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MODULI OF BRIDGELAND SEMISTABLE OBJECTS ON P?

Ryo OHkAwWA

1. Introduction

Let X be a smooth projective surface and D’(X) the bounded derived
category of coherent sheaves on X. We study Bridgeland stability conditions o
on D’(X). We show that if a stability condition ¢ has a certain property, the
moduli space of ¢-(semi)stable objects in D?(X) coincides with a certain moduli
space of Gieseker-(semi)stable coherent sheaves on X. On the other hand, when
X has a full strong exceptional collection, we define the notion of ¢ being
“algebraic”, and we show that for any algebraic stability condition oy, the
moduli space of a,1.-(semi)stable objects in D?(X) coincides with a certain moduli
space of modules over a finite dimensional C-algebra. Using these observations,
we construct moduli spaces of Gieseker-(semi)stable coherent sheaves on P? as
moduli spaces of certain modules (Theorem 5.1). This gives a new proof (§5.3)
of Le Potier’s result [P] and establishes some related results (§6).

1.1. Bridgeland stability conditions

The notion of stability conditions on a triangulated category .7 was intro-
duced in [Brl] to give the mathematical framework for the Douglas’s work on II-
stability. Roughly speaking, it consists of data ¢ = (Z,.«7), where Z is a group
homomorphism from the Grothendieck group K(7) to the complex number
field C, o7 is a full abelian subcategory of 7 and these data should have some
properties (see Definition 2.3). Then Bridgeland [Brl] showed that the set of
some good stability conditions has a structure of a complex manifold. This set
is denoted by Stab(X) when J = D’(X). An element ¢ of Stab(X) is called
a Bridgeland stability condition on X. For a full abelian subcategory o < 7,
Stab(.7) denotes the subset of Stab(X) consisting of all stability conditions of the
form o= (Z,.).

Let K(X) be the Grothendieck group of X. For o e K(X), the Chern
character of o is the element ch(a) := (rk(«), ¢1(a), cha(a)) of the lattice A'(X) :=
ZONS(X)®1Z. For 6= (Z, /) eStab(X), we consider the moduli functor
Mpixy(ch(x),0) of o-(semi)stable objects E in .o/ with ch(E) = ch(x).

1.2. Geometric Bridgeland stability conditions
For B, e NS(X)®R such that w is in the ample cone Amp(X), we
consider a pair (g o) = (Z(4,0), Zp,)) as in [ABL], where Z ) : K(X) — C
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is a group homomorphism and /4 ) is a full abelian subcategory of D(X)
defined from f and o (see Definition 3.3 for details). It is shown in [ABL]
that o4 ) is a Bridgeland stability condition if f,w e NS(X) ® Q. For general
p,0eNS(X)®R, we do not know whether ¢4 ., belongs to Stab(X) or not
(cf. §3.2).

Let GL*(2,R) be the universal cover of the group GL*(2,R):=
{T e GL(2,R)|det T > 0}. The group GL"(2,R) acts on Stab(X) in_a natural
way (cf. §2.3). Two stability conditions ¢ and ¢’ are said to be GL"(2,R)-
equivalent if ¢ and ¢’ are in a single orbit of this action. In such cases ¢ and
g’ correspond to isomorphic moduli functors of semistable objects. o € Stab(X)
is said to be geometric if ¢ is GL"(2,R)-equivalent to 0(p,») for some f,we
NS(X) ® R with w € Amp(X). We have a criterion due to [Br2] for ¢ € Stab(X)
to be geometric (Proposition 3.6).

On the other hand, for an integral ample divisor w and f e NS(X)® Q,
we consider (f,w)-twisted Gieseker-stability of torsion free sheaves on X, which
was introduced in [MW] generalizing the Gieseker-stability. For o e K(X), we
assume rk(o) >0 and consider the moduli functor .#x(ch(x),f,w) of (B, w)-
semistable sheaves E with ch(E) =ch(a). There is a scheme My (ch(a),f, w)
which corepresents .#y(ch(a),f,w) [MW], and is called the moduli space (cf.
Definition 2.6).

One of our main results is the following.

THEOREM 1.1. Let w be an integral ample divisor, [ e NS(X)® Q and
o€ K(X) with tk(a) > 0. Take a real number t with 0 < t <1 and assume that

1
O(p, 1) € Stab(X).  If 0 < ci(a) -0 —rk(a)f -0 < min{l,m} then the moduli
space My (ch(a), f — 5 Kx,w) corepresents the moduli functor M x)(ch(c), 6 1))-

A proof of Theorem 1.1 will be given in §3.3. Similar results are obtained
by [Br2] and [To] when X is a K3 surface, but our choices of w and f are
different from theirs.

1.3. Algebraic Bridgeland stability conditions

For a finite dimensional C-algebra B, mod-B denotes the abelian category
of finitely generated right B-modules and K(B) denotes the Grothendieck group.
For any B-module N, we denote by [N] the image of N by the map mod-B —
K(B). King [K] introduced the notion of @p-stability of B-modules, where 0p is a
group homomorphism 65 : K(B) — R. It is shown in [K] that the moduli space
Mp(op, 0p) of Op-semistable B-modules N with [N] = ap exists, for any op € K(B)
and 0p € 0 := {0p € Homz(K(B),R) | 0g(a5) = 0}.

When X has a full strong exceptional collection € = (Ey, ..., E,) in D’(X)
(cf. §4.2), we put & = (P, E; and consider the finite dimensional C-algebra Bs =
Endy(&). Then by Bondal’s Theorem [Bo], the functor R Homy(&,-) gives an
equivalence of triangulated categories ®s : D?(X) =~ D?(Bs), where D?(Bys) is
the bounded derived category of mod-Bs. ®g induces an isomorphism of the
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Grothendieck groups ¢, : K(X) = K(Bg). Let /s be the full abelian subcate-
gory of D?(X) corresponding to mod-Bs = D’(Bg) by ®s. o € Stab(X) is called
an algebraic Bridgeland stability condition associated to € = (Ey, ..., E,) if ¢ is
GL+(2 R)-equivalent to (Z,.eZs) for some Z: K(X) — C.

For any o= (Z, /) € Stab(Zs) and « € K(X), we associate the group
homomorphism 67 : K(Bs) — R defined by

015 [ReZ07 (D) ReZ(x)
2Pt Z(p;1(8) m Z(a)
for f e K(Bs). Clearly 0% € g ()", so we have the moduli space Mg, (¢ (), 02).

PROPOSITION 1.2.  The moduli space Mg, (9ps(x),0) of Bg-modules corepre-
sents the moduli functor Mpsx(ch(a),a) for any ae K(X) and o= (Z, ) €
Stab(%g>.

A proof of Proposition 1.2 will be given in §4.2.

1.4. Application in the case X = P>

We prove that there exist Bridgeland stability conditions on P? which are
both geometric and algebraic by using the criterion Proposition 3.6.

The Neron-Severi group NS(P?) of P? is generated by the hyperplane
class H. Hence when X = P? the twisted Gieseker-stability coincides with the
classical one defined by H. We sometimes identify NS(Pz) with Z by the
map f— f-H. For oeK(P?) with rk(x) >0, we consider the moduli space
Myp2(ch(x), H) and oy, 4y for bt > 0.

On the other hand, for each ke Z there exist full strong exceptional
collections on P?

€ == (Op2(k +1),Qp:(k + 3), Op2(k +2))  and
€, = (Op2(k), Op2(k + 1), Op2(k + 2)).
We put &= 0Op(k+1) @Q 2k +3)@ Op2(k+2) and & = Up:(k) @
Op2(k+1)® Op2(k+2). Upto natural isomorphism, Endp:(&;) and Endp: (&)
do not depend on k, hence we identify and denote them by B and B’ respec-
tively. Using the notation in §1.3, we put
@y := @y, : D*(P?) = D"(B), @} := Dz : D"(P?) = D*(B),
induced isomorphisms ¢, := ¢, : K (P?) ~ K(B), ¢} == Ps! (P2) K(B') and
hearts of induced bounded t-structures .o7;, := .75 < Db(Pz) ;z{ =y < Db (P?).
For o e K(P?) and 0 € o := {0 € Homz(K(P?),R) | 0( —0} we put
Op :=00¢;' :K(B) =R, 0,:=00¢ "' :K(B')—R.

There exists 0 € such that @] o®,' and ®; o®|"! induce the following
isomorphisms (Proposition 5.4)

(1) Mp(—p(2),00) = Mp(—p(2),07) = Mp(—p,(2), 01).
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We find algebraic Bridgeland stability conditions ¢” = (Z?,.2/)) e Stab(./)
parametrized by real numbers b with 0 < b < 1 such that for each b there exist an
element g e GL*(2,R) and ¢ > 0 satisfying

(2) o"9 = 0w, ),

where g and 7> 0 may depend on b. Then Mg(—¢,(x),0%,) corepresents the
moduli functors //D,,(Pa(—ch(oc),a”) by Proposition 1.2. Furthermore by (2)
and Theorem 1.1, Mp2(ch(x), H) also corepresents the same moduli functor for
suitable choice of . From these facts and isomorphisms (1), we have our main
results (see §5.1 for the choice of 0 e at). We denote by - [1] the shift functor
D' (P?) — D*(P?): E — E]l].

MAIN THEOREM 1.3. For o€ K(P?) with ¢|(a) = sH, assume 0 < s < rk(c)
and chy (o) <. Then there exists 0 € a* such that ®;(- [1]), ®{(- [1]) and Do(- [1])
induce the following isomorphisms.

() Mpa(ch(x), H) = My(—p,(),0,) : E — &\ (E]1])

(i) Mpa(ch(z), H) = My (—¢|(2),0}) : E - @] (E[1])

(i) Mp2(ch(a), H) = Mp(—py(2),00) : E — Do(E[1]).

These isomorphisms keep open subsets consisting of stable objects.

We remark that if we assume 0 < s < rk(a) and Mp:(ch(a), H) # 0 in Main
Theorem 1.3, then we have

dim Mp>(ch(2), H) = s* — rk(2)? 4+ 1 — 2 rk(a) chy(2) > 0.

Hence we have chy(o) <1, and chy(e) =3 if and only if Mp:(ch(a), H) =
{Op2(1)}. In this case, similar isomorphisms hold via ®;(-[1]) in (i), ®] in
(ii) and @ in (iii) respectively. A proof of Main Theorem 1.3 will be given in
§5.

(i) is obtained by Le Potier [P] (cf. [KW, §4] and [P2, Theorem 14.7.1]) by a
different method.

1.5. Wall-crossing phenomena
In §6 we consider the case rk(x) =1, ¢j(x) = H and chy(x) =1—n with
n>1. By Main Theorem 1.3 we have

Mp>(ch(a), H) = Mp(—gpy(2),00) = Mp(—p;(x),01)

for some 0 € «t. We study how Mp(—g,(2), 02) changes when 9,1 € ¢, ()" varies
for k=0,1, where ¢, (2)" := {0 ¢ Homz(K(B),R) |0k(p;(x)) = 0}. We define
a wall-and-chamber structure on ¢, (o) as follows (cf. §5.1). Within ¢ (2)",
there are finitely many rays corresponding to certain B-modules. In our case,
a ray may be called a wall, since ¢k(oc)l ~R%  Let W, be the union of such
rays. A connected component of the complement of Wj is called a chamber.
The moduli space Mg(—p,(2), (9,1) does not change when H,i moves in a chamber.
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If two chambers C (» and C, () on (pk( )" are adjacent to each other having a
common wall wy, then for Hk € C Hk € C () and O € w; we have a diagram:

i ~

Mp(—pp(0),00) —————=———— Mp(—pi (), Or).

3) L L

Mp(~gi (), 0k)

Further, if both Mg(—g, («),0c) and Mp(—p,(2),0;) are non-empty, then we see
that f/, f” are blrdtlonal morphisms by general theory of Thaddeus [Th].

Within ¢, ()", we have a chamber C(/I;() such that Mp:(ch(a), H) =
Mp(—op ( ),0k) for any erCP(). In the case rk(x)=1, ¢(z) =1 and
chy(a) = 5 — n, diagrams (3) with k = 0,1 give the two birational transformations
of the Hllbert schemes (Pz)"] (Theorem 6.5). In the case rk(a) =r, ¢ij(a) =1,
chy(a )_5_” with arbitrary r > 0, we will describe these diagrams more ex-
plicitly in [O].

Similar phenomena as in (3), sometimes called Wall-crossing phenomena,
occur by variation of polarizations on some surfaces X in case of Gieseker-
stability. However the polarization is essentially unique in our case X = P2
since Pic P> ~ ZH. So our phenomena are of different nature. We expect that
Bridgeland theory is useful to study such phenomena systematically.

Convention

Throughout this paper we work over C. Any scheme is of finite type over
C. For a scheme Y, we denote by Coh(Y) the abelian category of coherent
sheaves on Y and by D”(Y) (respectively, D~(Y)) the bounded (respectively,
bounded above) derived category of Coh(Y). For E e Coh(Y), by dim E we
denote the dimension of the support of E. For a ring B, by mod-B we denote
the abelian category of finitely generated right B-modules. We denote by D?(B)
(respectively, D~ (B)) the bounded (respectively, bounded above) derived category
of mod-B. For an abelian category ./ and a triangulated category 7, their
Grothendieck groups are denoted by K(.o/) and K(Z). For any object E of
o (resp. J) we denote by [E] the image of E by the map .o/ — K(.o/) (resp.
T — K(7)). When ./ = mod-B and J = D?(Y), we simply write them K(B)
and K(Y). For objects E, F, G of 7, the distinguished triangle £ — F —
G — E[1] is denoted by:

E—— F
NP4
G

For objects Fy,...,F, in 7 we denote by {(Fy,...,F,y the smallest full sub-
category of 7 containing Fy,...,F,, which is closed under extensions.
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2. Generalities on Bridgeland stability conditions

Here we collect some basic definitions and results of Bridgeland stability
conditions on triangulated categories in [Brl], [Br2].

2.1. Bridgeland stability conditions on triangulated categories
Let o/ be an abelian category.

DermNITION 2.1, A stability function on .o/ is a group homomorphism
Z : K(o#/) — C such that Z(E) € Rwg exp(v/—1ng(E)) with 0 < #(E) < 1 for any
nonzero object E of /. The real number ¢(E) € (0,1] is called the phase of the
object E. A nonzero object E of .o/ is said to be Z-(semi)stable if for every
proper subobject 0 # F < E we have ¢(F) < ¢(E) (resp. <).

If we define the slope of E by
Re(Z(E
() ReZE))

Im(Z(E))
which possibly be infinity, then a nonzero object E of .o/ is Z-(semi)stable if and
only if u,(F) < u,(E) (resp. <) for any subobject 0 # F < E in /.

The stability function Z is said to have the Harder-Narasimhan property if
every nonzero object E € ./ has a finite filtration
O=FEycFE c---cE, | cE,=F

whose factors F; = E;/E;_; are Z-semistable objects of ./ with

P(F1) > §(F2) > -+ > §(Fy).

Let 7 be a triangulated category. We recall the definition of a t-structure
and its heart (cf. [Brl]).

DEFINITION 2.2. A tstructure on 7 is a full subcategory 7 =" of 7
satisfying the following properties.
(1) 7] < 7=°.
(2) If one defines 7 =! := {F € 7 |Hom,(G,F) =0 for any G e 7 ="}, then
for any object E € 7 there is a distinguished triangle

G— E— F— G[l]
with Ge 7=° and Fe 7=

We define 7= := 7] and 7> :=7>![i4+1]. Then the heart of
the t-structure is defined to be the full subcategory 7 := 7 <°N7 =% It was
proved in [BBD] that .o/ is an abelian category, with the short exact sequences
in .o/ being precisely the triangles in . all of whose vertices are objects of .«/. A

t-structure 7 =" = 7 is said to be bounded if

7=\ 757>
i,jeZL

If o7 is the heart of a bounded t-structure on J, then we have K(o/) =~ K(7).
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DeriNiTION 2.3. A Bridgeland stability condition ¢ on a triangulated cate-
gory 7 is a pair (Z,.</) of a group homomorphism Z : K(7 ) — C and the heart
o/ of a bounded t-structure on  such that Z is a stability function on .&/ having
the Harder-Narasimhan property.

For each ne Z and ¢ € (0, 1], we define a full subcategory 2(n+ ¢') of 7
by

Pn+¢'):={EeT |E[-ne o is Z-semistable and ¢(E[-n]) = ¢'}.

For any ¢ € R, a nonzero object E of 2(¢) is said to be o-semistable and ¢ is
called the phase of E. E € 2(¢) is said to be g-stable if ¢ =n+ ¢’ with ne Z
and ¢’ € (0,1], and E[—n] € .o/ is Z-stable. It is easy to see that each subcate-
gory 2(¢) of 7 is an abelian category (cf. [Brl, Lemma 5.2]). E e 2(¢) is o-
stable if and only if E is a simple object in #(¢). For any interval I = R, 2(I)
is defined by 2(I) := {{2?(¢)|pel}). In particular the Harder-Narasimhan
property implies that 2((0,1]) = .«/.

ProposITION 2.4. (1) The pair (Z,2) of the group homomorphism
Z:K(7)— C and the family P ={2(¢)|pe R} of full subcategories of T
has the following property.

(a) 9(¢) is a full additive subcategory of T~
b) 2(¢+ 1) = 2(¢)]1].

c) If ¢ > ¢, and E; € Z(¢;), then Homy (E|, E2) = 0.
d)

(
(
E Z(E)eRyg exp(\/—vnqﬁ) for any nonzero object E of P(¢).

e) For a nonzero object E €, we have a collection of triangles
0=FE
such that F; € P(¢;) with ¢y > ¢ > - > ¢

(2) Giving a stabzllty condition ¢ — (Z, Q{) on 7 is equivalent to giving a pair
(Z,2) with the above properties.

Proof. See [Brl, Definition 5.1 and Proposition 5.3]. Originally the pair
(Z,%) is called the stability condition ¢ in [Brl]. O

The filtration in (e) of Proposition 2.4 is called the Harder-Narasimhan
filtration of E and the objects F; are called o-semistable factors of £. We can
easily check that the Harder-Narasimhan filtration is unique up to isomorphism.
For a Bridgeland stability condition ¢ = (Z,.«/) (or (Z,2)), Z, o/ and 2 is
denoted by Z,, </, and Z,.
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2.2. Bridgeland stability conditions on smooth projective surfaces

Let X be a smooth complex projective surface. The Chern character of an
object E of D?(X) is the element ch(E) := (rk(E),ci(E),chy(E)) of the lattice
N(X):=Z@®NS(X)® IZ. We define the Euler form on the Grothendieck
group K(X) of X by

(4) 2(E,F) = %;(—1)" dim¢ Homps(x)(E, F[i]).

Let K(X)* ={oxe K(X)|x(2,f) =0 for each fe K(X)} and K(X)/K(X)" is
called the numerical Grothendieck group of D”(X).

By the Riemann-Roch theorem the Chern character gives an inclusion
K(X)/K(X)" — A°(X). Furthermore we define a symmetric bilinear form
(+,)y on A(X), called Mukai pairing, by the following formula

(5) ((r1, D1,51), (12, D2,82)) 5 := D1 - Dy — 1150 — 1251

This bilinear form makes ./°(X) a lattice of signature (2, p) by the Hodge Index
Theorem, where p > 1 is the Picard number of X.

A Bridgeland stability condition ¢ = (Z,.</) is said to be numerical if there is
a vector (o) € /' (X)® C such that

(6) Z(E) = (n(0),ch(E))
for any [E]e K(X). o is said to be local finite if it satisfies some technical
conditions [Brl, Definition 5.7].

The set of all the numerical local finite Bridgeland stability conditions on

D’(X) is denoted by Stab(X). It is shown in [Brl, Section 6] that Stab(X) has
a natural structure as a complex manifold. The map

(7) 7 : Stab(X) — (X)) ® C,

defined by (6), is holomorphic.
For the fixed heart ./ of a bounded t-structure on D’(X), we write

Stab(«/) := {o € Stab(X) | o7, = .&/}.

2.3. GL"(2,R) action on Stab(X)

Let GL"(2,R) be the universal cover of GL"(2,R)={T e GL(2 R)|
det 7> 0}. The group GL*(Z R) can be viewed as the set of pairs (7, f)
where 7€ GL*(2,R) and f is the automorphism of R = S' such that f covers
the automorphism T of S! = (R?\0) /R>0 induced by T.

The topological space Stab(X) carries the right action of the group GL+(2 R)
[Brl, Lemma 8.2] as follows. Given o e Stab(X) and g = (T, f) e GL"(2,R),
a new stability condition gg is defined to be the pair (Z,y, %,,) where Zm, =
T-'oZ, and 2,,(¢) = 2,(f(¢)) for ¢ €R, where we identify C with R* by

x—&—\/:‘lyH (;)

It is easy to check that the pair (Z,,, Z,,) satisfies the properties of Proposition
2.4 (1). Hence by Proposition 2.4 (2), we have og = (Z,4, Z,4) € Stab(X). We
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remark that the sets of the (semi)stable objects of ¢ and og are the same, but
the phases have been relabelled. For our purpose, it is convenient to introduce
the following definition.

DEerINITION 2.5. Two stability condltlons 0,0’ € Stab(X) are said to be
GL+(2 R)-equivalent to each other if ¢ and ¢’ are in a single GL+(2 R) orbit.

For any element 7 € GL*(2,R), the right GL*(2,R) action on ./ (X)® C
is defined by id y(x) ® T~'. Hence the GL"(2,R) acts on 4'(X)® C via the
covering map

GL*(2,R) — GL*(2,R) : (T, f) — T.
The map 7 : Stab(X) — A4 (X) ® C is equivariant for these (A}I/f(Z,R) actions.

2.4. Moduli functors of Bridgeland semistable objects
For ¢ =(Z,.o/) € Stab(X) and o € K(X), we define a moduli functor

Mpixy(ch(a),0) : (scheme/C) — (sets) : S+ ps(x)(ch(x),a)(S)

as follows, where (scheme/C) is the category of schemes of finite type over C
and (sets) is the category of sets. For a scheme S, the set .#psy)(ch(x),o)(S)
consists of isomorphism classes of E € D?(X x S) such that for every closed point
s € S the restriction to the fiber

EY = LI;X{S}E
is a o-semistable object in ./ with ch(E) = ch(«) € A(X), where 1y, is the
embedding
Lyxfsy - X x {s} = X xS.

Note that by definition each object E, belongs to ./ = D’(X) for every closed
point s € S, so ch(Ey) € A'(X) is well-defined.  Let .4,y (ch(2),0) be the sub-
functor of .#ps(x)(ch(x),d) corresponding to o-stable objects of /.

Since the action of GL+(2 R) does not change the set of (semi)stable objects
for any g € GL*(2,R) there exists an integer n such that the shift functor [n] gives
an isomorphism

(8) AMp(xy(ch(a), 0) = Mpsx)((—1)" ch(a),09) : E — E[n].

Here we recall the definition of a moduli space. For a scheme Z, we denote
by Z the functor

Z : (scheme/C) — (sets) : S — Hom(S, Z).

The Yoneda lemma tells us that every natural transformation Y — Z is of the
form f for some morphism f: Y — Z of schemes, where f sends te Y(T) to
f(t)=fote Z(T) for any scheme 7. A functor (scheme/C) — (sets) isomor-
phic to Z is said to be represented by Z.
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In the terminology introduced by Simpson [S, Section 1], a moduli space is a
scheme which ‘corepresents’ a moduli functor.

DEFINITION 2.6. Let .# : (scheme/C) — (sets) be a functor, M a scheme
and y : #/ — M a natural transformation. We say that M corepresents .# if for
each scheme Y and each natural transformation / : .# — Y, there exists a unique
morphism ¢: M — Y such that h=goy:

M
l[/Jr \
M

— Y

ag

This characterizes M up to a unique isomorphism. If M represents .# we
say that M is a fine moduli space.
For any functor .# : (scheme/C) — (sets), we consider the sheafication of .#

"4/ - (scheme/C) — (sets)
with respect to the Zariski topology. For a scheme S, *./(S) is defined as fol-
lows. For an open cover % = {U;} of S, S = Uy, let Mty := {(E;) € [[-4(U;)|
Eilyny, = Eilyny,}- If 77 is a refinement of %, then we have a natural map
My — My. The set of open covers forms a direct system with respect to the
preorder defined by refinement. We define a functor .#’ by
9) A" (scheme/C) — Sets : S — /4'(S) :=lim My.

u

Then *.4(S) is defined by *".# := (.#')'. Actually, the limit can be computed
over affine coverings only, because every covering % has a refinement which is
affine. Since any scheme Y satisfies ¥ =~ 'Y, we have
(10) Hom(.#,Y) =~ Hom(*".#, Y).

In particular, a scheme M corepresents .# if and only if M corepresents /.

3. Geometric Bridgeland stability conditions

Let X be a smooth projective surface. In this section, we introduce the
notion of geometric Bridgeland stability conditions on D?(X) and see that if
o € Stab(X) is geometric, then under suitable assumptions the above functor
%5h(x)(ch(0f),a) (resp.'%Dz7<X>(ch(oc),a)) is corepresented by a certain moduli
space of Gieseker-(semi)stable coherent sheaves on X.

3.1. Twisted Gieseker-stability and u-stability

We recall the notion of twisted Gieseker-stability and u-stability. For details,
we can consult [HL], [MW]. Take y,w € NS(X) ® R, and suppose that w is in
the ample cone

Amp(X) = {w e NS(X) ®R|w? >0 and w-C >0 for any curve C c X}.
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For a coherent sheaf E with rk(E) # 0, define p,(E) and v,(E) by
_alf)-o _Ch(E) a(E)-Kx c(E)-y
() Kol(E) '*lrkT’ v(E) = rkz(E) N 12rk(E)X’ lrk(E) '

DeriNITION 3.1. Let E be a torsion free sheaf.
(i) E is said to be (y,w)-semistable if for every proper nonzero subsheaf F
of E we have

(12) (1o (F), v, (F)) < (1, (E), v,(E))

in the lexicographic order, namely u,(F) < p,(E) or u,(F)= p,(E),
v,(F) <v,(E). E is said to be (y,w)-stable if (u,(F),v,(F)) <
(U, (E),vy(E)) for any such F.

(i) E is said to be p,-semistable if u,(F) < u,(E) for any such F. E is
said to be u,-stable if in addition u,(F) < u,(E) for any F with
rk F <tk E.

(7, w)-stability is called twisted Gieseker-stability in [To]. Correspondingly
to these semistability notions, every torsion free sheaf £ on X has a unique
Harder-Narasimhan filtration (cf. [J, Example 4.16 and 4.17]). If

0=EycEc---cE,1cE,=F

is the Harder-Narasimhan filtration with respect to u,-semistability, we define
,uw-min(E) = :uw(En/En—l) and iu(u-max(E) = :u(u(El)'

THEOREM 3.2 (Bogomolov-Gieseker Inequality). Let X be a smooth projec-
tive surface and w an ample divisor on X. If E is a p,-semistable torsion free
sheaf on X, then

¢}(E) — 2 tk(E) chy(E) > 0.

Proof. See [HL, Theorem 3.4.1]. O

We take a«e K(X) with rk(a) >0 and consider the moduli functor
My (ch(a),y,w) of (y,w)-semistable torsion free sheaves E with ch(E) = ch(a) €
NS(X). Let .#3(ch(x),y,w) be the subfunctor of .#x(ch(a),y, ) corresponding
to (y,w)-stable ones.

We denote by My(ch(x),7, ) the moduli space of (y,w)-semistable torsion-
free sheaves if it exists. When o is an integral ample divisor and y € NS(X) ® Q,
the moduli space My(ch(x),y,w) exists [MW, Theorem 5.7]. Furthermore if
y =0, we write My (ch(a),w) instead of My (ch(a),0,®) for the sake of simplicity.
In this case there is an open subset M3 (ch(ax),w) of My(ch(a),w) that corep-
resents the functor .#y(ch(a),®) [HL, Theorem 4.3.4].

3.2. Geometric Bridgeland stability conditions
We construct some Bridgeland stability conditions on D?(X) following
[ABL]. For every coherent sheaf £ on X, we denote the torsion part of E
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by Eir and the torsion free part of E by Ej = E/Eiy. Suppose that f,me
NS(X) ® R with v € Amp(X), then we define two full subcategories T and § of
Coh(X) as follows;

ob(T) = {torsion sheaves} U{E|Ex # 0 and u, i,(Ex) > f- o}
Ob(g) = {E | Eo=0 and ﬂw—max(E) < ﬁ ’ CU}

We define a pair o(4.,) = (Z(p,w),-#p.)) of the heart .o/, of a bounded t-
structure on D’(X) and a stability function Z4 ) on /g, in the following
way.

DEFINITION 3.3. A full subcategory 7, of D’(X) is defined as follows;
A0y ={EeD"(X)| #'(E)=0 for all i #0,1 and
#(E)eT and #'(E) e §}.

The group homomorphism Z . is defined by Z ., (x) := (exp(f + v —1w),
ch(«)),,, where

exp(f+ V—1w) = <l,ﬂ + \/—“m,%(ﬂz — )+ V-1(f- w)) e N(X)
and (-,-),, is the Mukai pairing defined in §2.2.

From the general theory called tilting we see that ./ ) is the heart of a
bounded t-structure on D’?(X) (for example, see [Brl, §3]). By definition, for
o€ K(X) with ch(a) = (r,¢1,chy) we have

(13) Z(po) (@) = —chy +¢1 - B +§(a)2 — B+ V=lo- (e —1B).

Furthermore if r # 0, we can write

(19 Zigop() = 5 (¢} = 2reh) + P (e — 1f)?) + V" Tooler — 1B).

Our o4 ) is slightly different from that in [Br2], [To].

ProrosiTioN 3.4 [ABL, Corollary 2.1]. For each pair f,w e NS(X)® Q
with w € Amp(X), 65, is a Bridgeland stability condition on D”(X).

For general f,w € NS(X) ® R, we do not know whether (3., belongs to
Stab(X') or not since we do not know if Zg ., has the Harder-Narasimhan prop-
erty. If f, e NS(X)® Q it directly follows from [Br2, Proposition 7.1]. How-
ever we consider the following definition.
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DEFINITION 3.5. ¢ € Stab(X) is called geometric if o is §E+(2, R)-equivalent
to o(g.) for some B, e NS(X) ® R with w € Amp(X).

We have the following criterion due to [Br2] for ¢ € Stab(X) to be geometric.
It reduces the proof of Theorem 5.1 to easy calculations (§5.2).

PROPOSITION 3.6. ¢ € Stab(X) is geometric if and only if
1. For all xe X, the structure sheaves (. are o-stable of the same phase.
2. There exist T € GL™(2,R) and B, e NS(X) ® R such that »* >0 and

n(0)T = exp(f + V—1w),

where 7 : Stab(X) — A(X) is defined by (7) and GL*(2,R) action on
N(X) ® C is defined in §2.3.

Proof. From [Br2, Lemma 10.1 and Proposition 10.3] the assertion holds
because [Br2, Lemma 6.3 and Lemma 10.1] hold for an arbitrary smooth pro-
jective surface. However we give the proof of this proposition for the reader’s
convenience.

The only if part is easy. By [Br2, Lemma 6.3], for any closed point x € X
the structure sheaf ¢, is a simple object of the abelian category </ ), hence
0(p,w)-Stable for any B, e NS(X) with w e Amp(X). Since GL+(2 R) action
does not change stable objects, ¢, is also o-stable. Furthermore since the map n
is equivariant for GL"(2,R) actions, ¢ also satisfies condition 2 (cf. §2.3).

Now_we consider the if part. We show that og = o) for some g=
(T,f)e GL"(2,R), where B, w and T are as in the condition 2. We may
assume 7(c) = exp(f + vV—lw) for some f,w e NS(X)® R with w?> > 0. The

kernel of the homomorphism GL*(2,R) — GL"(2,R) acts on Stab(X) by even
shifts, so we may assume furthermore that O, € #Z;(1) for all xe X.

We show that w is ample. It is enough to show that C-w > 0 for any
curve C = X. The condition 1 and [Br2, Lemma 10.1(c)] show that the torsion
sheaf Oc¢ lies in the subcategory £,((0,1]). If Z,(0c) lies on the real axis it
follows that Oc € #,(1) which is impossible by [Br2, Lemma 10.1(b)]. Thus
Im Z,(0c) =C-w > 0.

The same argument of STEP 2 in [Br2, Proposition 10.3] holds and we see
that 2,((0,1]) = (B, w)- (]

3.3. Moduli spaces corepresenting % x (ch( ),0(p,)) and
Mpx)(ch(a), 0(p,0))
In this subsectlon we fix o€ K(X) with ch(a) = (r,¢1,chy) € /(X), r>0
and fe NS(X) ® R, w € NS(X) with @ ample. We put

(15) e:=ImZpg ., (0)=c-o—-rf-wekR

and y:=f —FKy e NS(X) ® R. We take 0 <7< 1 and assume that og ., =
(Z (1) p.1)) satisfies the Harder-Narasimhan property, that is, og ) €
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Stab(X). We will show that if ¢>0 is small enough and the moduli
space My(ch(a),y,w) exists, then it corepresents the moduli functor

AMpix)(ch(2), 0 ﬁ,@)

LemMA 3.7. For any (g, ,-semistable object E € .</(p 1, with [E] = o, the
following hold.
(1) Assume that 0 <& <t and Re Zg ;,)(x) > 0. Then E is a torsion free
sheaf. 1
(2) Furthermore assume that & < - Then E is a p,-semistable torsion free

sheaf.

Proof. (1) For a contradiction we assume that # !(E)#0 and take
ch(# 7Y (E)) = (r',¢],ch)) € /(X). Then there exists an exact sequence in
A p,10)>
(16) 0— # YE)1] - E— #°E)—0
and we have

21110 (E) = Zip0 (A (E)) + Zip o # BV,
Since Im Z( ) (#°(E)) >0 and Im Z 4 ., (# ' (E)[1]) = 0, we get
0<tw-(—c|+7'B)=1Im Zg 1)(# N E)[1]) < Im Zp 1) (E) = te.
By the Hodge Index Theorem, we have

2
(17) (—c| +7'p) < % <

Here we assume that #~!(E) is y,-semistable. Then by Theorem 3.2 we
have —(cj> —2r' ch)) <0. It follows from (14), (17) and r"’w? € Z-, that

1
Re Zip i) (AHE)]) = 55 (=(ef? = 2" chy) = 0 + (¢ — r'B)%)
1
< ﬁ(—rlzco2 + 12 <0.

In the general case, # ~'(E) factors into u,-semistable sheaves and we also get
the inequality

Re Z(4 ) (# ' (E)[1]) < 0.

Hence we have 0 < ua(ﬁ_w)(Jf_](E)[l]).

On the other hand by the assumption that Re Zg ., (E) =0, we have
Ko, (E) <0. Thus we have g, (E) < uoﬁm(%*l(E)[l}). This contradicts
the fact that £ is o p w)-Semistable since A~ Y(E)[1] is a subobject of E in (B, 100)
by (16). Thus # '(E) =0 and E is a sheaf.

Next we show that E is torsion free. We assume that E has a torsion
Eior #0. In the case dim Eir =1, we have m:=w-c¢(Ew) = 1. Since
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tcy-w—mt
E e o we get to-f < u,(Ex) = @M However by (15), tw-f =
tcp-w—t .. . . . .
U978 This implies that ¢ > m > 1. This contradicts the assumption that
r

e<t<1. In the case dim E =0, we get a nonzero subobject Ey; of E in
A(p,1s)- However the slope p, (Eior) is infinity and greater than ux,  (E).

This contradicts the fact that E is (g ,)-semistable.
(2) By (1), E is a torsion free sheaf. For a contradiction we assume that
E is not u,-semistable. Then there exists an exact sequence in Coh(X)

0—-E"-E—E —0.

Here E’ is a p,-semistable factor of E with the smallest slope u,(E’). Since
Ee JZ{(ﬂ,tw% we have to-f < ﬂtw-min(E) = iutco(E/)' Hence
lutw(E) - Iutw(E,) < Iutw(E) —lw ﬂ = te/r.
On the other hand, since u,(E) — u,(E’) >0 and rk(E')c; - @ —rei(E') - @ is an
integer, we have
tk(E")c) - @ — rei (E7) -
rrk(E")

luw(E)_luw(E,): w> 1/}"2.

Hence we get ¢/r > u,(E) — u,(E') > 1/r* and this contradicts the assumption
1 . .

that e < —. Thus E is y,-semistable. O
r

Next we consider the relationship between ¢z ., and the (y,w)-stability,
where y = —1Ky. By (13) the slope Ho, ., (E) 1s written as

_w(B) (P — )
(18) ﬂow"m (E) B [:u(u(E%) - tﬂ e

for any coherent sheaf E e Coh(X) with rk(E) # 0.

1
THEOREM 3.8. Assume that 0 < ¢ < min{t,;} and Re Z g 1)(2) = 0. Then

for E € g ) with [E] = o, E is 0(p ,)-(semi)stable if and only if E is a (y,w)-
(semi)stable torsion fiee sheaf.

Proof. =) From Lemma 3.7, E is a y,-semistable torsion free sheaf.
Hence to see that E is (y,w)-(semi)stable it is enough to show that for any
subsheaf F < E with E/F torsion free and u,(F)= u,(E), the inequality
v,(F) < v,(E), (resp. <) holds. Since E is u,-semistable and x,,(F) = u,(E/F) =
U, (E), both F and E/F are u,-semistable and belong to ./ ,. Hence the
exact sequence in Coh(X)

0—-F—E—E/F—0
is also exact in .o7(g ).
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Since E is 0(p, «,)-(semi)stable, we have x, (F) < Ho (E), (resp. <). By

equation (18) we have the desired inequality v,(F) < v,(E), (resp. <).
<) We take an arbitrary exact sequence in o7z .

(19) 0-K—E—-Q—0
with K #0 and Q #0. We will show the inequality
(20) By oy (T (O > 1y, (E),  (tesp. =)

if #7(Q)#0 for i=0,1. Then since Zp0)(Q) = Z(pw)(#"(Q))+
Zp.1)(#7H(Q)[1]), we have the desired inequality

Hoy (@) > U, (E),  (resp. =),

showing that E is (g ,-(semi)stable.

First we assume .#'(Q) #0 and show (20). In fact we see that the
inequality is always strict. The fact that E is a torsion free sheaf implies that K
is also a torsion free sheaf. Hence we have Im Z4 ,,)(K) > 0. Since

Im Z( 1) (E) = Im Z(p,100)(K) + Im Z( 5 1) (#°(Q)) + Im Z (. 10y (# ' (Q)[1]),

we see that 0 <Im Z(,;,,w)(%‘](Q)[l]) <Im Z4 ,)(E) = te. The same argu-
ment as in the proof of Lemma 3.7 (1) shows the strict inequality
Re Z (4 1)(# ' (Q)[1]) <0. Hence by the assumption that Re Z ) (E) >0
we have the strict inequality

Hoy iy (E) < tg, ., (A (O)L]).
Next we assume H# O(Q) # 0. We take the cohomology long exact sequence
of (19) in Coh(X);
0— #1(Q) - K—E— #°0)— 0.
We take [ :=im(K — E). Since the fact that K, Q€ .o/ ., implies u,,(K) >
o (#71(Q)), we have K ¢ #~1(Q). Hence I is not equal to 0 and is torsion

free.
If the strict inequality

(21 teo(I) < ) (E)
holds we show a contradiction in the following way. We can write

t(E) — g, (1) = t(r(D)ey - c;)r(—l)rcl (I) - )

By (21) we have (r(I)c;-w —rei(I) - w) € Z~y. Hence we get

t
(22) :utw(E) - :ulw(l> = }’_2
On the other hand since K — [ is surjective, we have the following inequalities

ﬁ' fo < ﬂrw—min(K) < lutw(l)'
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Hence we get

(23) o (E) = (1) < 12— oty = 2

r r

Ccl

by (15). Combining (22) and (23) with the assumption that & <
contradiction.

In the case r(I) =r and dim #°(Q) =1 we have u,(I) < u,(E). Hence
we may assume that 0 <rk(/) <rk(E) holds or that rk(/) =rk(E) and
dim(#°(Q)) = 0 holds. 1In the latter case, we see that the slope Ha ) (A °(0))
is infinity and the desired inequality 1, (E) <p,, (A °(Q)) holds.

We assume that rk(/) < rk(E). Since E is (y,w)-(semi)stable,

(4, (E), v(E)) < (1 (#°(0)), v,(#°(Q))),  (resp. <).
Then since u,(I) = u,(E) by the above argument, we have
1o (E) = 1, (#°(0)) and v,(E) < v,(#°(0)), (resp. <).

Hence by (18) we get the desired inequality x, , (E) <, (A °(Q)), (resp. <).
' ‘ O

1
—, we get a
,

Here we assume that 8 belongs to NS(X)®Q, or that y = —1Ky is
proportional to w in NS(X) ® R. In the latter case we have .#x(ch(«),y,®) =
My(ch(x),0,w) by (11) and (12). We recall that w is an integral divisor.
Hence in both cases we have moduli spaces My (ch(x),y, ®) of .#x(ch(x),y, ) by
[MW, Theorem 5.7].

COROLLARY 3.9. Under the assumptions in the above theorem the moduli
space My (ch(a),y,w) of (y,w)-semistable sheaves corepresents the moduli functor
Mpiix)(ch(2), 0(p.1)).  In the case where y is proportional to w, or y = 0, the open
subset My (ch(a), w) = My (ch(a), w) corepresents the functor M, v\ (ch(a), 6(p,1))-

Proof. This follows directly from Theorem 3.8 and [Hu, Lemma 3.31].
]

By this corollary we get Theorem 1.1 in the introduction.

4. Algebraic Bridgeland stability conditions

4.1. Moduli functors of representations of algebras

For a finite dimensional C-algebra B, we consider the abelian category mod-
B of finitely generated right B-modules and introduce the notion of 0p-stability of
B-modules and families of B-modules over schemes following [K].

DErFINITION 4.1. Let 0p: K(B) — R be an additive function on the Gro-
thendieck group K(B). An object N € mod-B is called 0-semistable if O5(N) =0
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and every subobject N’ = N satisfies 65(N') = 0. Such an N is called 6p-stable
if the only subobjects N’ with 05(N') =0 are N and 0.

For S e (scheme/C), define Cohg(S) to be the category with objects (F,p)
for F a coherent sheaf on S and p : B— Homg(F,F) a C-linear homomorphism
with p(ab) = p(b) o p(a) for each a,b € B, and morphisms # : (F,p) — (F',p’) to
be morphisms of sheaves # : F — F’ with 5o p(a) = p'(a) oy in Homg(F, F') for
all ae B. It is easy to show Cohp(S) is an abelian category. Let Vecg(S) be
the full subcategory of Cohp(S) consisting of objects (E, p) € Cohg(S) where E is
locally free.

DEerNITION 4.2. [K, Definition 5.1] Objects of Vecy(S) are called families of
B-modules over S.

For a5 € K(B) and an additive function 05 : K(B) — R as in Definition 4.1,
let #g(op,0p) be the moduli functor which sends S € (scheme/C) to the set
Mp(og,0p)(S) consisting of isomorphism classes of families of #p-semistable right
B-modules N with [N]=op. Let .#;(ap,05) be the subfunctor of .#g(og,0p)
corresponding to 0p-stable right B-modules. There exist moduli spaces M} (op, 0p)
< Mp(op,0p) of My(aup,0p) and 4p(up,0p) [K, Proposition 5.2].

Here we recall the definition of the S-equivalence. Since any object of mod-
B is finite dimensional C-vector space, any 6p-semistable B-module N has a
filtration, called Jordan-Holder filtration,

0=Nyc N c---cN,=N

such that N;/N;_; is Op-stable for any i. The grading Gry,(N) =@, N;/Ni_|
does not depend on a choice of a Jordan-Hélder filtration up to isomorphism (for
example, see [HL, Proposition 1.5.2]). @p-semistable B-modules N and N’ are
said to be S-equivalent if Grg,(N) = Grg,(N').

ProrosiTION 4.3 (cf. [K, Proposition 3.2]). For B-modules N and N' with
[N] =[N =ap e K(B), N and N' define the same point of Mg(op,0p) if and only
if they are S-equivalent to each other.

4.2. Algebraic Bridgeland stability conditions

Let X be a smooth projective surface. An object E € D’(X) is said to be
exceptional if
C ifk=0

k —
HOmDh(X)(E’ E) = {0 otherwise.

An exceptional collection in D(X) is a sequence of exceptional objects € =
(Ey, ..., E,) of D’(X) such that

n>i>j>1= Homy, (E,E)=0 forall keZ
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The exceptional collection € is said to be full if Ey,...,E, generates D’(X),
namely the smallest full triangulated subcategory containing Ej, ..., E, coincides
with D?(X). The exceptional collection € is said to be strong if for all
1 <i,j<n one has

Hom,’;,(x)(E,-,Ej) =0 for k#0.

We assume that D’(X) has a full strong exceptional collection € =
(Eo,...,E,) on D*(X). Weput § :=Ey®--- @ E,, Bs := Endy(&). By Bon-
dal’s theorem [Bo] we have an equivalence

®s : D’(X) = D*(Bg) : E — R Homy (&, E).

We obtain the heart .«7; = D?(X) by pulling back mod-Bs via the equivalence
®s. The equivalence @, induces an isomorphism ¢, : K(X) = K(Bg) of the
Grothendieck groups.

For a stability function Z on .7 and o € K(X), we define 67 : K(Bs) — R

by
s IReZ(F (B) ReZ(x)
(24) 2B = v 2 () 1 Z(o)

for any i€ K(Bg). Then for an object E € .oy with [E]=0€e K(X), E is Z-
(semi)stable if and only if ®s(E) is 65-(semi)stable. We also notice that by the
existence of full exceptional collection, K(X) is isomorphic to the numerical
Grothendieck group K(X)/K(X)". Hence for E € D?(X) the class [E] is equal
to o in K(X) if and only if ch(E) = ch(x).

PROPOSITION 4.4.  The moduli space My, (pg(2),0%) (resp. My (ps(),0%))
corepresents the moduli functor Mps(x)(ch(a),0) (resp. Mpyy (ch(x),0)) for any
oe K(X), 0= (Z,.s) € Stab(.Lg).

Proof. We only give a proof for the moduli functor .#p:y(ch(2),0),
since a similar argument also holds for the other moduli functor ./, y,(ch(a), o)
corresponding to stable objects. We show that

(25) Sh<%Db(X)(Ch(a)7 o) = Sh./%g6 (pg(a),07).

Then, since M, (ps(2),07) corepresents ./, (ps(a),0%), the assertion holds by
(10). By the remark after (9), to establish (25) it is enough to give a functorial
isomorphism

(26) Mpr(x) (ch(x),0)(S) = Mg, (p5(2),07)(S),

for every affine scheme S = Spec R. We consider Xg:= X x S, projections p
and ¢ from Xg to X and S, the pull back &5 := p*& of & and R-algebra By, :=
Homy, (&5, 8s). Since Bg, = R ® Bg, we have mod-Bg, = Cohg,(S). From [TU,
Lemma 8] we see that via the above identification @4 () := R Homy,(&s, ) gives
equivalences

D’(Xs) = D®(Cohg,(S)), D~ (Xs) = D~ (Cohg,(S)).
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These equivalences are compatible with pull backs, that is, the following diagram
is commutative

D(Xs) —s, D~ (Cohg, (S))

L/‘*l lLf*

D_(XS/) & D_(COhB{,), (S’))

for every morphism f : S’ — S of affine schemes. In the following we show that
this equivalence @4, defines an isomorphism (26).

For any S-valued point E of .#pi(x)(ch(x), ), by the above diagram the fact
that E € M p»y(ch(a),s)(S) implies that Li;® (E) € D~ (Cohp, ({s})) = D~ (Bs)
is a 07-semistable Bs-module for any closed point s € S, where 1, : {s} — S is the
embedding. By the standard argument using the spectral sequence (for example,
[Hu, Lemma 3.31]), we see that O (E) belongs to Vecp, (S) < Cohg, (S). Hence
@, defines a desired map. We see that this map is an isomorphism since CI)(;S1
gives the inverse map by a similar argument. O

By this proposition we get Proposition 1.2 in the introduction.

DEerINITION 4.5. ¢ € Stab(X) is called an algebraic Bridgeland stability
condition_associated to the full strong exceptional collection € = (Ey, ..., E,)
if ¢ is GL"(2,R)-equivalent to (Z,./s) for some Z:K(X)— C, where & =
EO DD En~

4.3. Full strong exceptional collections on P?

In the rest of the paper, we assume that X = P? and H is the hyperplane
class on P2, We put Op:(1) := Op2(H) and denote the homogeneous coordinates
of P? by [zp:z :25). We introduce two types of full strong exceptional
collections € and €, on P? for each k € Z as follows,

€ == (Op2(k + 1), Qp:(k + 3), Op2 (k + 2)),
€, = (Op2(k), Opa(k + 1), Op2(k + 2)).
We put
&= Op2(k+1) D Qp(k +3) @ Up2(k +2),
&= Up(k) @ Op2(k + 1) @ Up2(k +2)

and B := Endp:(6;), B’ := Endp:(&;), which do not depend on & up to natural
isomorphism. Using the notation in §4.2, we define functors

@y := Dy : D"(P?) = D(B), @} := D, : D’ (P?) = D"(B),

induced isomorphisms ¢, := ¢ : K(P?*) = K(B), ¢, := Ps! K(P?) ~ K(B') and
full subcategories 7y := g, oA = Az of Db(P?).
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To explain finite dimensional algebras B and B’ we introduce some
notations. For any /€ Z, we denote by z; the morphism Op:(/) — Op2(/ + 1)
defined by multiplication of z; for i = 0,1,2. We put V := Cey @ Ce; @ Ce, and
denote i-th projection and i-th embedding by e/ : V' — C and ¢;: C — V for
i=0,1,2. We consider the exact sequence for each ke Z

(27) 0= Qha(k+3) 5 Opa(k +2) @ V L Opa(k +3) — 0,

where we put j =z ® e; + 21 ® e + 2 ® e; and identify Q 2(k + 3) with ker j.
We define morphisms p, : (k+ 3) = Op2(k+2) by p;:= (1d@ (k+2) @ €) o1
and ¢;: Op2(k+1) — (k + 3) by ¢ii=zira®eir1 —zin1 ® e,+2 for ie Z/3Z

We introduce the followmg quiver Q with 3 vertices {vp,v;,v;2} and 6 arrows
{70:71:72:00,01,02}

el 0% (=012

and consider ideals J and J' of the path algebra CQ defined as follows. J and
J' are two-sided ideals generated by {y;0; +y,0:|i,j=0,1,2} and {y;0; — 7;6; |
i,j=0,1,2}, respectively. We have isomorphisms

(28) p:CO/J = B:y;,0;— pinq;, p' :CQ/J =B .0 z,z.

These isomorphisms p and p’ map vertices vg,v1,v2 € CQ/J (resp. CQ/J') to
idempotent elements

p(vo) = 1d(f (k+2), p(01) :idgl (k+3) p(v2) = ld(f 2(k+1) € B
(resp. p'(vo) = ide,, k12, P'(v1) = ido,, k1), P/ (02) = ide,, ) € BY).
They also map y;,0, € CQ/J (resp. CQ/J’) t

p(7:) = pi, plo;) =gqj€B (resp. p'(y;) = zi, p'(J) = z; € B')

for i,j=0,1,2. We identify B and B’ with CQ/J and CQ/J’ via isomorphisms
p and p’.

For any finitely generated right B-module N, we consider the right action
on N of a path p of Q as a pull back by p and denote it by p*. Notice that
vertices vjs are regarded as paths with the length 0. We have the decom-
position N = Nv; @ Nvj @ Nv; as a vector space. This gives the dimension
vector dim(N) = (dim¢ Nyg, dime Nvj,dimc Nv;) of N and an isomorphism
dim : K(B) =~ Z®?. The B-module structure of N is written as;

p* o
Nog 25 Nop 5 Noj o (i, j = 0,1,2).

We sometimes use notation y/[y and J;|y to avoid confusion. We define B-
modules Cv; for i =0,1,2 as follows. As vector spaces Cv; = C and can be
decomposed by (Cuv;)v; = C, (Cv;)v; =0 for j #i. Actions of B are defined in
obvious way. They are simple objects of mod-B and we have

(29) mod-B = {(Cuvy, Cvy, Cvy)
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as a full subcategory of D”(B). Similar results hold for B’ and we use similar
notations for B’.

Since Op:(k — 1)[2], Opy(k)[1] and Op:(k + 1) correspond to B-modules Cuy,
Cv; and Cuv, via @, we have

ol = (Opalk = D[2), Opa(R)[1], Cpa(k + 1)>.
Similarly we have
A = {Op2(k = 1)[2], Qpy (k + 1)[1], Op2 (k)

On the other hand, OUp:(k+1), Qll,z(k+3) and Op:(k + 2) correspond to B-
modules B, v;B and v, B via ®,. Similarly Op2(k), Op:(k+1) and Op2(k +2)
correspond to B’-modules B’, v; B’ and v, B’ via ®;. They are projective modules
and we can compute Ext groups by using them. Hence we get the following
lemma.

LEMMA 4.6. For bounded complexes E, F of coherent sheaves on P2, the
following hold for each k € Z.

(1) By E', we denote each term of complex E. We assume that (i) E' is a
direct sum of Op2(k + 1), Qll,zl(k +3) and Op:(k +2) for any i€ Z and F
belongs to </, or that (ii) E' is a direct sum of Op:(k), Op:(k + 1) and
Op2(k +2) for any i€Z and F belongs to <. Then the complex
R Homp:(E, F) is quasi-isomorphic to the following complex

(30) NN HomDh(Pz)(E_i,F) 4, Home(Pz)(E_[_l,F) — e
where Hom, p2 (E ~IF) lies on degree i and d' is defined by
d'(f):=fod; " :E"' - F for feHomp(E " F).
In particular, we have Hom,p2 (E, F[i]) = ker d'/im d'!
(2) If E belongs to <ty (resp. <), then we have the following isomorphism in
Db (P?)
Ex~ ((sz (k- 1)®a0 — Op2 (k)®al — Op2 (k + 1)®a2),
(resp. E = (Op2(k — 1)% — QL (k + 1)®" — 0p2(k)®*)),
where (a, a1, a2) € 22y and Op:(k + 1)9% (resp. Op:(k)®®) lies on degree 0.
Proof. (1) We only prove (i). We put N :=®(E), M := ®(F). Then
by the assumption the each term N' of the complex N is a direct sum of B, v; B
and v, B for any i. Hence N’ is a projective module. Furthermore since the
fact F € o/, implies that M is a B-module, R Homp:(E, F) = R Homp(N, M) is
quasi-isomorphic to the following complex
-~ Homp(N~", M) “ Homg(N """, M) — - .-
Via @, this complex coincides with (30).



MODULI OF BRIDGELAND SEMISTABLE OBJECTS ON P2 351

(2) For any object E € .«/; we consider the B-module N = ®y(E). If we put
dim(N) = (ao,ai1,a2), then N can be obtained by extensions

(31) 0 — (Cv)®" = N' — (Cup)® — 0,
(32) 0— (C»n)®? NN —0.

Since @ (Op2(k — 1)[1]) = Cvg[—1] and Dy (Op:(k)[1]) = Cv;, we have a homo-
morphism

£ Opa (k= 1) — O0pa (k)&

in Coh(P?) such that ®;(C(f)[1]) = N’, where C(f) is the mapping cone of
f. From (32) E can be obtained as a mapping cone of a certain homomorphism
in HomD,,a,:)(C(f),(ﬁ‘Pz(k—i—1)®“2), since @y (Op>(k+1)) = Cry. By (1) this
homomorphism is identified with a homomorphism

g: Op2 (k)" — Opa(k +1)%®
in Coh(P?) satisfying go f = 0. Thus E is isomorphic to the following complex
(Opa(k = 1) L 0pa (k) % Ops (I + 1)°),
where Op:(k +1)®“ lies on degree 0. O

The vector (ag,a,as) eZio in Lemma 4.6 (2) coincides with dim(®x(E))
and is explicitly computed from ch(E) = (r,sH,chy). For example, we assume
that E belongs to 7. Since

1
(33) ch(0p2[2]) = (1,0,0), ch(Op:(1)[1]) = _(1’H’§>’ ch(0p:(2)) = (1,2H,2),
s

we have (ap,a1,a2) =r(1,0,0) ~3

(3,4,1) +chy(1,2,1).

5. Proof of Main Theorem 1.3

In this section we fix « € K(P?) with ch(«) = (r,sH,chy) and 0 <s<r. In
the sequel, we sometimes identify NS(P?) with Z by the isomorphism NS(P?) =~
Z:f—pB H.

5.1. Wall-and-chamber structure

We consider the full strong exceptional collection € = (0p2(2), QL. (4),
Op2(3)) on P2 the equivalence ®(-) = R Homp:(61,-) : DP(P?) =
the induced isomorphism ¢, : K(P?) =~ K(B), where & = 0p:(2) ® Qll)z(4) ®
Op2(3) and B =Endp:(&). We consider the plane ¢,(2)" := {0 €
Homz(K(B),R) | 6(p,(2)) = 0} and define a subset W, = ¢,(2)" as follows. A
subset W, consists of elements 6 € ¢,(2)" satisfying that there exists a 6)-
semistable B-module N with [N] = ¢,(«) such that N has a proper nonzero sub-
module N’ = N with 0;(N’) =0 and [N'] ¢ Q-op,(2) in K(B). The subset W is
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a union of finitely many rays in ¢, (oc)l. These rays are called walls and the
connected components of ¢, («)"\ W, are called chambers.

We take a line /; in ¢,(«)" defined by 7 := {0; € ¢, ()" | 01(p,(Cy)) = 0},
where ¢, is the structure sheaf of a point x € P>. We take a chamber qujlz(“) c
¢, ()", if any, such that the closure intersects with /; and there exists an ele-
ment 6 € C(l:(“) satisfying the inequality 6y (p;(C)) > 0 and Mp(—¢,(x),0;) # 0.
These conditions characterize C(‘;l 2(“) uniquely.

We have the following theorem, which gives a proof of (i) in Main Theorem
1.3.  The proof of Theorem 5.1 in the next subsection shows that if there is not
such a chamber C;zm < ¢, (2)", then Mp:(ch(a), H) = 0.

o

THEOREM 5.1.  The map E — ®(E[l]) gives an isomorphism
Mp:(ch(x), H) = Mp(=¢,(2),01)

for any 0, € C(‘;lz(“). This isomorphism keeps open subsets consisting of stable
objects.

Here we remark that if we assume Mp:(ch(«), H) # @, then dim Mp:(ch(x), H)
=s?—r*4+1—2rch, >0. Hence we have ch, < . We see that ch, =1 if and
only if ch(a) = (1,1,1).

5.2. Proof of Theorem 5.1

We will find Bridgeland stability conditions ¢ in Stab(.</) N {ou,m) €
Stab(P?) |# > 0} GL"(2,R) for suitable » € R and obtain Theorem 5.1.

We put H = {r exp(v/—1z¢) |r > 0 and 0 < ¢ < 1} the strict upper half-plane
and Fy = 0p2[2], F; = 0p:(1)[1] and F, = 0p2(2). The full subcategory o7 of
D"(P?) is generated by Fy, F; and F,

(34) = <(9P2[2L@PZ(I)UL@PZ(Z)>~

Since K(P?) = Z[Fy] ® Z[F|] © Z[F>), a stability function Z on .«7; is identi-
fied with the element (Z(Fy), Z(F1), Z(F>)) of H®. Furthermore since the cate-
gory /] =~ mod-B has finite length, all stability functions on .o/ satisfy the Harder-
Narasimhan property. Hence Stab(.«7)) =~ H°.

For ¢ = (Z,./)) € Stab(«#}), we put Z(F;) = x; +v/—1y; e H®> and consider
the conditions for ¢ to be geometric. In the next lemmas we consider the condi-
tion 1 of Proposition 3.6. For any point x € P> we take a resolution of ¢

(35) 0 — Opr — Op2(1)®* = 0p2(2) — O, — 0.
Hence from (34) we have O, €.« and [0,] = [Fo] + 2[F\] + [F»] € K(P?).

LEMMA 5.2.  For any subobject E of Oy in </, the class [E] in K(P?) is equal
to [Fz}, [F1] + [Fz] or Z[Fl] + [Fz}.

Proof. 1f the conclusion is not true, we can find a subobject Z[i] = Oy in
</, with Z a nonzero sheaf on P?> and i = 1 or 2; for example, if E is a subobject
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of Oy in o and [E] = [Fy] + [Fi] + [F>] in K(P?), then by Lemma 4.6 (2), E is
written as

E=(0p: L 0p2(1) 2 0p:(2)).
If g=0 and f #0, then E = O,(1)[1] ® Op2(2), where ¢ is a line on P? deter-
mined by O,(1) =coker f. If g=f =0, then E = 0p:[2] @ Op2(1)[1] ® Op:(2).
If g #0, then we have a distinguished triangle

Op(2) = E— Op2[2] = O (2)[1]
for a line /' on P? determined by @, (2)=cokerg. The fact that
HomD,,(Pz>((0Pz 2], 0,(2)[1]) = 0 implies E = Op:212] ® O,(2).

However the fact that Homp,p2) (#[i], Ox) = 0 for i > 1 contradicts the fact

that Z[i] is a nonzero subobject of () in <. O

LEMMA 5.3. For o= (Z, ) € Stab(4)), Oy is o-stable for each x € P* if
and only if (a), (b) and (c) hold,

(a) >0 (b) X1+x2 Xo+2x1 +x2

yi+y2 yo+2y1+

X2 Xo+2x1+x2
Y2 yo+2y1+

(©)

>0,

2x1 + X2  Xxo +2x1 +x2

> 0.
2y1+ 32 Yo+2y1+ 2

Proof. By Lemma 5.2, it is enough to show ¢(f) < ¢( y) for each p = [F,],
[F1] + [F2], 2[F1] + [F2], where ¢(p) is the phase of Z(f) € C. 1t is equivalent to
Re Z(f) Re Z(0,)
‘ Im Z(p) Im Z(0,)

which is equivalent to (a), (b) and (c) for the case f = [F], [Fi]+ [F3] and
2[F\] + [F] respectively. Hence the assertion follows. O

>0

)

By Lemma 5.3 and some easy calculations, we can find Bridgeland stability
conditions ¢” = (Z%,.) with 0 < b < 1 which satisfy the conditions 1 and 2 in
Proposition 3.6 as follows. We put xo:= —b, x; := —1+b, xp := —3b+ 3 and
yo=y1=0, =1, that is,

(36)  ZM(F)) = b, ZV(F):=—-1+b, Z'(F):=-3b+3+ V-1
o = (2", o)) € Stab(P?) satisfies the conditions (a), (b) and (c) in Lemma
5.3. The vector n(g”) is written as

n(6®) =u+vV—lve ¥ (P})®C
with u= (26— 1,(b+1)H,b), v=(-1,—1H,0) e #(P?). If we put

- b—1  2p2—2p-1 GL*O.R)
= e ) )
Vb—b2 (2b—1)Vb— D2
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then n(¢”)T = exp(bH + vV —1Vb — b2H);

b—1 20> —2b -1 (u)_ 1 bH b*—1b
Vb—b2 2b—1)Wb—b2)\v) \0 Vb—bH bVb—b2)
Hence ¢’ also satisfies the condition 2 of Proposition 3.6 and o € Stab(P?)
is geometric. The proof of Proposition 3.6 implies that there exists a lift g €

GL*(2,R) of T e GL*(2,R) such that n(a’g) = n(¢”)T and
(37) Ubg = O(bH,tH)>

where we put t=+b—b2 We fix aeK(P?) with ch(a)= (r,sH,chy),
0 < s <r. By the remark after Main Theorem 5.1 we may assume that ch, < %

We choose 0 < b <; such that o e K(P?) and Owr, i) = (Zow, i) L (bH, 1))

satisfy the conditions in Theorem 3.8;
. 1
(38) 0<e:ImZ(;,H$,H)(c<):s—rbSmln{t:vb—bz,;}

and Re Zjy ar)(o) = —chy +1r/2(b — 2b%) + 56 > 0.

In the following we assume that s/r —b >0 is small enough such that these
inequalities are satisfied. Then by Corollary 3.9 we have

(39) /%Dh(pz)(ch(oc), O(bH, tH)) = Mp: (Ch(oc), H)

Since o’g = owu,m), by (8) we see that the shift functor - [n] gives an
isomorphism
(40) K%Db(Pg(ch(a),a(bH’,H)) > K%Dh(Pg((—l)" ch(«),6”) : E — E[n]

for some neZ. We show that n=1. First notice that o = ao[Fo] + ai[F1] +
w|F) € K(P?), where (a,a),a,) € Z* is defined by

3
ao ::r—zs—i-chz
a; == —2s+2chy
s
a = —§+Ch2.

For every C-valued point E of /%Dh(Pz)(ch(oc),a<bH_ 1)), by Lemma 4.6 (2), E[n] is
written as

(41) Efn) = (05,7 — 0p: (1) — 04:(2) 70" ) € a4,

where (01,2(2)(71)'1“2 lies on degree 0. The conditions that 0 < s <r and ch, < §
imply that @, <0 and that @ =0 if and only if ch(x) = (1,1,}). In the case
ap < 0, the form (41) of E[n] implies n = 1 since E is a sheaf. In the case @, = 0,
we have Mp:(ch(a), H) = {Op2(1)}. Since Op:(1)[1] € o/, we also have n=1.
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On the other hand we define 0%, : K(B) — R by (24) using ¢, : K(P?) =
K(B). Then by Proposition 4.4 the moduli functor ., (—ch(2),a”) is co-
represented by the moduli scheme Mg(—¢,(x),0%,). Combining this with the
above isomorphisms (39) and (40) with n =1 we have an isomorphism

(42) Mp:(ch(a), H) = Mp(—g¢,(2),07:) : E — D (E[1]).

Isomorphisms (39) and (40) hold for moduli functors corresponding to stable
objects. Hence the isomorphism (42) keeps open subsets of stable objects.

Finally we see that if s/r — b > 0 is small enough, this 0, belongs to CW (@)
in the Main Theorem as follows. The above isomorphism (42) implies that
if s/r—b >0 is small enough, 07, belongs to the same chamber C, . This
chamber C, (,) satisfies the desired conditions. In fact we have 0,(p;(Cx)) >0
for b< s/r and  0%.,.(p,(0y)) =0, furthermore Mp:(ch(x),H) # 0 implies
Mp(—p,(a),01) # @ for 0, € C ) because of the isomorphism (42). This com-
pletes the proof of Main Theorem 5.1.

5.3. Comparison with Le Potier’s result

In the sequel we show that our Theorem 5.1 implies Main Theorem 1.3 (ii),
(iii), in particular, Le Potier’s result. In addition to €;, we consider the following
full strong exceptional collections on P2

= (Op2(1), 0p2(2), 0p2(3)), o = (Op2(1), Qp2(3), Op2(2)),
the equlvalences 1(-) = R Homp:(6/, ), @o(-) = R Homp: (&0, ) between D?(P?)
and D’(B), (B) and the 1nduced isomorphisms ¢| : K(P?) =~ K(B'),
K(P?) =~ K(B), where & =0Up(1)® O0p2(2) ® Op2(3), o= Upa(1) ®

5}2111,2(3) @ 0p2(2) and B’ = Endp:(4)), B Endp:(&p). We also recall from §4.3
that

(43) oA = {Op: [2],911,2(2)[1],(9],2(1)>7 oy = {0p2(—1)[2], Opy[1], Op2(1) ).

We remark that o7 is the left tilt of .o/} = {OUp:[2], Op2(1)[1], Op2(2)) at Op2(1)[1]
and /) is the left tilt of .| at (Up:[2]. See [Br3] for this terminology and
relationship between tilting and exceptional collections although we do not use
this fact.

For 0 e Homz( (P?),R), we put 0 := 0o ;' € Homz(K(B),R) for k =0, 1
and 0] := 0o ¢;"! e Homz(K(B'),R). We put

” (07,0},07) := (0x(Cup), 0k (Coy), 04(Cry))  for k =0,1,
(0°,6;',67%) := (61(Cuy), 0;(Cur), 0 (Cr2)).
For any B-module N and B’-module M, we have
0x(N) = 0} dimc(Nvg) + 0} dimc(Noy) + 0F dime(Nv3)  for k =0, 1,
0, (M) = 0,° dime(Muvg) + 0;' dime(Mo}) + 0;* dime(Mo3).
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By abbreviation we denote this by 6y = (6),0},07) and 0, = (0,,0,',0;*). Tt is
also convenient to write the following equality

(00: 0 0) = (0(Cp2 (k — 1)[2]), 0(Op2 (K)[1]), 0(Cp2(k + 1)) for k=0,1,

(45)
(01,0, 07) = (0(Cp2[2]), 0(Qp2 (2)[1]), 0(Cp2(1))).

PROPOSITION 5.4. Let 0:K(P?) — R be an additive function with 0 =
00,01,03) and «e K(P?) with 0(a)=0. If 0%,0] <0, then equivalences
@) o®; " : D*(B) = D*(B') and ®yo ®, " : DP(B') = D?(B) between derived cat-
egories induce the isomorphisms

Mig(91(2), 01) = M (g1 (), 01) = Mp(9o(), 00).

These isomorphisms keep open subsets of stable modules.

We only show the first 1somorphlsm using the assumption that 0, 1 <0. The
other assumption that 00 < 0 is used for the second isomorphism.

Step 1. The assumption 0] < 0 implies that @/ o ®;!(N) € mod-B’ for any
N € Mg(py(2),01).

Proof. We take E € o/ such that ®;(E) = N. Then the decomposition of
N =R Homyp: (61, E) is given by

Nv; = R Homp:(0p:(3), E)
(46) Nv; = R Homp: (Q},(4), E)

Nv; = R Homp:(0p:(2), E),
and y/|y = p;, 6|y = ¢; from (28). On the other hand, we have
(47) ®; o ®;'(N) = R Homp:(6/, E)

— R Homy: (Cp2(3), E) ® R Homy: (Cp: (2), E)

@ R Homp:(Op:(1), E).

The fact that N € mod-B and (46) implies
R’ Homyp: (Op2(3), E) = R' Homp: (0p2(2), E) = 0

for i #0. From the exact sequence
(48) 0— Op(1) 224 022 ® ¥ 225 Q1 (4) — 0,

we have an isomorphism of complexes in D’(P?)

(49) Op(1) = (0p(2) ® ¥ 2254 QL (4)),
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where Op:(2) ® V' lies on degree 0. By applying Lemma 4.6 (1) to (49) and
E € o/, we have an isomorphism in D’(C)
oy
(50) R Homy:(Op:(1), E) = (Nv;y — (Nvy) ® V),
where (Nvj) ® V lies on degree 0 and d;, =5 @ ep +0; ® e; +0, ® e2. Hence
®{ o ®;'(N) belongs to mod-B’ if and only if
ker 6, = R™! Homp:(Cp:(1), E) = 0.

However if kerdj #0, we can view kerd; as a submodule N’ of N with
N'v; = N'v; =0 and N'v{ =kerd;.. This contradicts 0;-semistability of N since
0 (ker 53,) = 0, - dimc(ker 5},) < 0. 0

Step 2. For any N e Mp(p (x),01), 0-(semi)stability of N implies 0;-
(semi)stability of M := @] o ®;!(N) e mod-B'.

Proof.  We recall that v; e CQ/J’ correspond to id@P2<3,i) eB fori=0,1,2
via the isomorphism (28). Hence by (46), (47) and (50) we have
(51) Mvg = Nvg, Mv; = Nvy, Mv; = cokerdy,.
Since z; = piy2 0 ¢ir1 € Homp:2(Op2(2), Op2(3)), |4y : Mog — Mo} is defined by
7ila 7= il © viyaly 2 Nvg — Noy.

Via the isomorphism (49), homomorphisms z; : Op2(1) — Op2(2) correspond to
homotopy classes of homomorphisms idg ,2) ® ¢/ : Up2 2)®V — 0p2(2) in
Hom ), p2) (Op2(1), Op2(2)) = coker(Homy: (911,2(4), 0p2(2))
— Homp: (0p2(2) @ V', 0p2(2))
for i=0,1,2. Hence J;|), : Moy — Muvj is defined by
idy,> ®¢;

(5;|M : Nv; 2 (NUE‘) ® V —— coker (5’{,,

where (Nvj) ® V' — cokerdj, is a natural surjection.
Conversely from this description we see easily that the above B-module N is
reconstructed from the B’-module M = ®] o ®'(N) as follows. We define

(52) 3 =07 ) ®er 1 (Mv]) ® V — Muj.
We put
(53) Nuvj == Mvj, Nvj:=kerd*”, Novj:= Mo}

and define y/|y : Nog — Nvj and J;|y : Nvj — Nv; by

iy = i) ®eia — (77 0la) ®eir : Mog — ker 6",

" idML.I*®e/,*
0/ |yt ker 6" < (Mv]) @ V ——— Muy.

(54)
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Imitating this, for any B’-submodule M’ of M we construct an B-submodule
N’ of N by (52), (53) and (54) with Mv; and Nv; replaced by M'v; and N'v}.
However in this case

O (M) @V — M'v;
is not necessarily surjective. Hence we have
dime(N'v;) = dime ker(6™" | yy,11) = 3 dime(M'vy) — dime(M'v;).
Hence the assumption that 911 < 0 and the following equality by (45)

1 0 0
@010 0 3 —1| =00
01 0

implies 6;(N') < 0;(M’). Thus 6,-(semi)stability of N implies 0;-(semi)stability
of M and we have
@} o @ (Mp(py(),01)) = Mp(9(2),0}).

The proof of the opposite inclusion is similar and we leave it to the readers. []

If we assume ch, <1, the chamber C ) < (pl( ) defined in Section 5.1
intersect with the region defined by the 1nequalltles 01,01 < 0. Hence from the
above proposition and Theorem 5.1 we have isomorphisms

(55) Myp2(ch(2), H) = Mp (—p{(2), 0;) - £ — O{(E[1])
(56) Mp:(ch(e), H) = Mp(—gy(x),00) : E — @o(E[l])
for ae K(Pz) w1th 0 < c¢i(x) <rtk(a), chy <} and 0: K(P?) — R satisfying

0, € C(p () with 01,0 < 0. This completes the proof of Main Theorem 1.3.
(55) was obtained by Le Potier [P].

6. Computations of the wall-crossing

In this section, we identify the Hilbert schemes of points on P>
(P! .= {7 < Op: | Length(Cp2/.9) = n}

with the moduli spaces Mp(—py(), ) = Mp(—¢p,(x),0:) by Theorem 5.1 and
Proposition 5.4, where o e K(P?) with ch(«) = (1, 1,1—n), 0, ¢ Cglz(a) and 0 =
01000 gﬂo . We study the wall-crossing phenomena of the Hilbert schemes of

points on P? via this identification.

6.1. Geometry of Hilbert schemes of points on P’
We recall the geometry of Hilbert schemes of points on P? (cf. [LQZ]). Let
/ be a line in P2, and xi,...,x,_; € P? be distinct fixed points in /. Let

Ms(x1) = {& e (P*)P [ Supp(é) = x1}
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be the punctual Hilbert scheme parameterizing length-2 0- dlmensmnal subschemes
supported at x;. It is known that M>(x;) = P'. Let N;((P*)") be the R-vector

space of numerical equivalence classes of one-cycles on (Pz)[”]. We define two

curves 5, and {, in (PZ)H as elements in Nl((Pz)["]) by the following formula
(57) Boi= A&t xat ot e (P& e M)}
C={x+x1 4 +x_ P xer).

The definition of 8, and {, does not depend on the choice of a line # on P? and
points xi,...,x,—1 on ¢ (cf. [LQZ Theorem 3.2 and Theorem 5.1]). We define

a cone NE((Pz)[”]) in Ni((P>)") by
NE((P))" .= {24;[C] | C; = (P)" an irreducible curve, a; > 0}
and NE((P2)") to be its closure.

THEOREM 6.1 [LQZ, Theorem 4.1]. NE((P)") is spanned by B, and ¢,.

Let S”(P?) be the nth symmetric product of P2 that is, S”(P?):=
(P»))"/&,, where S, is the symmetric group of degree n. The Hilbert-Chow
morphism 7 : (P2 — §7(P?) is defined by n(.#) = Supp(Op2/.#) € S"(P?) for
every . € (Pz)[”]. The morphism 7 is the contraction of the extremal ray R.f,,.

Denote by i : (Pz)[”] Z the contraction morphism of the extremal ray
R.o{,. In the case n=2, y: (P2)m — Z coincide with the morphism
Hilbz(P((T(Pz)*)*)) — (P?)* up to isomorphism, where Hilbz(P((T(sz)*)) is the
relative Hilbert scheme. In the case n =3, W (P )H — Z is a divisorial con-
traction. In the case n >4, y : (Pz)[”] — Z is a flipping contraction.

6.2. Wall-Crossing of the Hilbert schemes of points on P>
We take o e K(P?) with ch(«) = (r,1,1 —n) and assume that n>1. By

. . 1
(33), we have dim(—¢,(«)) = (n—r+1,2n+ 1,n). For be R with 0 < b < S we
put t=+vb— b2 From (40) and Proposition 4.4, we have isomorphisms

(58) e (eh(9), 0o i) = M puipe) (—ch(2),0”)  E v ENN]
(59) Pl 2y (—ch(2),6") = "tly(—py (), 05,) « E[1] — @1(E1]),
where ¢’ is defined by (36) and 0%, is defined by (24) using ¢, : K(P?) =
K(B). We recall that from §5.2, if %—bo >0 is small enough, then

Mp>(ch(e), H) corepresents S o pr) (@), O oyt o)), Where 1o = /by — b

We have 07 € ) and the 1somorphlsm
MPZ(Ch(a)aH) = Mp(—¢1(), 07s)

in Theorem 5.1. In fact the following lemma holds.
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LemmA 62, We have Roo0% + Roo0%, = C¥ . that is, the moduli functor

1
M p2) (ch(a), 0pm,im)) does not change as b moves in the interval (0,;).

Proof. We assume that there exists a C-valued point FE of
%Db p2) (ch(a),0p,m, 1)) such that E is not o, g, m)-semistable for some

by € <0 —), where we put ¢ := /by —b}. From (58) and (59), O(bH, 1H)"
semistability for E and 07,-semistability for ®;(E[l]) are equivalent for
be (0,%). Using the notation (44) in §5.3, 07, is computed from (36) and (45)
as follows:

= (1 =0)(0,—n,2n+ 1) +b(—n,0,n + 1 — r) e Homz(K(B),R) = R’

If we fix any f € K(B), then 07,(f) is a monotonic function for . Hence we
may assume that such a real number b; is small enough.

We take the oy, -semistable factor G of E with the smallest slope
‘uU(blH.tlH)(G) and the exact sequence in .o/ g, i)

(60) 0—-F—E—G-—0,

where F is a nonzero object of ./ g ;). From (60) we see that F is a sheaf
since E is a sheaf and #'(G) =0 for i #0,—1. From (58) we have E[l] € <.
By the uniqueness of Harder-Narasimhan ﬁltration we see that G[1] and F[l]
also belong to /. Hence from the exact sequence (60), we see that dimension
vectors of B-modules ®;(G[l]) and @;(F[l]) are bounded from above by
dim(—¢,(a)). In particular there exists a bound of rk(F) and rk(G) independent
of the choice of E and b;. The inequality 0 <Im Zy ) (F) = ti(c1(F) —
r(F)b1) <Im Z@ g, m)(E) implies that 0 < ¢;(F) < ¢)(E) =1 since we can take
arbitrary small b; > 0 and rk(F) is bounded from above. So we have ¢|(F) =1
and Cl(G) = Cl(E) - Cl(F) =0.

We put I :=im(F — E). Since F — [ is surjective we have 0 < pp_.in(F) <

~N | =

u(I). Furthermore since E is Gieseker-semistable, we have u(I) < u(E) =

Hence rk(I) =r, ¢;(I) = 1 and #°(G) is a 0-dimensional sheaf. Since G[1] € .,
by Lemma 4.6 (2) we have an isomorphism

G[1] = (05" — Op:(1)%" — 0p2(2)%*),

where (ag,a1,a2) = —r(G)(1,0,0) — chy(G)(1,2,1) € Z2,. Hence chy(G) must be
non-positive and ch,(G) = 0 if and only if G[1] = ¢&*[2]. In this case, we have
0%, (®1(G[1])) = —nbrag < 0 and @,(G[l]) does not break 0 - sem1stab1l1ty
of ®((E[l]). This contradicts the choice of G. We have chy(# (G)) =
—chy(G) +chy(#°(G)) >0. On the other hand, we have ¢(#'(G)) =
—c1(G) + ¢1(#°(G)) =0 and from G e JZf(b]H ni) We have gy (A HG)) <0
for small enough b, >0. Hence # '(G) is uy-semistable and satisfy the
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inequality —2r(#~'(G)) chy(#~'(G)) =0 by Theorem 3.2. This is a contra-
diction. 0

In the following we consider the case r =1. We fix x e K (P?) with ch(a) =

(1,1,3—n), n>1 and (91qu, (- Tensoring by Op:(1) = Up2(H) does not

change Gieseker-semistability of torsion free sheaves on P? and induces an
automorphism of K(P?) sending & with ch(&) = (1,0, —n) to «. Since by defini-
tion (PZ)["] = Mp:(ch(a), H), we have an isomorphism

(P2 = Mps(ch(), H) : 5 — F(1).
On the other hand, by Theorem 5.1 and Proposition 5.4, we have isomorphisms

i (- [1]) : Mp2(ch(e), H) = Mp(—g; (), Or)

for k=0,1, where 6y =0,0¢,0¢p,'. In what follows, we often use these
identifications

(PO =~ Mp(—g,(2),00) : F — Dp(F(1)[1]), and @ : o = mod-B.

For any 0-dimensional subscheme Z of P2, .7, denotes the ideal of Z, that is,
the structure sheaf (@7 is defined by 0 := 6 2/ Iz, 1f the length of Z is n, then
Iz is an element of (P?)".

We recall that

(61) o/t = (Op:[2], Op2()[1], Op2(2)), Ay = {Up2(—1)[2], Op2[1], Op2(1)),
dim(—¢,(2)) = (n,2n+ 1,n), dim(=py(x)) = (n,2n,n —1).

For b e R, we put

(62) 0(b), == (1 -0b)(0,—n,2n+ 1) + b(—n,0,n) € Homz(K(B),R)

(63) 0(b)y == (1 —b)(—n+1,0,n) + b(—2n,n,0) € Homyz(K(B),R).

If 0<b <1, by (36) and (45) we have 0(b); = 07, and 0(b), = 07 0 ¢, oyt

By Lemma 6.2, we have R-¢0(0), + R-o0(1), = C¥, o (z) @2 )t We deﬁne a

wall- and chamber structure on ¢y(x)" as in §5.1 and take the chamber C? ( ) O
@o(2)" containing R-o0(0), + R=o0(1),.

LeEmMMA 6.3. The followmg hold

(1) Re00(0), + Rof(1), = CF for n= 1.

(2) R-00(0)y + R00(1), = %(%) for n>2.

Proof. It is enough to show that 0(0), and (1), lie on walls on ¢, (2)" for
k=0,1.

(1) Any B-module N with [N]=g¢,(«) has a surjection N — Cyy, and
0(0),(Cvp) = 0. Thus 0(0), lies on a wall on ¢,(x)". We take any element
Iz € (Pz)["]. We have an exact sequence

(64) 0— Iz — Op— Oz — 0.
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(7 can be obtained by extensions of {0y |x € Supp(Z)}. Since 0, belongs to .7
by (35), we have 0z € «/;. From (64), tensoring by Cp:(1) we have an exact
sequence in .o

0— Oz — Jz(1)[1] = Op:2(1)[1] — 0.
Furthermore we have 0(1),(®;(0z)) =0, since dim(®(0,)) =(1,2,1) and
0(1),(®1(Cx)) =0 for any closed point x e P? by (62). Thus 6(1), also lies
on a wall on ¢ ().
(2) Any B-module N with [N]=¢,(«) has a submodule Cuv,. Since
0(1),(Cvy) =0, O(1), lies on a wall on gy(x)". On the other hand, for any

line # on P? we take an element .7, of {,. Since Z is a closed subscheme of /
by the definition (57), we have a diagram:

0 —— Iz Op2 Oy 0

T T

0 —— Opa(—1) Op: 0, 0.

Hence tensoring by (p:(1), we get an exact sequence in Coh(P?)
0— Op» — Iz(1) —» Oy(—n+1) — 0,
where Oy(—n+ 1) = ker(0,(1) — 0z). This gives a distinguished triangle in
D*(P?)
(65) Op2[1] = Fz()[1] = Or(=n+ D[] — Op2[2].

We show that this gives an exact sequence in .«/,. It is enough to show that
O/(—n+1)[1] € 4. An exact sequence in Coh(P?)

0— Op2(—1) = Op2» — O, — 0

implies that @;[1] € o/, from (61). For an integer m > 0 and a closed point x in
/, we consider an exact sequence in Coh(P?)

0— Oy(—m) = O)(—m+1) — Oy — 0.
This gives a distinguished triangle in D?(P?)
Oy — O/ (—m)[1] — Oy(—m+ 1)[1] — O[1].
Since ¢, belongs to .o/, as in Lemma 5.3, by induction on m we have
O;(—m)[l] € o4y for any m > 0. Since 0(0),(¢(Op:[1])) =0, Fz(1)[1] and the
subobject (p2[1] define a wall R=o0(0), on ¢ (a)™. O

We take the chamber C;](l) # C;:lz(a) in ¢;(x)" sharing the wall R=o0(1),
with C(‘;lz(“). Similarly we take the chamber C, ,, # C;f(a) in (o) sharing the
wall R00(0), with C(';:(“). We take a real number 0 < ¢ < 1 small enough such

2 2
that 0(1 —¢), € C}',), O(1 +¢), € C, , and O(e) € Cp . O(—¢)g € C,,

3 Po(o)°
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LEMMA 6.4. The following hold.
(1) Mp(—p(),0(1 +&);) # 0 for n>1.
(2) Mi(=go(a),0(c)y) 0 for n=3.

Proof. (1) For any N e Mp(—¢,(2),0(1 —¢),), we show that the dual
vector space N* := Hom¢(N,C) has a natural B-module structure and belongs
to Mp(—g;(«),0(1 +¢),) as follows. We put N*v/ := Homc(Nvj_;, C) and define
7ily- and J;|y. by pull backs of /|y and y/|y, respectively. Any surjection
N* — (N')* corresponds to a submodule N’ of N and

(66) dim((N')") = (dim¢ N'vy,dime N'v;, dime N'vg).
On the other hand, from (62) we have

n—(n+1)e

(67) 0(1+¢), =&(—2n—1,n,0) + ,

(=n,0,n) e Homz(K(B),R).
By (66) and (67), we have the following equality

(68) 01 + ), (N')") = (80«»1 +”‘(”“)80<1>1)<N/>.

n—(n+1)e

Since by Lemma 6.3, we see that (1 —¢), and ¢0(0), + 0(1), belong

to the same chamber C ) for & small enough, the right hand side of (68) is
non-positive for any submodule N’ of Ne Mp(—p(a),0(1 —¢);). We have
O(1+¢&),(N')") <0 for any surjection N* — (N’)". Thus N* belongs to
My(—,(2), 001 +&),).
(2) For n >3 we take an element I, e (PH)" such that Supp(C© Op2/I7) is
not contained in any line / on P>. Hence we have Homp:(Cp>,.92(1)) = 0.
Below we show that this implies that the B-module M := ®(fz(1)[1]) e
Mp(—py(a),0(¢),) is also 0(—e¢),-semistable. For any B-submodule M’ < M,
if 6(0),(M') >0 then by taking ¢ small enough we have 0(—¢),(M') >0 and
M’ does not break 0(—e¢),-semistability of M. If 6(0),(M') =0, then from (63)
dim M’ = (n,x,n—1) or (0,%,0). However the latter case contradicts the
fact that Homp(Cvy, M) = Homp:(0p:, #2(1)) = 0. Hence we have dim M’ =
(n,l,n—1) with 0 </ < 2n and 0(—¢)y(M') = 0. Thus M is 0(—¢),-semistable.
O

For 0y € C(/I,’:(a), we have natural morphisms
(69) (P = Mp(—p,(2), 0) — Ma(—0(2),0(k),)

for k=0,1, since R5¢0(1),; and R5(0(0), are walls of the chamber Cq, , and
CP ) respectively. We study the Stein factorization 7 (Pz)["] — Y of the
above morphism (69) for each £k =0,1. Since by Lemma 6.4, for n >3 our
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situations satisfy the assumptions in [Th, Theorem (3.3)], we see that z; and =,
are birational morphisms and have the following diagram:

Ma(—po(2).0(~2)) — — "~~~ ()"

(70) \ m 7

Y() Y1~

THEOREM 6.5. The following hold.

(1) There exists an isomorphism Y; = S"(P?) and via this isomorphism, the
morphism m| coincide with the Hilbert-Chow morphism .

(2) For n >3, the morphism m, is the contraction morphism of the extremal
ray Rsol,.  Hence mjy coincide with y defined in §6.1 up to isomorphism.

Proof. (1) We take two elements Jz,fzre(Pz)M. We show that if
Supp(Z) = Supp(Z'), then @,(Iz(1)[1]) and @;(Fz(1)[1]) are S-equivalent
0(1),-semistable B-modules. By Proposition 4.3 this implies that 7{ contracts
the curve 5, to one point. This shows that the morphism 7| coincides with the
Hilbert-Chow morphism 7 via an isomorphism Y; =~ §”(P?), since the Picard
number of (P is two (n > 2).

We put Supp(Oz) = Supp(Cz) = {x1,...,x,} and consider a filtration of
J7(D[1] in 4. We put Zy := Z e (P*)" and inductively define Z;,; e (P?)!" "V
from Z; by the following exact sequence in Coh(P?)

(71) O*)(QZH»I *}(QZ,—)(D

Xit1 - 0

for i=0,...,n—2. We have O0z_, =0, and 0y, € o/, for any i by (35). By
(71) we have Oz € o/ for i =0,...,n—1. Hence (71) is also exact in /. On
the other hand, from the exact sequence in Coh(P?)

(72) 0—SI7 = 0pr— 0z —0
we have an exact sequence in .o/

Since dim(®;(Cp:2(1)[1])) = (0,1,0) and dim(®d;(Cy)) = (1,2,1) for any
closed point x € P?, we have 0(1),(®;(Cp>(1)[1])) = O(1),(®;(Cy)) = 0 from (62).
Furthermore from (71) we have 0(1),(®(0z)) =0 for any i. Hence (71) and
(73) give a Jordan-Holder filtration of @;(#z(1)[1]) with 6(1),-stable quotients
{@1(Op2(1)[1]), D1 (O, ), ..., DP1(0O,)}. This set only depends on Supp(Z). Thus
D, (Jz(1)[1]) and (S (1)[1]) represent the same S-equivalence class of 0(1),-
semistable B-modules.

(2) For a line /, we take an element ., of {,. As in Lemma 6.3, we get an
exact sequence in .27

0 — Opall] = S2(D[1] = Cr(=n+ D)[1] = 0



MODULI OF BRIDGELAND SEMISTABLE OBJECTS ON P2 365

and 6(0),(DPo(Op:[1])) = 0(0)y(Po(Cs(—n +1)[1])) =0. Hence by a similar ar-
gument as in the proof of (1), we see that x) contracts the curve {, on PH" to
one point. O

If n >4, the morphism  is small and induces a flip in the sense of [Th].
For general r > 0 it will be shown in [O] that « in the above diagram (70) is the
Mori flip for n> 0 and described by stratified Grassmann bundles.
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