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Abstract

When does a topological group G have a Hausdor¤ compactification bG with a

remainder belonging to a given class of spaces? In this paper, we mainly improve some

results of A. V. Arhangel’skiı̌ and C. Liu’s. Let G be a non-locally compact topological

group and bG be a compactification of G. The following facts are established: (1) If

bGnG has locally a k-space with a point-countable k-network and p-character of bGnG
is countable, then G and bG are separable and metrizable; (2) If bGnG has locally a

dy-base, then G and bG are separable and metrizable; (3) If bGnG has locally a quasi-

Gd-diagonal, then G and bG are separable and metrizable. Finally, we give a partial

answer for a question, which was posed by C. Liu in [16].

1. Introduction

By a remainder of a space X we understand the subspace bXnX of a
Hausdor¤ compactification bX of X . In [3, 4, 5, 13, 16], many topologists
studied the following question of a Hausdor¤ compactification: When does a
Tychono¤ space X have a Hausdor¤ compactification bX with a remainder
belonging to a given class of spaces? A famous classical result in this study is
the following theorem of M. Henriksen and J. Isbell [13]:

(M. Henriksen and J. Isbell) A space X is of countable type if and only if
the remiander in any (in some) compactification of X is Lindelöf

Recall that a space X is of countable type [10] if every compact subspace F
of X is contained in a compact subspace KHX with a countable base of open
neighborhoods in X . Suppose that X is a non-locally compact topological
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group, and that bX is a compactification of X . In [4], A. V. Arhangel’skiı̌
showed that if the remainder Y ¼ bXnX has a Gd-diagonal or a point-countable
base, then both X and Y are separable and metrizable. In [16], C. Liu improved
the results of A. V. Arhangel’skiı̌, and proved that if Y satisfies one of the
following conditions (i) and (ii), then X and bX are separable and metrizable.

(i) Y ¼ bXnX is a quotient s-image of a metrizable space, and p-character
of Y is countable;

(ii) Y ¼ bXnX has locally a Gd-diagonal.
In this paper, we mainly concerned with the following statement, and under

what condition F it is true.

Statement Suppose that G is a non-locally compact topological group, and
that Y ¼ bGnG has locally a property-F. Then G and bG are separable and
metrizable.

Recall that a space X has locally a property-F if for each point x A X there
exists an open set U with x A U such that U has a property-F.

In Section 2 we mainly study some local properties on the remainders of the
topological group G such that G and bG are separable and metrizable if the
p-character of bGnG is countable. Therefore, we extend some results of A. V.
Arhangel’skiı̌ and C. Liu.

In Section 3 we prove that if the remainders of a topological group G has
locally a quasi-Gd-diagonal, then G and bG are separable and metrizable. There-
fore, we improve a result of C. Liu in [16]. Also, we study the remainders that
are the unions of Gd-diagonals.

In Section 4 we mainly give a partial answer for a question, which was
posed by C. Liu in [16]. Finally, we also study the remainders that are locally
hereditarily D-spaces.

Recall that a family U of non-empty open sets of a space X is called a
p-base if for each non-empty open set V of X , there exists an U A U such that
V HU . The p-character of x in X is defined by pwðx;X Þ ¼ minfjUj : U is a local
p-base at x in Xg. The p-character of X is defined by pwðXÞ ¼ supfpwðx;XÞ :
x A Xg.

The p-spaces are a class of generalized metric spaces [1]. It is well-known
that every metrizable space is a p-space, and every p-space is of countable type.

Throughout this paper, all spaces are assumed to be Hausdor¤. The posi-
tively natural numbers is denoted by N. We refer the readers to [10, 11] for
notations and terminology not explicitly given here.

2. Remainders with the countable p-characters

Let A be a collection of subsets of X . A is a p-network [7] for X if for
distinct points x; y A X , there exists an A A A such that x A AHX � fyg. The
collection A is called a p-base (i.e., T1-point-separating open cover) [7] for X if A
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is a p-network and each element of A is an open subset of X . The collection A
is a p-metabase [15] (in [7], p-metabase is denoted by the condition (1.5)) for X if
for distinct points x; y A X , there exists an F A A<o such that x A ð6FÞ� H
6FHX � fyg. The collection A is a p-k-network [15] (in [12], p-k-network is
denoted by the condition (1.4)p) for X if, whenever KHXnfyg with K compact
in X , then KH6FHXnfyg for some F A A<o.

First, we give some technique lemmas.

Lemma 2.1 [3]. If X is a Lindelöf p-space, then any remainder of X is a
Lindelöf p-space.

Lemma 2.2 [16]. Let G be a non-locally compact topological group. Then
G is locally separable and metrizable if for each point y A Y ¼ bGnG, there is an
open neighborhood UðyÞ of y such that every countably compact subset of UðyÞ is
metrizable and p-character of Y is countable.

Lemma 2.3. Suppose that X has a point-countable p-metabase. Then each
countably compact subset of X is a compact, metrizable, Gd-subset1 of X.

Proof. Suppose that U is a point-countable p-metabase of X , and that K is
a countably compact subset of X . Then K is compact by [7]. According to a
generalized Mis̆c̆enko’s Lemma in [22, Lemma 6], there are only countably many
minimal neighborhood-covers2 of K by finite elements of U, say fVðnÞ : n A Ng.
Let VðnÞ ¼ 6VðnÞ. Then KH7fVðnÞ : n A Ng. Suppose that x A XnK .
For each point y A K , there is an Fy A U<o with y A ð6FyÞ� H6Fy HX � fxg.
Then there is some sub-collection of 6fFy : y A Kg is a minimal finite
neighborhood-covers of K since K is compact. Therefore, we obtain one of
the collections VðnÞ with KHVðnÞ ¼ 6VðnÞHX � fxg. r

Lemma 2.4. Suppose that X is a Lindelöf space with locally a point-countable
p-metabase. Then X has a point-countable p-metabase.

Proof. For each point x A X , there is an open neighborhood UðxÞ with
x A UðxÞ such that UðxÞ has a point-countable p-metabase Fx. Let U ¼
fUðxÞ : x A Xg. Since X is Lindelöf, it follows that there exists a count-
able subfamily U 0 HU such that X ¼ 6U 0. Denoted U 0 by fUxi : i A Ng.
Obviously, F ¼ 6

i
Fxi is a point-countable p-metabase for X . r

1A subset K of X is called a Gd-subset of X if K is the intersection of countably open subsets

of X .

2Let P be a collection of subsets of X and AHX . The collection P is a neighborhood-cover of

A if AH ð6PÞ�. A neighborhood-cover P of A is a minimal neighborhood-cover if for each P A P,

PnfPg is not a neighborhood-cover of A.
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Theorem 2.5. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG has locally a point-countable p-metabase. Then G and bG
are separable and metrizable if p-character of Y is countable.

Proof. It is easy to see that G is locally separable and metrizable by
Lemmas 2.2 and 2.3. Then G is a p-space. Hence Y is Lindelöf by Henriksen
and Isbell’s theorem. From Lemma 2.4 it follows that Y ¼ bGnG has a point-
countable p-metabase.

Claim: The space Y has a Gd-diagonal.
Put G ¼ 0

a A5Ga, where Ga is a separable and metrizable subset for each

a A5. Let z ¼ fGa : a A5g, and let F be the set of all points of bG at which z
is not locally finite. Since z is discrete in G, it follows that F H bGnG. It is
easy to see that F is compact. Therefore, it follows from Lemma 2.3 that F is
separable and metrizable. Hence F has a countable network.

Let M ¼ YnF . For each point y A M, there is an open neighborhood Oy

in bG such that Oy VF ¼ j. Since z is discrete, Oy meets at most finitely
many Ga. Let L ¼ 6fGa : Ga VOy 0jg. Then L is separable and metrizable.
By Lemma 2.1, LnL is a Lindelöf p-space. Obviously, LnLHY . Therefore,
LnL has a point-countable p-metabase. Hence LnL is separable and metrizable
by [12], which implies that L has a countable network. It follows that L is
separable and metrizable. Clearly, Oy HL and Oy VM is separable and met-
rizable. Therefore, M is locally separable and metrizable. From Lemma 2.3 it
follows that each compact subset of Y is a Gd-subset of Y . Since F is compact
and Y is Lindelöf, it follows that M is Lindelöf. Therefore, M is separable.
Then M has a countable network. So Y has a countable network, which implies
that Y has a Gd-diagonal. Thus, Claim is verified.

Therefore, G and bG are separable and metrizable by [4, Theorem 5]. r

Corollary 2.6. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG has locally a point-countable p-base. Then G and bG are
separable and metrizable if p-character of Y is countable.

Corollary 2.7. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG is locally a k-space with a point-countable p-k-network. Then
G and bG are separable and metrizable if p-character of Y is countable.

Proof. Note that if P is a point-countable p-k-network for a k-space X ,
then P is a point-countable p-metabase for X by [12]. r

A collection P of subsets of a space X is a k-network [11] for X if, whenever
KHU with K compact and U open in X , then KH6FHU for some
F A P<o.

Obviously, if a space X has a point-countable k-network, then X has a
point-countable p-k-network. So we have the following Theorem 2.8, which
improves the result [16, Theorem 4] of C. Liu.
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Theorem 2.8. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG is locally a k-space with a point-countable k-network. Then
G and bG are separable and metrizable if p-character of Y is countable.

Corollary 2.9 [4]. Suppose that G is a non-locally compact topological
group. If Y ¼ bGnG has a point-countable base, then G and bG are separable and
metrizable.

Next, we consider the remainders with locally a dy-base3 of the topological
groups.

Lemma 2.10. Let X be a Lindelöf space with locally a dy-base. Then X has
a dy-base.

Proof. For each point x A X , there is an open neighborhood UðxÞ with
x A UðxÞ such that UðxÞ has a dy-base Bx ¼ 6

n
Bn;x. Let U ¼ fUðxÞ : x A Xg.

Since X is Lindelöf, it follows that there exists a countable subfamily U 0 HU
such that X ¼ 6U 0. Denoted U 0 by fUxi : i A Ng. Obviously, B ¼ 6

i;n
Bn;xi

is a dy-base for X . r

Theorem 2.11. Let G be a non-locally compact topological group. If
Y ¼ bGnG has locally a dy-base. Then G and bG are separable and metrizable.

Proof. Obviously, Y is first countable. By [8, Proposition 2.1], each
countably compact subset of Y is a compact, metrizable, Gd-subset of Y .
From Lemma 2.2 it follows that G is locally separable and metrizable. Then G
is a p-space. Hence Y is Lindelöf by Henriksen and Isbell’s theorem. From
Lemma 2.10 it follows that Y ¼ bGnG has a dy-base.

By the same notations in Theorem 2.5, it is easy to see from [8, Propostion
2.1] that F H bGnG is compact and metrizable in view of the proof of Theorem
2.5. By [11, Corollary 8.3] and Lemma 2.1, LnL is separable and metrizable.
In view of the proof of Theorem 2.5, G and bG are separable and metrizable
by [8, Propostion 2.1]. r

Corollary 2.12 [16]. Let G be a non-locally compact topological group. If
Y ¼ bGnG is locally a quasi-developable4. Then G and bG are separable and
metrizable.

3Recall that a collection B ¼ 6
n
Bn of open subsets of a space X is a dy-base [11] if whenever

x A U with U open, there exist an n A N and a B A B such that

(i) 1a ordðx;BnÞao;

(ii) x A BHU .

4A space X is quasi-developable if there exists a sequence fGngn of families of open subsets of X

such that for each point x A X , fstðx;GnÞ : n A N; stðx;GnÞ0jg is a base at x.
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Finally, we consider the remainders with locally a c-semistratifiable space of
the topological group.

Let X be a topological space. X is called a c-semistratifiable space(CSS)
[17] if for each compact subset K of X and each n A N there is an open set
Gðn;KÞ in X such that:

(i) 7fGðn;KÞ : n A Ng ¼ K ;
(ii) Gðnþ 1;KÞHGðn;KÞ for each n A N; and
(iii) if for any compact subsets K , L of X with KHL, then Gðn;KÞH

Gðn;LÞ for each n A N.

Theorem 2.13. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG is locally a CSS-space. Then G and bG are separable and
metrizable if p-character of Y is countable.

Proof. By [8, Proposition 3.8(c)] and the definition of CSS-spaces, it is
easy to see that each countably compact subset of Y is a compact, metrizable,
Gd-subset of Y . From Lemma 2.2 it follows that G is locally separable and
metrizable. Then G is a p-space. Hence Y is Lindelöf by Henriksen and
Isbell’s theorem. From Lemma 2.10 it follows that Y ¼ bGnG is a CSS-space
by [8, Proposition 3.5].

By the same notations in Theorem 2.5, it is easy to see from [8, Proposition
3.8] that F H bGnG is compact and metrizable in view of the proof of Theorem
2.5. By [8, Proposition 3.8], LnL is separable and metrizable. In view of the
proof of Theorem 2.5, it is easy to see that G and bG are separable and
metrizable. r

Corollary 2.14. Suppose that G is a non-locally compact topological group,
and that Y ¼ bGnG is locally a sa-space5. Then G and bG are separable and
metrizable if p-character of Y is countable.

Proof. By [8, Lemma 3.1], it follows that every sa-space is a CSS-space.
Hence G and bG are separable and metrizable by Theorem 2.13. r

Question 2.15. Let G be a non-locally compact topological group. If Y ¼
bGnG satisfies the following conditions (1) and (2), are G and bG separable and
metrizable?

(1) For each point y A Y , there exists an open neighborhood UðyÞ of y such
that every countably compact subset of UðyÞ is metirzable and Gd-subset
of UðyÞ;

(2) p-character of Y is countable.

5A space X is called a sa-space [17] if X has a s-closure-preserving closed p-network.
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3. Remainders that are locally quasi-Gd-diagonals, and that are unions

First, we study the remainders with locally a quasi-Gd-diagonal6 and improve
a result of C. Liu.

We call a space X is Ohio complete [3] if in each compactification bX of X
there is a Gd-subset Z such that X HZ and each point y A ZnX is separated
from X by a Gd-subset of Z.

Lemma 3.1. Let X be a p-space and every compact subset of bXnX be
metrizalbe. Then there exists a Gd-subset Y of bX such that X HY and satisfies
the following conditions:

(1) bX is first countable at every point y A YnX ;

(2) If X is a topological group and YnX VX 0j, then X is metrizable.

Proof. Since X is a p-space, X is Ohio complete [3, Corollary 3.7]. It
follows that there is a Gd-subset Y of bX such that X HY and every point
y A YnX can be separated from X by a Gd-subset. We now prove that Y
satisfies the conditions (1) and (2).

(1) From the choice of Y , it is easy to see that for every point y A YnX
there exists a compact Gd-subset C of bX such that y A CHYnX H bXnX .
Since C is compact, the compact subset C is metrizable. Therefore, y is a Gd-
point in bX and hence, bX is first countable at y.

(2) We choose a point a A YnX VX . Since X is a p-space, there exists
a compact subset F of X such that a A F and F has a countable base of
neighborhoods in X . Since X is dense in bX , the set F has a countable base
of open neighborhoods f ¼ fUn : n A og in bX . Since a A YnX , we can fix a
bn A Un V ðYnXÞ for each n A o. Obviously, there is a point c A F which is a
limit point for the sequence fbng. By (1), we know that bX is first countable
at bn for every n A o. We can fix a countable base hn of bX at bn. Then
6fhn : n A og is a countable p-base of bX at c. Then the space X also has
a countable p-base at c, since c A X and X is dense in bX . Since X is a
topological group, the space X is metrizable. r

Theorem 3.2. Let G be a non-locally compact topological group. If Y ¼
bGnG has a quasi-Gd-diagonal. Then G and bG are separable and metrizable.

Proof. Obviously, Y has a countable pseudocharacter. By [5, Theorem 5.1],
G is a paracompact p-space or Y is first countable.

Case 1: The space Y is first countable.
From [8, Proposition 2.3] it follows that each countably compact subset of Y

is a compact, metrizable, Gd-subset of Y . Note that a Lindelöf p-space with a

6A space X has a quasi-Gd-diagonal [14] if there exists a sequence fGngn of families of open

subsets of X such that for each point x A X , fstðx;GnÞ : n A N; stðx;GnÞ0jg is a p-network at point x.
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quasi-Gd-diagonal is metrizable by [14, Corollary 3.6]. In view of the proof of
Theorem 2.5, it is easy to see that G and bG are separable and metrizable.

Case 2: The space G is a paracompact p-space.
By [3, Corollary 3.7], G is Ohio complete. Therefore, there exists a

Gd-subset X of bG such that GHX and every point x A XnG can be separated
from G by a Gd-set of X . Let M ¼ XnG. Then bG is first countable at every
point y A M by Lemma 3.1.

Subcase 1: M VG ¼ j. Then XnM ¼ G. Hence G is a Gd-subset of bG.
It follows that Y is s-compact. Since Y has a quasi-Gd-diagonal, every compact
subspace of Y is separable and metrizable by [8, Proposition 2.3]. Hence Y is
separable. Since both Y and G are dense in bG, it follows that the souslin
number of G is countable. The space G is Lindelöf, since G is paracompact.
Therefore, G is a Lindelöf p-space. Then Y is a Lindelöf p-space by Lemma 2.1.
Since Y has a quasi-Gd-diagonal, the space Y is metrizable by [14, Corollary 3.6].
It follows that Y has a Gd-diagonal. Therefore, G and bG are separable and
metrizable by [4, Theorem 5].

Subcase 2: M VG0j. Then G is metrizable by Lemma 3.1.
Subcase 2(a): G is locally separable. By [8, Proposition 2.3], it is easy to

see that G and bG are separable and metrizable by the proof of Theorem 2.5.
Subcase 2(b): G is nowhere locally separable. Fix a base B ¼ 6fUn : n A Ng

of G such that each Un is discrete in G. Let Fn be the set of all accumulation
points for Un in bG for each n A N. Put Z ¼ 6fFn : n A Ng. Then Z is dense
in Y and s-compact by [4, Proposition 4]. Since every compact space with a
quasi-Gd-diagonal is separable and metrizable by [8, Proposition 2.3], the space Z
has a countable network. Because G is nowhere locally compact, the space Y is
dense in bG. It follows that Z is dense in bG. Hence bG is separable, which
implies that the Souslin number of G is countable. Since G is metrizable, the
space G is separable. Then Y is a Lindelöf p-space by Lemma 2.1. Hence Y is
metrizable by [14, Corollary 3.6]. It follows that Y is separable and metrizable,
which implies that G and bG are separable and metrizable. r

Lemma 3.3. Let X be a Lindelöf space with locally a quasi-Gd-diagonal.
Then X has a quasi-Gd-diagonal.

Proof. For each point x A X , there exists an open neighborhood UðxÞ such
that x A UðxÞ and UðxÞ has a quasi-Gd-diagonal. Then U ¼ fUðxÞ : x A Xg is
an open cover of X . Since X is a Lindelöf space, there exists a countable
subfamily VHU such that X ¼ 6V. Denoted V by fUn : n A Ng. For
each n A N, let fUnkgk AN be a quasi-Gd-diagonal sequence of Un. Let F ¼
fUnkgn;k A N. Then F is a quasi-Gd-diagonal sequence of X .

Indeed, for distinct points x; y A X , there exists an n A N such that x A Un.
If y B Un, then x A Un HX � fyg. Since fUnkgk AN is a quasi-Gd-diagonal

sequence of Un, there exists a k A N such that x A 6Unk. Hence x A stðx;UnkÞH
6Unk HUn HX � fyg.
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If y A Un, then x A Un � fygHX � fyg. Since fUnkgk AN is a quasi-
Gd-diagonal sequence of Un, there exists a k A N such that x A stðx;UnkÞH
Un � fygHX � fyg.

Therefore, F is a quasi-Gd-diagonal sequence of X . r

Theorem 3.4. Let G be a non-locally compact topological group. If Y ¼
bGnG has locally a quasi-Gd-diagonal, then G and bG are separable and metrizable.

Proof. By [8, Proposition 2.1 and 2.5] and Lemma 2.2, it is easy to see that
G is locally a separable and metrizable space. Then Y is a Lindelöf space by
Henriksen and Isbell’s theorem. From Lemma 3.3 it follows that Y has a quasi-
Gd-diagonal. Then G and bG are separable and metrizable by Theorem 3.2.

r

Question 3.5. Is there a topological group G such that the Y ¼ bGnG has
a Wd-diagonal7, G is not reparable and metrizable?

Corollary 3.6 [16]. Let G be a non-locally compact topological group. If
Y ¼ bGnG has locally a Gd-diagonal, then G and bG are separable and metrizable.

Next, we study the remainder that are the unions of the Gd-diagonals.

Lemma 3.7. Let G be a non-locally compact topological group. If there
exists a point a A Y ¼ bGnG such that fag is a Gd-set in Y , then at least one of the
following conditions holds:

(1) G is a paracompact p-space;
(2) Y is first-countable at some point.

Proof. Suppose that Y is not first-countable at point a. Since a is a Gd-
point in Y , there exists a compact subset F H bG with a countable base at F
in bG such that fag ¼ F V ðbGnGÞ. We have Fnfag0j, since Y is not first-
countable at point a. Therefore, there exists a non-empty compact subset BHF
with a countable base at B in bG. Obviously, BHG. It follows that G is a
topological group of countable type [18]. Therefore, G is a paracompact p-space
[18]. r

Lemma 3.8. Let G be a non-locally compact topological group, and
Y ¼ bGnG ¼ Y1 UY2, where both Y1 and Y2 have a countable pseudocharacter.
If at most one of the Y1 and Y2 is dense in bG, then at least one of the following
conditions holds:

(1) G is a paracompact p-space;
(2) Y is first-countable at some point.

7A space X is said to have a Wd-diagonal if there is a sequence (Bn) of bases for X such that

whenever x A Bn A Bn, and ðBnÞ is decreasing (by set inclusion), then fxg ¼ 7fBn : n A og.
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Proof. Without loss of generality, we can assume that Y1 0 bG. Let
U ¼ bGnY1. Then V ¼ U VY ¼ U VY2 0j. It follows that V is an open
subset of Y and each point of V is a Gd-point. By Lemma 3.7, we complete the
proof. r

Theorem 3.9. Let G be a non-locally compact topological group, and
Y ¼ bGnG ¼ Y1 UY2, where both Y1 and Y2 have a countable pseudocharacter.
If both Y1 and Y2 are Ohio complete, then at least one of the following conditions
holds:

(1) G is a paracompact p-space;
(2) Y is first-countable at some point.

Proof. Case 1: Y1 0 bG or Y2 0 bG.
It is easy to see by Lemma 3.8.
Case 2: Y1 ¼ bG and Y2 ¼ bG.
Then bG is the Hausdor¤ compactification of Y1 and Y2. Since Y1 and Y2

are Ohio complete, there exist Gd-subsets X1 and X2 satisfy the definition of Ohio
complete, respectively.

Case 2(a): Y1 ¼ X1 and Y2 ¼ X2.
Then Y has countable pseudocharacter. By [5, Theorem 5.1], we complete

the proof.
Case 2(b): Y1 0X1 or Y2 0X2.
Without loss of generality, we can assume that Y1 0X1. If ðX1nY1ÞV

Y2 0j, then for each y A ðX1nY1ÞVY2 there exists a compact subset C such that
y A C and C VY1 ¼ j. Obviously, y is a Gd-point of Y . By Lemma 3.7, we
also complete the proof. If ðX1nY1ÞVY2 ¼ j, then there exists a compact
subset CHG with a countable base at C in bG. It follows that G is a
topological group of countable type [18]. Therefore, G is a paracompact p-space
[18]. r

A space with a Gd-diagonal is Ohio complete [2]. Therefore, by Theorem
3.9, we have the following result.

Theorem 3.10. Let G be a non-locally compact topological group, and
Y ¼ bGnG ¼ Y1 UY2, where both Y1 and Y2 have a Gd-diagonal. Then at least
one of the following conditions holds:

(1) G is a paracompact p-space;
(2) Y is first-countable at some point.

Question 3.11. Let G be a non-locally compact topological group, and
Y ¼ bGnG ¼ 6 i¼n

i¼1
Yi, where Yi has a Gd-diagonal for every 1a ia n. Is G a

paracompact p-space or is Y first-countable at some point?

Question 3.12. Let G be a non-locally compact topological group, and
Y ¼ bGnG ¼ Y1 UY2, where both Y1 and Y2 have quasi-Gd-diagonal. Is G a
paracompact p-space or is Y first-countable at some point?
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4. Remainders of locally BCO and locally hereditarily D-spaces

First, we study the following question, which was posed by C. Liu in [16].

Question 4.1. Let G be a non-locally compact topological group, and
Y ¼ bGnG have a BCO8. Are G and bG separable and metrizable?

Now we give a partial answer for Question 4.1.

Theorem 4.2. Let G be a non-locally compact topological group, and
Y ¼ bGnG has a BCO. If Y is Ohio complete, then G and bG are separable
and metrizable.

Proof. Since Y is Ohio complete, G is a paracompact p-space or s-compact
space by [3, Theorem 4.3].

Case 1: The space G is a paracompact p-space.
Since G is a p-space, the space Y is Lindelöf by Henriksen and Isbell’s

theorem. Hence Y is developable by [11, Theorem 6.6]. Then G and bG are
separable and metrizable by Theorem 3.4.

Case 2: The space G is a s-compact space.
We claim that G is metrizable. Suppose that G is not metrizable. Then Y

is o-bounded9 by [5, Theorem 3.12]. Since G is a s-compact topological group,
the Souslin number cðGÞ of G is countable by a theorem of Tkachenko [21,
Corollary 2]. Therefore, cðbGÞao. Y is dense in bG, since G is non-locally
compact. It follows that cðYÞao as well. Since Y is Čech-complete, there
exists a dense subspace ZHY such that Z is a paracompact and Čech-complete
subspace of Y by [19]. Then Z is a paracompact space with a BCO. There-
fore, Z is metrizable by [11, Theorem 1.2 and 6.6]. Since cðY Þao and Z
is dense for Y , cðZÞao as well. It follows that Z is separable. Since Y is
o-bounded, it is compact. Therefore, G is locally compact, which is a contra-
diction. It follows that G is metrizable. Therefore, G and bG are separable and
metrizable by Case 1. r

Theorem 4.3. Let G be a non-locally compact topological group, and
Y ¼ bGnG have a BCO. If G is an S-space, then G and bG are separable
and metrizable.

Proof. From [6, Theorem 2.8] it follows that every compact subspace of Y
has countable character in Y . Since G is non-locally compact, Y is also a dense
subset of bG. Hence G is Lindelöf space by Henriksen and Isbell’s theorem. If

8A space X is said to have a base of countable order(BCO) [11] if there is a sequence fBng of

base for X such that whenever x A bn A Bn and ðbnÞ is decreasing (by set inclusion), then fbn : n A Ng is

a base at x.

9A space X is said to be o-bounded if the clourse of every countable subset of X is compact.
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G is a s-compact space, then G and bG are separable and metrizable by Case 2
in Theorem 4.2. Hence we assume that G is non-s-compact. Since G is a
Lindelöf S-space, it is easy to see that G is a Lindelöf p-space by the proof of
[5, Theorem 4.2]. It follows that G and bG are separable and metrizable by
Case 1 in Theorem 4.2. r

Finally, we study the remainders of topological groups with locally a
hereditarily D-space.

Theorem 4.4. Let G be a topological group. If for each y A Y ¼ bGnG
there exists an open neighborhood UðyÞ of y such that every o-bounded subset of
UðyÞ is compact, then at least one of the following conditions holds:

(1) G is metrizable;
(2) bG can be continuously mapped onto the Tychono¤ cube I o1 .

Proof. Case 1: The space G is locally compact.
If G is not metrizable, then G contains a topological copy of Do1 . Since the

space G is normal, the space G can be continuously mapped onto the Tychono¤
cube I o1

Case 2: The space G is not locally compact.
Obviously, both G and Y are dense in bG. Suppose that the condition (2)

doesn’t hold. Then, by a theorem of Šapirovskiı̌ in [20], the set A of all points
x A bG such that the p-character of bG at x is countable is dense in bG. Since G
is dense in bG, it can follow that the p-character of G is countable at each point
of AVG.

Subcase 2(a): AVG0j.
Since G is a topological group, it follows that G is first countable, which

implies that G is metrizable.
Subcase 2(b): AVG ¼ j.
Obviously, AHY . For each y A Y , there exists an open neighborhood

UðyÞ in Y such that y A UðyÞ and every o-bounded subset of UðyÞ is compact.
Obviously, AVUðyÞ is dense of UðyÞ. Also, it is easy to see that AVUðyÞ is
o-bounded subset for UðyÞ. Therefore, AVUðyÞ is compact. Then AVUðyÞ ¼
UðyÞ, since AVUðyÞ is dense of UðyÞ. Hence Y is locally compact, a contra-
diction. r

A neighborhood assignment for a space X is a function j from X to the
topology of X such that x A jðxÞ for each point x A X . A space X is a D-space
[9], if for any neighborhood assignment j for X there is a closed discrete subset
D of X such that X ¼ 6

d AD jðdÞ.
It is easy to see that every countably compact D-space is compact. Hence

we have the following result by Theroem 4.4.

Theorem 4.5. Let G be a topological group. If Y ¼ bGnG is locally a
hereditarily D-space, then at least one of the following conditions holds:
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(1) G is metrizable;
(2) bG can be continuously mapped onto the Tychono¤ cube I o1 .
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