem

1.1, there exist integral sections s1, s2, s3 such that hsi; sii ¼ 1, ði ¼ 1; 2; 3Þ and
hsi; sji ¼ 1=2 ði0 jÞ: We also denote a 2-torsion by t. Let Fi ¼ Yi;0 þYi;1

ði ¼ 1; 2; 3; 4Þ denote the irreducible decomposition of singular fibers. Here we
label each irreducible component as in §1. From possible values of the cor-
rection terms of the explicit formula for hsi; sji (i; j ¼ 1; 2; 3), we may assume
that si; sj ¼ 0 ði0 jÞ, g13ðs1Þ ¼ ð1; 1; 0; 0Þ, g13ðs2Þ ¼ ð1; 0; 1; 0Þ and g13ðs3Þ is either
ð1; 0; 0; 1Þ or ð0; 1; 1; 0Þ. As g13ðtÞ ¼ ð1; 1; 1; 1Þ, by replacing s3 by s3 _þþ t, if
necessary, we may assume g13 ¼ ð1; 0; 0; 1Þ. Thus we obtain the following figure
for No. 13.
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No. 16: Since MWðX16ÞGA�
3 , by Theorem 1.1, there exist integral sections

s1 and s2 such that hs1; s1i ¼ 3=4, hs2; s2i ¼ 1, hs1; s2i ¼ 1=2. From possible
values of the correction terms of the explicit formula for hsi; sii ði ¼ 1; 2Þ, we
infer that s1 and s2 meet the I�1 -fiber as in the figure for No. 16.

No. 18: As MWðX18ÞG ðA�
1 Þ

l3, by Theorem 1.1, we infer that there exist
integral sections s1, s2 and s3 such that hsi; sii ¼ 1=2 ði ¼ 1; 2; 3Þ, hsi; sji ¼ 0
ði0 jÞ. Put s4 :¼ s1 _þþ s2, s5 :¼ s2 _þþ s3, s6 :¼ s3 _þþ s1. By the explicit formula for
h ; i, we have

hsi; sii ¼ 2þ 2siO� ai � bi ¼ 1 ði ¼ 4; 5; 6Þ

hsi; sji ¼ 1þ siOþ sjO� sisj � aij � bij ¼
1

2
ð4a i < ja 6Þ

where ai A f0; 1g, aij A f0; 1; 1=2g, bi; bij A f0; 1=2g. Hence we have ai ¼ 1, bi ¼ 0
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and siO ¼ 0 ði ¼ 4; 5; 6Þ, and this implies that sisj ¼ 0, aij ¼ 1=2, bij ¼ 0
ð4a i < ja 6Þ by Corollaries 1.3 and 1.4.

Now by labeling irreducible components of the I�0 fiber suitably, we have
the figure for No. 18 as below:

No. 21: MWðX21ÞGA�
3 lZ=2Z and GSingðj21Þ GZ=4Zl ðZ=2ZÞl2. By

Theorem 1.1, there exist integral sections s1 and s2 such that hsi; sii ¼ 3=4
ði ¼ 1; 2Þ and hs1; s2i ¼ 1=4. We also denote a 2-torsion by t. By Corollary
1.4, s1s2 ¼ 0. Let F1 ¼ Y1;0 þY1;1 þY1;2 þY1;3 be the I4 fiber and let Fi ¼
Yi;0 þYi;1 ði ¼ 2; 3Þ be I2-fibers. By labeling the irreducible components of
these singular fibers as in §1, and the possible values of the correction terms of
the explicit formula for hsi; sii ði ¼ 1; 2Þ, we may assume that g21ðs1Þ ¼ ð1; 1; 0Þ
and g21ðs2Þ is either ð3; 1; 0Þ or ð1; 0; 1Þ. As g21ðtÞ ¼ ð2; 1; 1Þ, by replacing s2 by
s2 _þþ t, if necessary, we may assume that g21ðs2Þ ¼ ð1; 0; 1Þ. Thus we have the
figure for No. 21 as below:
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No. 24: MWðX24ÞG ðA�
1 Þ

l3 lZ=2Z and GSingðj24Þ G ðZ=2ZÞl5. By Theo-
rem 1.1, there exist integral sections s1, s2 and s3 with hsi; sii ¼ 1=2 ði ¼ 1; 2; 3Þ
and hsi; sji ¼ 0 ð1a i < ja 3Þ. By the explicit formula for hs; s 0i, s; s 0 A
MWðX24Þ, we have

hs; s 0i ¼ 1þ sOþ s 0O� ss 0 � k

2
; 0a ka 5:

Also we denote a 2-torsion by t. Note that the integer k in the above formula
is equal to the number of common non-zero entries of g24ðsÞ and g24ðs 0Þ. In
particular, for hs; si, the integer k is equal to the number of non-zero entries of
g24ðsÞ. Without loss of generality, we may assume that g24ðtÞ ¼ ð0; 1; 1; 1; 1Þ.
As hs1; s1i ¼ hs1 _þþ t; s1 _þþ ti ¼ 1=2, three of five entries of g24ðs1Þ and gðs1 _þþ tÞ
are 1. Hence we may assume that g24ðs1Þ ¼ ð1; 1; 1; 0; 0Þ. Similarly, three of
five entries of g24ðs2Þ are 1 and the first entry is 1. Hence by Corollaries 1.3 and
1.4, we infer that s1s2 ¼ 0 and the integer k in the above formula for hs1; s2i
is 2. Therefore g24ðs1Þ and g24ðs2Þ have two non-zero common entries, and we
may assume that g24ðs2Þ ¼ ð1; 1; 0; 1; 0Þ. Under these circumstances, we infer that
g24ðs3Þ is either ð1; 1; 0; 0; 1Þ or ð1; 0; 1; 1; 0Þ. If g24ðs3Þ ¼ ð1; 1; 0; 0; 1Þ, we replace
s3 by s3 _þþ t. Thus we may assume g24ðs3Þ ¼ ð1; 0; 1; 1; 0Þ. Now put

s4 :¼ s1 _þþ s2 _þþ t; s5 :¼ s2 _þþ s3 _þþ t; s6 :¼ s3 _þþ s1 _þþ t;

and we have g24ðs4Þ ¼ ð0; 1; 0; 0; 1Þ, g24ðs5Þ ¼ ð0; 0; 0; 1; 1Þ, g24ðs6Þ ¼ ð0; 0; 1; 0; 1Þ.
As hsi; sii ¼ 1 ði ¼ 4; 5; 6Þ and hsi; sji ¼ 1=2 ð4a i < ja 6Þ, si ði ¼ 4; 5; 6Þ are
integral and sisj ¼ 0 ð4a i < ja 6Þ by Corollaries 1.3 and 1.4. Thus we obtain
the following figure for No. 24:
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No. 26: As MWðX26ÞG ðA�
1 Þ

l2, by Theorem 1.1, there exists an integral
section s with hs; si ¼ 1=2. Hence the unique correction term of hs; si is 3=2.
Thus we have the following figure for No. 26 below:

No. 27: As MWðX27ÞGA�
2 , by Theorem 1.1, there exists a section s with

hs; si ¼ 2=3. The correction term of hs; si is 4=3. Thus we have the following
figure for No. 27:
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No. 28: MWðX28ÞGA�
2 lZ=2Z and GSingðj28Þ GZ=6ZlZ=2Z. By Theo-

rem 1.1, there exists an integral section s0 with hs0; s0i ¼ 2=3. Also we denote
a 2-torsion by t. By the explicit formula for hs; si for s A MWðX28Þ, we
have

hs; si ¼ 2þ 2sO� k1

6
� k2

2
; k1 A f0; 5; 8; 9g; k2 A f0; 1g

By the above formula for hs; si, gðs0Þ is either ð2; 0Þ, ð4; 0Þ, ð1; 1Þ or ð5; 1Þ and
gðtÞ ¼ ð3; 1Þ. Note that we can choose an integral section s1 in such a way that
gðs1Þ ¼ ð1; 1Þ. In fact, we define s1 as follows:

s1 ¼

s0 if gðs0Þ ¼ ð1; 1Þ;
�s0 _þþ t if gðs0Þ ¼ ð2; 0Þ;
s0 _þþ t if gðs0Þ ¼ ð4; 0Þ;
�s0 if gðs0Þ ¼ ð5; 1Þ.

8>>><
>>>:

One see that s1 is integral for every case as above by hs1; s1i ¼ 2=3 and
g28ðs1Þ ¼ ð1; 1Þ. Thus we have the following figure for No. 28 as below:

No. 30: MWðX30ÞGA�
1 lh1=4i and GSingðj30Þ GZ=4ZlZ=2Z. By Theo-

rem 1.1, there exist integral sections s1 and s2 with hs1; s1i ¼ 1=2, hs2; s2i ¼ 1=4
and hs1; s2i ¼ 0. By considering possible values of the explicit formula for
hs; si, s A MWðX30Þ, g30ðs1Þ ¼ ð2; 1Þ and g30ðs2Þ is either ð1; 1Þ or ð3; 1Þ. By
considering �s2, if necessarily, we may assume that g30ðs2Þ ¼ ð3; 1Þ. Now put
s3 :¼ s1 _þþ s2 and s4 :¼ s1 _þþð�s2Þ. Then we have g30ðs3Þ ¼ ð1; 0Þ and g30ðs4Þ ¼
ð3; 0Þ. Since hs3; s3i ¼ hs4; s4i ¼ 3=4 and hs3; s4i ¼ 1=4, by Corollaries 1.3 and
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1.4, we infer that both s1 and s2 are integral and s1s2 ¼ 0. Thus we have the
following figure for No. 30:

No. 35: MWðX35ÞG ðA�
1 Þ

l2 lZ=2Z and GSingðj35Þ G ðZ=4ZÞl2. By Theo-
rem 1.1, there exists an integral section s such that hs; si ¼ 1=2. After suitable
lableling of irreducible components of I4-fibers, we may assume that g35ðsÞ ¼
ð1; 1Þ. Thus we have the following figure for No. 35:

No. 38: MWðX38ÞGA�
1lh1=4ilZ=2Z and GSingðj38ÞGZ=4ZlðZ=2ZÞl2.

By Theorem 1.1, there exist a 2 torsion t and integral sections s1 and s2 with
hs1; s1i ¼ 1=2, hs2; s2i ¼ 1=4 and hs1; s2i ¼ 0. By possible values of the cor-
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rection terms of hs2; s2i, we may assume that g38ðs2Þ ¼ ð1; 1; 1; 0Þ. Since
ht; ti ¼ 0 and hs2 _þþ t; s2 _þþ ti ¼ 1=4, g38ðtÞ is either ð2; 1; 0; 1Þ or ð2; 0; 1; 1Þ.
If g38ðtÞ ¼ ð2; 1; 0; 1Þ, by hs1; s1i ¼ hs1 _þþ t; s1 _þþ ti ¼ 1=2, g38ðs1Þ is either
ð2; 0; 1; 0Þ or ð0; 1; 1; 1Þ. Similarly, if g38ðtÞ ¼ ð2; 0; 1; 1Þ, g38ðs1Þ is either
ð2; 1; 0; 0Þ or ð0; 1; 1; 1Þ. Thus, by replacing s1 by s1 þ t if necessary, we may
assume that

g38ðs1Þ ¼ ð0; 1; 1; 1Þ; g38ðs2Þ ¼ ð1; 1; 1; 0Þ; g38ðtÞ ¼ ð2; 0; 1; 1Þ:

Now put

s3 :¼ s1 _þþð�s2Þ _þþ t; s4 :¼ s1 _þþ s2;

Then we have g38ðs3Þ ¼ ð1; 0; 1; 0Þ and g38ðs4Þ ¼ ð1; 0; 0; 1Þ. Since hs3; s3i ¼
hs4; s4i ¼ 3=4, hs3; s4i ¼ 0, s3 and s4 are integral and s3s4 ¼ 0 by Corollaries
1.3 and 1.4. Therefore we have the following figure for No. 38:

No. 43 and 44: For each case, we label irreducible components of its unique
reducible singular fiber as in §1.

No. 48: MWðX48ÞGA�
1 lZ=2Z and GSingðj48Þ G ðZ=2ZÞl2 lZ=2Z. By

Theorem 1.1, there exist a 2-torsion t and an integral section s with hs; si ¼ 1=2.
As ht; ti ¼ 0, we may assume g48ðtÞ ¼ ð1; 1; 1Þ. Since hs; si ¼ hs _þþ t; s _þþ ti ¼
1=2, we may assume that g48ðsÞ ¼ ð0; 1; 0Þ, after exchange s and s _þþ t, if necess-
ary. Thus we have the following figure for No. 48:
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No. 49: MWðX49ÞG h1=6i and GSingðjÞ GZ=3ZlZ=2Z. By Theorem 1.1,
there exists an integral section s with hs; si ¼ 1=6. By possible values of the
explicit formula for h ; i, we may assume that g49ðsÞ ¼ ð1; 1Þ. Put s1 :¼ 2s, then
we have g49ðs1Þ ¼ ð2; 0Þ. Since hs1; s1i ¼ 2=3, s1 is integral by Corollary 1.3.
Thus we obtain the following figure for No. 49:

No. 53: MWðX53ÞG h1=6ilZ=2Z and GSingðjÞ GZ=6Zl ðZ=2ZÞl2. By

Theorem 1.1, there exist a 2-torsion t and an integral section s with hs; si ¼ 1=6.
Since ht; ti ¼ 0, we may assume that g53ðtÞ ¼ ð3; 1; 0Þ. As hs; si ¼ 1=6, we may
assume that g53ðsÞ is either ð1; 1; 1Þ or ðG2; 0; 1Þ. If g53ðsÞ ¼ ð1; 1; 1Þ, g53ðs _þþ tÞ ¼
ð�2; 0; 1Þ and g53ð�ðs _þþ tÞÞ ¼ ð2; 0; 1Þ. Hence we may assume that g53ðsÞ ¼
ð2; 0; 1Þ. Now put s1 :¼ 2s _þþ t. Then g53ðs1Þ ¼ ð1; 1; 0Þ and s1 is integral. Thus
we have the following figure:
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No. 58: MWðX58ÞGA�
1 lZ=4Z and GSingðjÞ G ðZ=4ZÞl2 lZ=2Z. Let t

be a 4-torsion. Since any torsion section is integral (see [8]), by Corollary 1.1,
we may assume that g58ðtÞ ¼ ð1; 1; 1Þ. Let s be a generator of A�

1 . By Theorem
1.1, we may assume that s is integral. As hs; si ¼ hs _þþ t; s _þþ ti ¼ 1=2, we infer
that g58ðsÞ is either ð2; 0; 1Þ or ð1; 3; 0Þ. If g58ðsÞ ¼ ð2; 0; 1Þ, then g58ðs _þþð�tÞÞ ¼
ð1; 3; 0Þ. Hence we may assume that g58ðsÞ ¼ ð1; 3; 0Þl. Thus we have the fol-
lowing figure for No. 58:

No. 65 and 70: For each case, we label irreducible components of a III�

(resp. I8) singular fiber for No. 65 (resp. No. 70) as in §1.
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4. Construction of CQ configurations of types I and II via rational
elliptic surfaces

We keep our notation in the previous sections. As we have seen in the last
section, given a CQ-configuration of type I or II, we canonically obtain a rational
elliptic surface jCþQ : XCþQ ! P1. In order to obtain a CQ configuration with
prescribed IðC;QÞ, we consider the converse:

(i) Take an appropriate rational elliptic surface j : X ! P1.
(ii) Blow down X to P1 � P1 (resp. S2) for the case of type I (resp. type II)

in a suitable way.
(iii) Choose a singular fiber Fo of type I1 and a smooth fiber F . Let CFo

and QF be their proper images under the birational map F�1
I (resp.

F�1
II ).

We then infer that CFo
þQF is the desired CQ configuration. More

precisely, we have the following proposition:

Proposition 4.1. Let jn : Xn ! P1 be the rational elliptic surface as in §2.
Let Fo and F be as above. After the procedure (i)–(iii), we obtain a CQ config-
uration of Type I or II as in the table below:

No. of Xn Type IðCFo
;QF Þ No. of Xn Type IðCFo

;QF Þ

9 I ð2; 2; 2; 2Þ 35 I ð4; 4Þ

13 I ð2; 2; 2; 2Þ 38 II ð4; 2; 2Þ

16 I ð4; 2; 2Þ 43 I ð8Þ

18 II ð2; 2; 2; 2Þ 44 I ð8Þ

21 I ð4; 2; 2Þ 48 II ð4; 4Þ

24 II ð2; 2; 2; 2Þ 49 II ð6; 2Þ

26 I ð4; 4Þ 53 II ð6; 2Þ

27 I ð6; 2Þ 58 II ð4; 4Þ

28 I ð6; 2Þ 65 II ð8Þ

30 II ð4; 2; 2Þ 70 II ð8Þ

Proof. For each Xn, let nn : Xn ! Xn be a birational morphism obtained by
blowing down the curves in the middle column of the table below from the left to
the right. By Corollary 1.2, we infer that Xn is either P1 � P1, S2 or S1. We
show that

� Xn is as in the right column in the table below, and
� CFo

þQF gives the desired CQ-configulration, if we choose Fo and F
suitably.
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This will be done by case-by-case.

No of Xn Exceptional curves of n Xn

9 O;Y00; s1;Y11; s2;Y01; s3;Y10 P1 � P1

13 O;Y1;0; s1;Y2;1; s2;Y3;1; s3;Y4;1 P1 � P1

16 O;Y0; s2;Y2; s1;Y1;Y5;Y3 P1 � P1

18 O;Y00; s4;Y11; s5;Y01; s6;Y10 S2

21 O;Y1;0;Y1;3;Y1;2; s1;Y2;1; s2;Y3;1 P1 � P1

24 O;Y5;0; s4;Y2;1; s5;Y4;1; s6;Y3;1 S2

26 O;Y00;Y4;Y10; s;Y01;Y6;Y11 P1 � P1

27 O;Y0; s;Y1;Y4;Y6;Y5;Y2 P1 � P1

28 O;Y1;0;Y1;5;Y1;4;Y1;3;Y1;2; s1;Y2;1 P1 � P1

30 O;Y0;Y4;Y2; s3;Y1; s4;Y3 S2

35 O;Y1;0;Y1;3;Y1;2; s;Y2;1;Y2;2;Y2;3 P1 � P1

38 O;Y1;0;Y1;3;Y1;2; s3;Y3;1; s4;Y4;1 S2

43 O;Y0;Y2;Y3;Y4;Y6;Y7;Y1 P1 � P1

44 O;Y0;Y1;Y2;Y3;Y4;Y5;Y6 P1 � P1

48 O;Y00;Y4;Y10; s;Y01;Y6;Y11 S2

49 O;Y0; s1;Y2;Y5;Y6;Y4;Y1 S2

53 O;Y1;0;Y1;5;Y1;4;Y1;3;Y1;2; s1;Y2;1 S2

58 O;Y1;0;Y1;3;Y1;2; s;Y2;3;Y2;2;Y2;1 S2

65 O;Y0;Y2;Y3;Y4;Y6;Y7;Y1 S2

70 O;Y0;Y7;Y6;Y5;Y4;Y3;Y2 S2

No. 9: By its definition of n9, and we easily see that n9ðsÞ2 ¼ 0 for Es A
MWðX9ÞnfO; s1; s2; s3g and n9ðY4Þ2 ¼ 2. Hence by Lemma 1.2, there is no curve
with negative self-intersection number. Hence we infer that X 9 GP1 � P1. Let
l1 and l2 be two lines on P1 � P1 such that l2i ¼ 0 ði ¼ 1; 2Þ, l1l2 ¼ 1 and l1 V l2 is
the node of n9ðFoÞ. Since n�1

9 ðliÞ ði ¼ 1; 2Þ are double sections of j9 : X9 ! P1,
we may assume that F meets both l1 and l2 transversely. Now by considering
the proper images of n9ðFoÞ and n9ðF Þ under F�1

I , we have the desired CQ-
configuration.

98 hiro-o tokunaga



For the cases n ¼ 16; 26; 27; 43, we similarly obtain the desired CQ-
configurations, so we omit their proof.

No. 13. By Lemma 1.2, we infer that there is no curve whose self-
intersection number is �2. Hence X 13 0S2. We show that X 13 0S1. Sup-
pose that X 13 GS1. Then the unique ð�1Þ curve gives rise to an integral section
~ss with g13ð~ssÞ ¼ ð1; 0; 0; 0Þ, and we have h~ss; ~ssi ¼ 3=2. On the other hand, as
MWðX13ÞGD�

4 lZ=2Z, hs; si is an integer for Es A MWðX13Þ. This leads us to
a contradiction. Hence X 13 GP1 � P1. Now similar argument to the case of
No. 9 shows the existence of the desired CQ-configuration.

No. 21. We only need to show that X 21 GP1 � P1 as the remaining state-
ment can be proved in a similar manner to the previous cases. By Lemma 1.2,
X 21 ZS2. Suppose that X 21 GS1. Then the ð�1Þ curve gives rise to an integral
section ~ss with g21ð~ssÞ ¼ ð1; 0; 0Þ. Then g21ð~ss _þþ tÞ ¼ ð3; 1; 1Þ, where t denotes a
2-torsion. Thus we have h~ss; ~ssi ¼ 5=4, and h~ss _þþ t; ~ss _þþ ti ¼ 1=4þ 2ð~ss _þþ tÞO. On
the other hand, by the property of the height pairing, we have h~ss _þþ t; ~ss _þþ ti ¼
h~ss; ~ssi. This leads us to a contradiction. Hence X 21 GP1 � P1.

No. 28. It is enough to show that X 28 GP1 � P1. By Lemma 1.2,
X 28 ZS2. Suppose that X 28 GS1. Then the ð�1Þ curve gives rise to an integral
section ~ss with g28ð~ssÞ ¼ ð1; 0Þ. Hence we have h~ss; ~ssi ¼ 7=6, but this is impossible
as MWðX28ÞGA�

2 lZ=2Z.

No. 35. It is enough to show that X 35 GP1 � P1. By Lemma 1.2,
X 28 ZS2. Suppose that X 35 GS1. Then the ð�1Þ curve gives rise to an integral
section ~ss with g35ð~ssÞ ¼ ð1; 0Þ. Hence we have h~ss; ~ssi ¼ 5=4, but this is impossible
as MWðX35ÞG ðA�

1 Þ
l2 lZ=2Z.

No. 44. It is enough to show that X 44 GP1 � P1. By Lemma 1.2,
X 44 ZS2. Suppose that X 44 GS1. Then the ð�1Þ curve gives rise to an integral
section ~ss with g44ð~ssÞ ¼ ð1Þ. Hence we have h~ss; ~ssi ¼ 9=8, but this is impossible
as MWðX44ÞGA�

1 lZ=2Z.

No. 18, 24, 30, 38, 48, 49, 53, 58, 65, 70. For these cases, one can easily
see that there exists a ð�2Þ-curve on Xn. Hence by Corollary 1.2, Xn GS2.
Choose a fiber, fo, of Xn passing through the node of nnðFoÞ. Since n�1

n ðfoÞ is
a double section of jn, we may assume nnðFÞ meets fo transversely. Now by
considering the proper images of nnðFoÞ and nnðF Þ under F�1

II , we have the
desired CQ-configuration. r

In the following, we denote the CQ-configuration obtained from jn : Xn ! P1

as above by Cn þQn. In the next section, we determine the value ðCn=QnÞ.
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5. Proof of Theorem 0.2

We keep our notation as before. In this section, we consider the value of
ðCn=QnÞ for the CQ-configurations given in §4. By combining Proposition 4.1,
we obtain Theorem 0.2. Let us start with the following lemma.

Lemma 5.1. Let Cn þQn be the CQ-configuration in the previous section.
Let Ln be the line passing through two nodes (resp. the maximal tangent line) for
type I (resp. type II ). If ðCn=QnÞ ¼ 1, then Qn is given by an equation of the form

g22 þ l2Ln
gCn

;

where g2 is a homogeneous polynomial of degree 2 and gCn
and lLn

are defining
equations of Cn and Ln, respectively.

Conversely, if there exists an irreducible conic Co;n such that IxðCo;n;CnÞ ¼
1=2IxðQn;CnÞ, IxðCo;n;LnÞ ¼ 1=2IxðQn;LnÞ for Ex A ðCn VQnÞU ðLn VQnÞ, then
ðCn=QnÞ ¼ 1.

Proof. Let qn : P
1 � P1 ! P2 be the double cover with Dqn ¼ Cn. We

choose a‰ne coordinates ðx; yÞ and ðu; vÞ of P1 � P1 and P2 so that

qn : P
1 � P1 C ðx; yÞ 7! ðu; vÞ ¼ ðxþ y; xyÞ A P2:

If ðCn=QnÞ ¼ 1, i.e., q�
nQn ¼ Qþ

n þQ�
n , Qþ

n 0Q�
n , we may assume that QG

n are
given by

QG
n : g2ðu; vÞG g1ðu; vÞðx� yÞ ¼ 0; giðu; vÞ A C½u; v�; deg gi ¼ i:

Hence Qn is given by g22 � g21ðu2 � 4vÞ ¼ 0. Since any point satifying g1 ¼ g2 ¼ 0
is a singular point of Qn, we infer that Ln is given by g1 ¼ 0.

Conversely, if such an irreducible conic Co;n as above exists, we infer that
2Co;n is a member of the pencil generated by Qn and 2Ln þ Cn. This means that
Qn is given by an equation of the form

g2Co; n
þ l 2Ln

gCn
;

where gCo; n
is a defining equation of Co;n;Ln and Cn. Hence ðCn=QnÞ ¼ 1.

r

Now we determine the value of ðCn=QnÞ.

Proposition 5.1. We have the following table:

n 9; 16; 18; 26; 27; 30; 43; 48; 49; 65 13; 21; 24; 28; 35; 38; 44; 53; 58; 70

ðCn=QnÞ 1 �1

Proof. Suppose that ðCn=QnÞ ¼ 1. Since jn : Xn ! P1 is determined by the
pencil generated by Qn and Cn þ 2Ln, it has a singular fiber which is not of type
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In. In fact, let C 0
o;n be a conic given by g2 ¼ 0 in Lemma 5.1 and let fC 0C 0

o;n be the
image of C 0

o;n under the birational maps FI and FII as in §3. Then we see that
2fC 0C 0

o;n is contained in a member of the pencil generated by ~QQn and fC 0C 0
n. Hence

any irreducible component of fC 0C 0
o;n gives rise to a non-reduced irreducible com-

ponent of a singular fiber. Hence Cn þQn for n ¼ 13; 21; 24; 28; 35; 38; 44; 43; 58
and 70, we have ðCn=QnÞ ¼ �1.

For n ¼ 9; 16; 18; 26; 27; 30; 43; 48; 49 and 65, the irreducible component in
the table below gives rise to an irreducible conic satisfying the conditions in
Lemma 5.1. Hence our statement follows:

Singular fiber the irreducible component

I�0 Y4 (n ¼ 9; 18)

I�1 Y4 (n ¼ 16), Y5 (n ¼ 30)

I�2 Y5 (n ¼ 26; 48)

IV� Y4 (n ¼ 24; 49)

III� Y4 (n ¼ 43; 65Þ
r

Let qn : ZnðGP1 � P1Þ ! P2 be the double cover with branch locus Cn.
For n such that ðCn=QnÞ ¼ 1, we see that q�

nQn ¼ Qþ
n þQ�

n and Qþ
n @Q�

n @
ð2; 2Þ. Hence by [17, Theorem 0.2, Corollary 0.2], we have

Proposition 5.2. Let k be an integerb 2 and let D2k denote the dihedral
group of order 2k.

� If ðCn=QnÞ ¼ 1, there exists an epimorphism from the fundamental group
p1ðP2nðCn þQnÞ; �Þ ! D2k for any k.

� If ðCn=QnÞ ¼ �1, there exists no epimorphism from the fundamental group
p1ðP2nðCn þQnÞ; �Þ ! D2k for any odd k.

Now the following corollary is immediate:

Corollary 5.1. The pairs of sextic curves

ðC9 þQ9;C13 þQ13Þ; ðC16 þQ16;C21 þQ21Þ; ðC26 þQ26;C35 þQ35Þ;
ðC27 þQ27;C28 þQ28Þ; ðC43 þQ43;C44 þQ44Þ; ðC18 þQ18;C24 þQ24Þ;
ðC30 þQ30;C38 þQ38Þ; ðC48 þQ48;C58 þQ58Þ; ðC49 þQ49;C53 þQ53Þ;
ðC65 þQ65;C70 þQ70Þ

are Zariski pairs.

Remark 5.1. Zariski pairs in Corollary 5.1 can be found in [12]. Our
justification is that their construction is di¤erent from that in [12].

101rational elliptic surfaces



6. Further examples

We consider two more examples of CQ-configurations related to Zariski
triples given in [12].

We label irreducible components of singular fibers and sections on rational
elliptic surfaces X62 and X65 as follows:

We blow down

O;Y0;Y1;Y2;Y3;Y4;Y5;Y8 for X62

and

O;Y0;Y2;Y3; s;Y1;Y7;Y6 for X65

in this order. Then for both cases we have rational surfaces S with Picard
number 2 and the images of Y7 for X62 and Y5 for X65 are ð�2Þ curves. Hence
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by Corollary 1.2, S ¼ S2. Now for both cases, let Fo be one I1-fiber and let F1

be a general smooth fiber. Let ~CCn and ~QQn ðn ¼ 62; 65Þ be the proper transform
of the birational map p � q�1 of type II. Then by our construction, the following
statement is immediate.

Proposition 6.1. (i) For n ¼ 62, Ið ~CC62; ~QQ62Þ ¼ ð8Þ and the tangent line at
~CC62 V ~QQ62 passes through the tacnode of ~QQ62.

(ii) For n ¼ 65, Ið ~CC65; ~QQ65Þ ¼ ð4; 4Þ and the two points in ~CC65 V ~QQ65 and the
tacnode of ~QQ65 are collinear.

Remark 6.1. (i) Note that ðC48 þQ48;C58 þQ58; ~CC65 þ ~QQ65Þ and
ð ~CC62 þ ~QQ62;C65 þQ65;C70 þQ70Þ are Zariski triples given in [12].

(ii) By taking the a‰ne coordinate as in the proof of Lemma 5.1, we can
choose defining equations of ~QQ62 and ~QQ65 of the form l4 þ g1ðu; vÞðu2 � 4vÞ,
where l is a defining equation of the tangent line at ~CC62 V ~QQ62 for No. 62 and
the line connecting ~CC65 V ~QQ65 and the tacnode of ~QQ65.
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