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Abstract

When does a topological group G have a Hausdorff compactification »G with a
remainder belonging to a given class of spaces? In this paper, we mainly improve some
results of A. V. Arhangel’skii and C. Liu’s. Let G be a non-locally compact topological
group and G be a compactification of G. The following facts are established: (1) If
bG\G has locally a k-space with a point-countable k-network and n-character of bG\G
is countable, then G and bG are separable and metrizable; (2) If bG\G has locally a
0f-base, then G and bG are separable and metrizable; (3) If G\G has locally a quasi-
Gs-diagonal, then G and bG are separable and metrizable. Finally, we give a partial
answer for a question, which was posed by C. Liu in [16].

1. Introduction

By a remainder of a space X we understand the subspace bX\X of a
Hausdorff compactification bX of X. In [3, 4, 5, 13, 16], many topologists
studied the following question of a Hausdorff compactification: When does a
Tychonoff space X have a Hausdorff compactification »X with a remainder
belonging to a given class of spaces? A famous classical result in this study is
the following theorem of M. Henriksen and J. Isbell [13]:

(M. Henriksen and J. Isbell) A space X is of countable type if and only if
the remiander in any (in some) compactification of X is Lindel6f

Recall that a space X is of countable type [10] if every compact subspace F
of X is contained in a compact subspace K — X with a countable base of open
neighborhoods in X. Suppose that X is a non-locally compact topological
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group, and that bX is a compactification of X. In [4], A. V. Arhangel’skii
showed that if the remainder ¥ = bX\X has a Gj-diagonal or a point-countable
base, then both X and Y are separable and metrizable. In [16], C. Liu improved
the results of A. V. Arhangel’skii, and proved that if Y satisfies one of the
following conditions (i) and (ii), then X and bX are separable and metrizable.

(i) Y =bX\X is a quotient s-image of a metrizable space, and n-character

of Y is countable;

(i) Y =bX\X has locally a Gs-diagonal.

In this paper, we mainly concerned with the following statement, and under
what condition @ it is true.

Statement Suppose that G is a non-locally compact topological group, and
that ¥ = bG\G has locally a property-®. Then G and bG are separable and
metrizable.

Recall that a space X has locally a property-® if for each point x € X there
exists an open set U with x € U such that U has a property-®.

In Section 2 we mainly study some local properties on the remainders of the
topological group G such that G and G are separable and metrizable if the
n-character of G\ G is countable. Therefore, we extend some results of A. V.
Arhangel’skii and C. Liu.

In Section 3 we prove that if the remainders of a topological group G has
locally a quasi-Gs-diagonal, then G and bG are separable and metrizable. There-
fore, we improve a result of C. Liu in [16]. Also, we study the remainders that
are the unions of Gy-diagonals.

In Section 4 we mainly give a partial answer for a question, which was
posed by C. Liu in [16]. Finally, we also study the remainders that are locally
hereditarily D-spaces.

Recall that a family % of non-empty open sets of a space X is called a
n-base if for each non-empty open set V' of X, there exists an U € % such that
V < U. The n-character of x in X is defined by 7y(x, X) = min{|%| : % is a local
n-base at x in X}. The n-character of X is defined by 7y (X) = sup{my(x, X) :
xeX}.

The p-spaces are a class of generalized metric spaces [1]. It is well-known
that every metrizable space is a p-space, and every p-space is of countable type.

Throughout this paper, all spaces are assumed to be Hausdorff. The posi-
tively natural numbers is denoted by N. We refer the readers to [10, 11] for
notations and terminology not explicitly given here.

2. Remainders with the countable m-characters

Let .o/ be a collection of subsets of X. .7 is a p-network [7] for X if for
distinct points x, y € X, there exists an 4 € .« such that xe 4 < X — {y}. The
collection .« is called a p-base (i.e., T\-point-separating open cover) 7] for X if .o/
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is a p-network and each element of .o/ is an open subset of X. The collection .o/
is a p-metabase [15] (in [7], p-metabase is denoted by the condition (1.5)) for X if
for distinct points x, y € X, there exists an # € /< such that xe (|J#)° <
(JZ = X —{y}. The collection ./ is a p-k-network [15] (in [12], p-k-network is
denoted by the condition (1.4),) for X if, whenever K = X\{y} with K compact
in X, then K = | J# < X\{y} for some F € .o/<.

First, we give some technique lemmas.

Lemma 2.1 [3]. If X is a Lindeldf p-space, then any remainder of X is a
Lindelof p-space.

LemMMa 2.2 [16]. Let G be a non-locally compact topological group. Then
G is locally separable and metrizable if for each point y € Y = bG\G, there is an
open neighborhood U(y) of y such that every countably compact subset of U(y) is
metrizable and m-character of 'Y is countable.

LemmaA 2.3, Suppose that X has a point-countable p-metabase. Then each
countably compact subset of X is a compact, metrizable, Gs-subset' of X.

Proof.  Suppose that % is a point-countable p-metabase of X, and that K is
a countably compact subset of X. Then K is compact by [7]. According to a
generalized MisCenko’s Lemma in [22, Lemma 6], there are only countably many
minimal neighborhood-covers? of K by finite elements of %, say {7 (n) : n € N}.
Let V(n)= )7 (n). Then K < ({V(n):neN}. Suppose that xe X\K.
For each point y € K, there is an 7, € %~ with ye (| )] #,)° = | Z, = X — {x}.
Then there is some sub-collection of (J{#,:yeK} is a minimal finite
neighborhood-covers of K since K is compact. Therefore, we obtain one of
the collections 7"(n) with K = V(n) =) 7' (n) = X — {x}. O

LEMMA 2.4. Suppose that X is a Lindelof space with locally a point-countable
p-metabase. Then X has a point-countable p-metabase.

Proof. For each point x € X, there is an open neighborhood U(x) with
xe U(x) such that U(x) has a point-countable p-metabase .. Let % =
{U(x):xe X}. Since X is Lindeldf, it follows that there exists a count-
able subfamily #' < % such that X =()#'. Denoted %' by {U,, :ieN}.
Obviously, & = Ulﬂ'}[ is a point-countable p-metabase for X. O

YA subset K of X is called a Gs-subset of X if K is the intersection of countably open subsets
of X.

2Let 2 be a collection of subsets of X and 4 = X. The collection 2 is a neighborhood-cover of
Aif A< (|J2)°. A neighborhood-cover 2 of A is a minimal neighborhood-cover if for each P € 2,
2\{P} is not a neighborhood-cover of 4.
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THEOREM 2.5. Suppose that G is a non-locally compact topological group,
and that Y = bG\G has locally a point-countable p-metabase. Then G and bG
are separable and metrizable if n-character of Y is countable.

Proof. 1t is easy to see that G is locally separable and metrizable by
Lemmas 2.2 and 2.3. Then G is a p-space. Hence Y is Lindelof by Henriksen
and Isbell’s theorem. From Lemma 2.4 it follows that ¥ = »G\G has a point-
countable p-metabase.

Claim: The space Y has a Gj-diagonal.

Put G = (—BMA G,, where G, is a separable and metrizable subset for each
aeA. Let {={G,:aeA}, and let F be the set of all points of »G at which {
is not locally finite. Since ( is discrete in G, it follows that F < bG\G. 1t is
easy to see that F is compact. Therefore, it follows from Lemma 2.3 that F is
separable and metrizable. Hence F has a countable network.

Let M = Y\F. For each point y € M, there is an open neighborhood O,
in AG such that O,NF =0. Since { is discrete, O, meets at most finitely
many G,. Let L= U{Ga Gy N O_y #0}. Then L is separable and metrizable.
By Lemma 2.1, L\L is a Lindeldf p-space. Obviously, L\L = Y. Therefore,
L\L has a point-countable p-metabase. Hence L\L is separable and metrizable
by [12], which implies that L has a countable network. It follows that L is
separable and metrizable. Clearly, O, = L and O,N M is separable and met-
rizable. Therefore, M is locally separable and metrizable. From Lemma 2.3 it
follows that each compact subset of Y is a Gs-subset of Y. Since F is compact
and Y is Lindelof, it follows that M is Lindel6f. Therefore, M is separable.
Then M has a countable network. So Y has a countable network, which implies
that Y has a Gy-diagonal. Thus, Claim is verified.

Therefore, G and bG are separable and metrizable by [4, Theorem 5]. ]

COROLLARY 2.6. Suppose that G is a non-locally compact topological group,
and that Y = bG\G has locally a point-countable p-base. Then G and bG are
separable and metrizable if m-character of Y is countable.

COROLLARY 2.7. Suppose that G is a non-locally compact topological group,
and that Y = bG\G is locally a k-space with a point-countable p-k-network. Then
G and bG are separable and metrizable if n-character of Y is countable.

Proof. Note that if 2 is a point-countable p-k-network for a k-space X,
then 2 is a point-countable p-metabase for X by [12]. O

A collection 2 of subsets of a space X is a k-network [11] for X if, whenever
K < U with K compact and U open in X, then K< |)Z < U for some
F € P<?,

Obviously, if a space X has a point-countable k-network, then X has a
point-countable p-k-network. So we have the following Theorem 2.8, which
improves the result [16, Theorem 4] of C. Liu.
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THEOREM 2.8. Suppose that G is a non-locally compact topological group,
and that Y = bG\G is locally a k-space with a point-countable k-network. Then
G and bG are separable and metrizable if n-character of Y is countable.

COROLLARY 2.9 [4]. Suppose that G is a non-locally compact topological
group. If Y = bG\G has a point-countable base, then G and bG are separable and
metrizable.

Next, we consider the remainders with locally a 60-base® of the topological
groups.

LeEMMA 2.10. Let X be a Lindeldf space with locally a 60-base. Then X has
a 60-base.

Proof. For each point x € X, there is an open neighborhood U(x) with
x € U(x) such that U(x) has a d0-base B, =), %, . Let % ={U(x):xeX}.
Since X is Lindelof, it follows that there exists a countable subfamily %' = %
such that X = | J%’. Denoted %' by {U,, :ieN}. Obviously, % = Ui,n%"w‘f
is a df-base for X.

THEOREM 2.11. Let G be a non-locally compact topological group. If
Y = bG\G has locally a d0-base. Then G and bG are separable and metrizable.

Proof. Obviously, Y is first countable. By [8, Proposition 2.1], each
countably compact subset of Y is a compact, metrizable, Gj-subset of Y.
From Lemma 2.2 it follows that G is locally separable and metrizable. Then G
is a p-space. Hence Y is Lindelo6f by Henriksen and Isbell’s theorem. From
Lemma 2.10 it follows that Y = hG\G has a d0-base.

By the same notations in Theorem 2.5, it is easy to see from [8, Propostion
2.1] that F = bG\G is compact and metrizable in view of the proof of Theorem
2.5. By [11, Corollary 8.3] and Lemma 2.1, L\L is separable and metrizable.
In view of the proof of Theorem 2.5, G and bG are separable and metrizable
by [8, Propostion 2.1]. ]

COROLLARY 2.12 [16]. Let G be a non-locally compact topological group. If
Y =bG\G is locally a quasi-developable*. Then G and bG are separable and
metrizable.

3Recall that a collection % = Un %, of open subsets of a space X is a d0-base [11] if whenever
x e U with U open, there exist an ne N and a Be # such that

(i) 1<ord(x,4,) <w;

(i) xeBc U.

*A space X is quasi-developable if there exists a sequence {%,}, of families of open subsets of X
such that for each point x e X, {st(x,%,):neN,st(x,%,) # 0} is a base at x.
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Finally, we consider the remainders with locally a c-semistratifiable space of
the topological group.

Let X be a topological space. X is called a c-semistratifiable space(CSS)
[17] if for each compact subset K of X and each n e N there is an open set
G(n,K) in X such that:

() ({G(n.K):neN}=K;

(i) Gm+1,K) = G(n,K) for each neN; and

(iii) if for any compact subsets K, L of X with K = L, then G(n,K) <

G(n,L) for each neN.

THEOREM 2.13.  Suppose that G is a non-locally compact topological group,
and that Y = bG\G is locally a CSS-space. Then G and bG are separable and
metrizable if m-character of Y is countable.

Proof. By [8, Proposition 3.8(c)] and the definition of CSS-spaces, it is
easy to see that each countably compact subset of Y is a compact, metrizable,
Gs-subset of Y. From Lemma 2.2 it follows that G is locally separable and
metrizable. Then G is a p-space. Hence Y is Lindel6f by Henriksen and
Isbell’s theorem. From Lemma 2.10 it follows that ¥ = bG\G is a CSS-space
by [8, Proposition 3.5].

By the same notations in Theorem 2.5, it is easy to see from [8, Proposition
3.8] that F < bG\G is compact and metrizable in view of the proof of Theorem
2.5. By [8, Proposition 3.8], L\L is separable and metrizable. In view of the
proof of Theorem 2.5, it is easy to see that G and bhG are separable and
metrizable. O

COROLLARY 2.14.  Suppose that G is a non-locally compact topological group,
and that Y = bG\G is locally a o*-space®. Then G and bG are separable and
metrizable if m-character of Y is countable.

Proof. By [8, Lemma 3.1], it follows that every o#-space is a CSS-space.
Hence G and bG are separable and metrizable by Theorem 2.13. O

QUESTION 2.15. Let G be a non-locally compact topological group. If Y =
bG\G satisfies the following conditions (1) and (2), are G and bG separable and
metrizable?

(1) For each point y € Y, there exists an open neighborhood U(y) of y such

that every countably compact subset of U(y) is metirzable and Gs-subset
of U(y);
(2) m-character of Y is countable.

SA space X is called a o%-space [17] if X has a o-closure-preserving closed p-network.
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3. Remainders that are locally quasi-Gj-diagonals, and that are unions

First, we study the remainders with locally a quasi-Gs-diagonal® and improve
a result of C. Liu.

We call a space X is Ohio complete [3] if in each compactification bX of X
there is a Gs-subset Z such that X < Z and each point y € Z\X is separated
from X by a Gj-subset of Z.

Lemma 3.1. Let X be a p-space and every compact subset of bX\X be
metrizalbe. Then there exists a Gs-subset Y of bX such that X < Y and satisfies
the following conditions:

(1) bX is first countable at every point y € Y\X;

(2) If X is a topological group and Y\X NX # O, then X is metrizable.

Proof. Since X is a p-space, X is Ohio complete [3, Corollary 3.7]. It
follows that there is a Gj-subset Y of bX such that X < Y and every point
ye Y\X can be separated from X by a Gj-subset. We now prove that Y
satisfies the conditions (1) and (2).

(1) From the choice of Y, it is easy to see that for every point y e Y\X
there exists a compact Gj-subset C of bX such that ye C < Y\X < bX\X.
Since C is compact, the compact subset C is metrizable. Therefore, y is a Gj-
point in bX and hence, bX is first countable at y.

(2) We choose a point ae Y\XNX. Since X is a p-space, there exists
a compact subset F of X such that «e F and F has a countable base of
neighborhoods in X. Since X is dense in bX, the set F has a countable base
of open neighborhoods ¢ = {U,:new} in bX. Since ae Y\X, we can fix a
by, e U,N(Y\X) for each ne w. Obviously, there is a point ¢ € F which is a
limit point for the sequence {b,}. By (1), we know that bX is first countable
at b, for every new. We can fix a countable base #, of bX at b,. Then
(J{m, : n € w} is a countable n-base of bX at ¢. Then the space X also has
a countable 7m-base at ¢, since ce X and X is dense in bX. Since X is a
topological group, the space X is metrizable. O

THEOREM 3.2. Let G be a non-locally compact topological group. If Y =
bG\G has a quasi-Gs-diagonal. Then G and bG are separable and metrizable.

Proof. Obviously, Y has a countable pseudocharacter. By [5, Theorem 5.1],
G is a paracompact p-space or Y is first countable.

Case 1: The space Y is first countable.

From [8, Proposition 2.3] it follows that each countably compact subset of Y
is a compact, metrizable, Gs-subset of Y. Note that a Lindel6f p-space with a

®A space X has a quasi-Gs-diagonal [14] if there exists a sequence {%,}, of families of open
subsets of X such that for each point x € X, {st(x,%,) : n € N,st(x,%,) # 0} is a p-network at point x.
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quasi-Gjs-diagonal is metrizable by [14, Corollary 3.6]. In view of the proof of
Theorem 2.5, it is easy to see that G and G are separable and metrizable.

Case 2: The space G is a paracompact p-space.

By [3, Corollary 3.7], G is Ohio complete. Therefore, there exists a
Gs-subset X of hG such that G = X and every point x € X\ G can be separated
from G by a Gs-set of X. Let M = X\G. Then bG is first countable at every
point y e M by Lemma 3.1.

Subcase 1: MNG=0. Then X\M = G. Hence G is a Gs-subset of bG.
It follows that Y is o-compact. Since Y has a quasi-Gj-diagonal, every compact
subspace of Y is separable and metrizable by [8, Proposition 2.3]. Hence Y is
separable. Since both Y and G are dense in bG, it follows that the souslin
number of G is countable. The space G is Lindeldf, since G is paracompact.
Therefore, G is a Lindelof p-space. Then Y is a Lindelof p-space by Lemma 2.1.
Since Y has a quasi-Gjs-diagonal, the space Y is metrizable by [14, Corollary 3.6].
It follows that Y has a Gj-diagonal. Therefore, G and bG are separable and
metrizable by [4, Theorem 5].

Subcase 2: MNG # 0. Then G is metrizable by Lemma 3.1.

Subcase 2(a): G is locally separable. By [8, Proposition 2.3], it is easy to
see that G and bG are separable and metrizable by the proof of Theorem 2.5.

Subcase 2(b): G is nowhere locally separable. Fix a base 2 = | J{#%, : n € N}
of G such that each %, is discrete in G. Let F, be the set of all accumulation
points for %, in bG for each neN. Put Z=|J{F,:neN}. Then Z is dense
in Y and o-compact by [4, Proposition 4]. Since every compact space with a
quasi-Gjs-diagonal is separable and metrizable by [8, Proposition 2.3], the space Z
has a countable network. Because G is nowhere locally compact, the space Y is
dense in bG. It follows that Z is dense in bG. Hence bG is separable, which
implies that the Souslin number of G is countable. Since G is metrizable, the
space G is separable. Then Y is a Lindelof p-space by Lemma 2.1. Hence Y is
metrizable by [14, Corollary 3.6]. It follows that Y is separable and metrizable,
which implies that G and bG are separable and metrizable. O

LemMma 3.3. Let X be a Lindelof space with locally a quasi-Gs-diagonal.
Then X has a quasi-Gs-diagonal.

Proof. For each point x € X, there exists an open neighborhood U(x) such
that x e U(x) and U(x) has a quasi-Gs-diagonal. Then # = {U(x) : xe X} is
an open cover of X. Since X is a Lindelof space, there exists a countable
subfamily 7" < % such that X =(J7". Denoted ¥~ by {U,:neN}. For
each neN, let {%u},.n be a quasi-Gs-diagonal sequence of U,. Let & =
{# i}, ken- Then F is a quasi-Gs-diagonal sequence of X.

Indeed, for distinct points x, y € X, there exists an n € N such that x € U,.

If y¢ U, then xe U, =« X —{y}. Since {Zu},n 18 @ quasi-Gs-diagonal
sequence of U, there exists a k € N such that x € (| %,x. Hence x € st(x, %) =
U%nk [ Un CX—{y}
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If yeU, then xeU,—{y} =« X —{y}. Since {%uw},.n 1S a quasi-
Gs-diagonal sequence of U,, there exists a k€N such that xest(x, ) <

Therefore, # is a quasi-Gs-diagonal sequence of X. O

THEOREM 3.4. Let G be a non-locally compact topological group. If Y =
bG\G has locally a quasi-Gs-diagonal, then G and bG are separable and metrizable.

Proof. By [8, Proposition 2.1 and 2.5] and Lemma 2.2, it is easy to see that

G is locally a separable and metrizable space. Then Y is a Lindeldf space by
Henriksen and Isbell’s theorem. From Lemma 3.3 it follows that Y has a quasi-
Gs-diagonal. Then G and bG are separable and metrizable by Theorem 3.2.
Ul

QUESTION 3.5. Is there a topological group G such that the Y = bG\G has
a Ws-diagonal’, G is not reparable and metrizable?

COROLLARY 3.6 [16]. Let G be a non-locally compact topological group. If
Y = bG\G has locally a Gs-diagonal, then G and bG are separable and metrizable.

Next, we study the remainder that are the unions of the Gj-diagonals.

Lemma 3.7. Let G be a non-locally compact topological group. If there
exists a point a € Y = bG\G such that {a} is a Gs-set in Y, then at least one of the
Jfollowing conditions holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

Proof. Suppose that Y is not first-countable at point . Since «a is a Gjy-
point in Y, there exists a compact subset F' = bG with a countable base at F
in G such that {a} = FN(bG\G). We have F\{a} # 0, since Y is not first-
countable at point @. Therefore, there exists a non-empty compact subset B = F
with a countable base at B in bG. Obviously, B < G. It follows that G is a
topological group of countable type [18]. Therefore, G is a paracompact p-space
[18]. O

Lemma 3.8. Let G be a non-locally compact topological group, and
Y =bG\G = Y UY,, where both Y, and Y, have a countable pseudocharacter.
If at most one of the Y| and Y, is dense in bG, then at least one of the following
conditions holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

7A space X is said to have a W;-diagonal if there is a sequence (4,) of bases for X such that
whenever x € B, € %,, and (B,) is decreasing (by set inclusion), then {x} = (){B,:new}.
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Proof. Without loss of generality, we can assume that Y| # bG. Let
U=bG\Y,. Then V=UNY=UNY,#0. It follows that V is an open
subset of Y and each point of V' is a Gs-point. By Lemma 3.7, we complete the
proof. O

THEOREM 3.9. Let G be a non-locally compact topological group, and
Y =bG\G = Y UY,, where both Y, and Y, have a countable pseudocharacter.
If both Y| and Y, are Ohio complete, then at least one of the following conditions
holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

Proof. Case 1: Y| # bG or Y, # bG.

It is easy to see by Lemma 3.8.

Case 2: Y| = bhG and Y, = hG.

Then bG is the Hausdorff compactification of Y; and Y;. Since Y] and Y,
are Ohio complete, there exist Gs-subsets X; and X, satisfy the definition of Ohio
complete, respectively.

Case 2(a): Y1 =X; and Y, = X5.

Then Y has countable pseudocharacter. By [5, Theorem 5.1], we complete
the proof.

Case 2(b): Y # X| or Y2 # X>.

Without loss of generality, we can assume that Y} # X;. If (X3\Y1)N
Y, # 0, then for each y e (X7\ Y1) N Y, there exists a compact subset C such that
yeC and CNY; =0. Obviously, y is a Gs-point of Y. By Lemma 3.7, we
also complete the proof. If (X;\Y;)N Y, =0, then there exists a compact
subset C = G with a countable base at C in bG. It follows that G is a
topological group of countable type [18]. Therefore, G is a paracompact p-space

[18]. O

A space with a Gs-diagonal is Ohio complete [2]. Therefore, by Theorem
3.9, we have the following result.

THEOREM 3.10. Let G be a non-locally compact topological group, and
Y =bG\G = Y1 U Y,, where both Y1 and Y, have a Gs-diagonal. Then at least
one of the following conditions holds:

(1) G is a paracompact p-space;

(2) Y is first-countable at some point.

QuestioN 3.11. Let G be a non-locally compact topological group, and
Y =bG\G = U;;f Y;, where Y; has a Gs-diagonal for every 1 <i<n. Is G a
paracompact p-space or is Y first-countable at some point?

QUuUESTION 3.12. Let G be a non-locally compact topological group, and
Y =bG\G = Y UY,, where both ¥; and Y, have quasi-Gs-diagonal. Is G a
paracompact p-space or is Y first-countable at some point?
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4. Remainders of locally BCO and locally hereditarily D-spaces
First, we study the following question, which was posed by C. Liu in [16].

QUESTION 4.1. Let G be a non-locally compact topological group, and
Y = bG\G have a BCO®. Are G and bG separable and metrizable?

Now we give a partial answer for Question 4.1.

THEOREM 4.2. Let G be a non-locally compact topological group, and
Y =bG\G has a BCO. If Y is Ohio complete, then G and bG are separable
and metrizable.

Proof. Since Y is Ohio complete, G is a paracompact p-space or g-compact
space by [3, Theorem 4.3].

Case 1: The space G is a paracompact p-space.

Since G is a p-space, the space Y is Lindeléf by Henriksen and Isbell’s
theorem. Hence Y is developable by [11, Theorem 6.6]. Then G and bG are
separable and metrizable by Theorem 3.4.

Case 2: The space G is a g-compact space.

We claim that G is metrizable. Suppose that G is not metrizable. Then Y
is w-bounded® by [5, Theorem 3.12]. Since G is a g-compact topological group,
the Souslin number ¢(G) of G is countable by a theorem of Tkachenko [21,
Corollary 2]. Therefore, ¢(bG) <w. Y is dense in bG, since G is non-locally
compact. It follows that ¢(Y) <w as well. Since Y is Cech-complete, there
exists a dense subspace Z < Y such that Z is a paracompact and Cech-complete
subspace of Y by [19]. Then Z is a paracompact space with a BCO. There-
fore, Z is metrizable by [11, Theorem 1.2 and 6.6]. Since ¢(Y)<w and Z
is dense for Y, ¢(Z) < w as well. It follows that Z is separable. Since Y is
w-bounded, it is compact. Therefore, G is locally compact, which is a contra-
diction. It follows that G is metrizable. Therefore, G and bG are separable and
metrizable by Case 1. O

THEOREM 4.3. Let G be a non-locally compact topological group, and
Y =bG\G have a BCO. If G is an Z-space, then G and bG are separable
and metrizable.

Proof. From [6, Theorem 2.8] it follows that every compact subspace of Y
has countable character in Y. Since G is non-locally compact, Y is also a dense
subset of bG. Hence G is Lindelof space by Henriksen and Isbell’s theorem. If

8 A space X is said to have a base of countable order(BCO) [11] if there is a sequence {%,} of
base for X such that whenever x € b, € 4, and (b,) is decreasing (by set inclusion), then {b, : n € N} is
a base at x.

°A space X is said to be w-bounded if the clourse of every countable subset of X is compact.
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G is a g-compact space, then G and bG are separable and metrizable by Case 2
in Theorem 4.2. Hence we assume that G is non-g-compact. Since G is a
Lindelof X-space, it is easy to see that G is a Lindelo6f p-space by the proof of
[5, Theorem 4.2]. It follows that G and bG are separable and metrizable by
Case 1 in Theorem 4.2. O

Finally, we study the remainders of topological groups with locally a
hereditarily D-space.

THEOREM 4.4. Let G be a topological group. If for each yeY = bG\G
there exists an open neighborhood U(y) of y such that every w-bounded subset of
U(y) is compact, then at least one of the following conditions holds:

(1) G is metrizable;

(2) bG can be continuously mapped onto the Tychonoff cube I®.

Proof. Case 1: The space G is locally compact.

If G is not metrizable, then G contains a topological copy of D®'. Since the
space G is normal, the space G can be continuously mapped onto the Tychonoff
cube 1

Case 2: The space G is not locally compact.

Obviously, both G and Y are dense in bG. Suppose that the condition (2)
doesn’t hold. Then, by a theorem of Sapirovskii in [20], the set 4 of all points
x € bG such that the n-character of G at x is countable is dense in bG. Since G
is dense in bG, it can follow that the n-character of G is countable at each point
of ANG.

Subcase 2(a): ANG # 0.

Since G is a topological group, it follows that G is first countable, which
implies that G is metrizable.

Subcase 2(b): 4N G = 0.

Obviously, 4 = Y. For each ye Y, there exists an open neighborhood
U(y) in Y such that y e U(y) and every w-bounded subset of U(y) is compact.
Obviously, ANU(y) is dense of U(y). Also, it is easy to see that AN U(y) is
w-bounded subset for U(y). Therefore, 4N U(y) is compact. Then AN U(y) =
U(y), since ANU(y) is dense of U(y). Hence Y is locally compact, a contra-
diction. O

A neighborhood assignment for a space X is a function ¢ from X to the
topology of X such that x € ¢(x) for each point x € X. A space X is a D-space
[9], if for any neighborhood assignment ¢ for X there is a closed discrete subset
D of X such that X = (]J,_, ¢(d).

It is easy to see that every countably compact D-space is compact. Hence
we have the following result by Theroem 4.4.

THEOREM 4.5. Let G be a topological group. If Y =bG\G is locally a
hereditarily D-space, then at least one of the following conditions holds:
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(1) G is metrizable;
(2) bG can be continuously mapped onto the Tychonoff cube I“'.
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