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CONFORMAL CLASSIFICATION OF (k,x)-CONTACT MANIFOLDS
RAMESH SHARMA AND LuUC VRANCKEN

Abstract

First we improve a result of Tanno that says “If a conformal vector field on a
contact metric manifold M is a strictly infinitesimal contact transformation, then it is an
infinitesimal automorphism of M” by waiving the “strictness’ in the hypothesis. Next,
we prove that a (k, u)-contact manifold admitting a non-Killing conformal vector field
is either Sasakian or has k= —-n—1, u=1 in dimension > 3; and Sasakian or flat
in dimension 3. In particular, we show that (i) among all compact simply connected
(k, u)-contact manifolds of dimension > 3, only the unit sphere S?"*! admits a non-
Killing conformal vector field, and (ii) a conformal vector field on the unit tangent
bundle of a space-form of dimension > 2 is necessarily Killing.

1. Introduction

An m-dimensional Riemannian manifold (M,g) admitting a maximal, i.e.
an (m—+ 1)(m + 2)/2-parameter group of conformal motions is conformally flat.
We know (Okumura [8]) that a conformally flat Sasakian (normal contact metric)
manifold is of constant curvature 1. Hence the existence of a maximal conformal
group places a severe restriction on the Sasakian manifold. Therefore one would
like to examine the effect of the existence of a 1-parameter group of conformal
motions generated by a conformal vector field on a Sasakian manifold, and more
generally on a contact metric manifold (M, 7, ¢, ¢, g), where # is a contact 1-form,
¢ the Reeb vector field, ¢ the fundamental collineation tensor and g an associated
metric. We will assume M to be connected throughout this paper. We first
recall the following definition (Tanno [11]): A vector field 77 on a contact mani-
fold (M,n) is said to be an infinitesimal contact transformation if

(1) £V77 = an

where £, denotes Lie-derivative operator along ' and ¢ a smooth function on
M. 'V is strictly infinitesimal contact transformation when ¢ = 0. We also say
that a vector field on a contact metric manifold is an infitesimal automorphism if
it leaves 5, &, ¢g and ¢ invariant. In [11] Tanno proved the following result.
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THEOREM (Tanno). If a conformal vector field on a contact metric manifold
M is a strictly infinitesimal contact transformation, then it is an infinitesimal auto-
morphism of M.

In this paper we generalize this result and prove

THEOREM 1. Let V be a conformal vector field on a contact metric manifold
M. If V is an infinitesimal contact transformation, then V is an infinitesimal
automorphism of M.

Next we recall the following result of Okumura [9], which shows that the existence
of a non-Killing vector field places a very severe condition on a Sasakian manifold
of dimension > 3.

THEOREM (Okumura). Let M be a Sasakian manifold of dimension > 3,
admitting a non-Killing conformal vector field V. Then V is special concircular.
If, in addition, M is complete and connected, then it is isometric to a unit sphere.

Its proof uses the following result of Obata [6].

THEOREM (Obata). A necessary and sufficient condition for a complete
connected Riemannian manifold (M,g) to be isometric to a Euclidean sphere of

1 ., > .
radius — is that it admits a non-trivial solution f of the system of differential
c

equations VVf = —c?fy.

Okumura’s result motivates us to examine the existence of a conformal vector
field on a more general class of contact metric manifolds M(y, &, ¢, g) satistfying
the following nullity condition:

2) R(X, Y)¢ = k(n(Y)X —n(X)Y) +p(n(Y)hX = n(X)hY)

where X, Y are arbitrary vector fields on M, R the curvature tensor, k, u real
constants and / :%fégo is a self-adjoint trace-free tensor of type (1,1). Such
manifolds were introduced by Blair, Koufogiorgos and Papantoniou [3], and are
called (k,u)-contact manifolds. These manifolds include Sasakian manifolds
(for which k =1 and & = 0) and the trivial sphere bundle E"*! x §"(4). Such

. . . . . = 1
manifolds are invariant under a D-homothetic deformation: 7 =ay, &=-¢,
a

¢ =9, g =ag+a(a— 1)y ®n, which deforms a contact metric structure (17,&, ¢, g)
to another contact metric structure (7, &, 9, g) (see Tanno [12]). The case when
(k,0)-contact manifold admits a conformal vector field was covered by Sharma
and Blair [10] who proved the following.

THEOREM (Sharma-Blair). Let V' be a non-Killing conformal vector field on a
(k,0)-contact manifold M. For dim.M >3, M is Sasakian and V is concircular,
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and hence if M is complete then it is isometric to a unit sphere. For dim.M = 3,
M is either Sasakian or flat.

We note that the set of all (k,0)-contact manifolds is not closed under a D-
homothetic deformation, whereas the set of (k,u)-contact manifolds is closed under
a D-homothetic deformation. This fact intrigues us to generalize the result of
Sharma and Blair on (k, x)-contact manifolds. We accomplish it by proving the
following conformal classification of such manifolds.

THEOREM 2. Let a (k,u)-contact manifold (M,n, ¢, ¢,g) admit a non-Killing
conformal vector field V. For dim.M > 3, () M is Sasakian and V is concircular,
in which case if M is complete then it is isometric to a unit sphere, or (i) u =1,

k=—-n—1. In addition, if M is compact, then it is isometric to the unit sphere
S2n+1'

COROLLARY. Let T\M be the unit tangent bundle over a Riemannian
manifold M (dim.M > 2) of constant curvature ¢ and g be the standard contact
metric on TYM. Then a conformal vector field on (T\ M, g) is necessarily Killing.

2. Review of contact manifolds and conformal vector fields

A (2n + 1)-dimensional smooth manifold M is said to be a contact manifold
if it carries a global 1-form 7 such that # A (d)" # 0 everywhere on M. For a
given contact 1-form # there exists a unique vector field ¢ (the Reeb vector field)
such that dn(&, X)=0 and 5(&) = 1. Polarizing dn on the contact subbundle
n =0, one obtains a Riemannian metric g and a (1, 1)-tensor field ¢ such that

(3) dy(X,Y)=g(X,pY), n(X)=g(X.&), ¢*=-I+n®¢

g is called an associated metric of # and (¢,7,&,g) a contact metric structure.
The tensor h:%£§(p is known to be self-adjoint, anti-commutes with ¢, and
satisfies:  Tr.h = Tr.hp = 0. The contact structure on M is said to be normal
if the almost complex structure on M x R defined by J(X, fd/dt)=
(pX — f& n(X)d/dr), where f is a real function on M X R, is integrable. A
normal contact metric manifold is called a Sasakian manifold. For a Sasakian
manifold, we have

) RX, Y)E=n(Y)X —n(X)Y
For a (k,u)-contact manifold defined in Section 1,
(5) h* = (k—1)p*, Q&= 2nk¢

For a (k, u)-contact manifold with £ < 1, we also have the following formulas for
Ricci tensor ([3])

(6) Ric(X,Y)=(02n—-2—nu)g(X,Y)+ (2n—2+4 w)g(hX,Y)
+ (2 —2n+2nk + nu)n(X)n(Y)
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and the scalar curvature
(7) r=2n(2n—-2+k—ny)

For details we refer to Blair [1].
A vector field V' on an m-dimensional Riemannian manifold (M, g) is said to
be a conformal vector field if

(8) £yg =2pg

for a smooth function p on M. Denoting the gradient vector field of p by Dp
and the Laplacian —div.Dp by Ap we have the following integrability conditions
for the conformal vector field V' (Yano [13]):

) ER)(X,Y,Z)=—(VVp)(Y,Z)X + (VVp)(X,2)Y

—g(Y,Z)VxDp+ g(X,Z)VyDp
(10) (v Ric)(X, Y) = —(m =2)(VVp)(X, Y) + (Ap)g(X, Y)
(11) £fyr=2(m—1)Ap —2rp

where m = dim.M and X, Y, Z denote arbitrary vector fields on M.

3. Proofs of the theorems

First we prove

Lemma 1. If' V is a conformal vector field on a contact metric manifold, then
() (En) (&) = p and (i) n(£yE) = —p.

Proof. Taking the Lie-derivative of g(&, &) =1 along V' and using equation
(8) we get (ii). Lie-differentiating #(¢) =1 along V' gives (i).

Proof of Theorem 1. Lie-differentiating #(X) = g(X,¢) along V' and using
the hypothesis, £,# = oy provides £,& = (o0 — 2p)&.  Operating this equation by 5
and using the part (ii) of Lemma 1 shows that ¢ =p. Thus we have

(12) tyn=pn, £y<=-—p¢
Operating the first equation in (12) by d, using the commutativity of d with £,
and using the first equation in (3) gives

(& dn) (X, Y) = % [(Xp)n(Y) = (Yp)n(X)] + pg(X, 9Y)

Now Lie-differentiating the first equation of (3) along ¥ and using it in the above
equation we obtain

(13) (Xpn(Y) = (Yp)n(X) =2[pg(X,pY) +g(X, (£r9) Y)]

Substituting ¢ for Y and using the second equation in (12) we find that
dp = (p)n. Operating it by d, using Poincare lemma (d?> = 0), and then taking
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wedge product with 7 yields (Ep)y A (dn) =0. By definition of contact struc-
ture, 7 A (dn) # 0 anywhere on M. Hence &p = 0. Consequently, dp =0, i.e. p
is constant. Thus equation (13) reduces to

(14) £y = —pp.

Next, taking Lie-derivative of the last equation in (3) along ¥, and using (12) and
(14) we get pp> =0. Hence p =0, i.e. V is Killing. It also follows from (12)
that V' leaves # and ¢ invariant. This completes the proof.

In order to prove Theorem 2 we need the following lemmas.

LemMmA 2. Let M be a (k,p)-contact manifold admitting a conformal vector
field V, and (e;) a local orthonormal frame on M. Then (i) g((£yh)e;, e;) = 0, (ii)
g((£vh)heie;) =0 (i is summed over 1,...,2n+ 1).

Proof. As h is trace-free, we have g(he;,¢;) =0. Taking its Lie-derivative
along V' gives
(15) g((£Vh)ei7ei) +2g(h£[/€i,€j) =0

At this point, we let (¢;) be a g-adapted frame (e,, pe,, exr1 =¢&) (a=1,...n)
such that he, = Je,, hgpe, = —lpe, (where A= +/1—k). This setting makes
sense in view of the first equation in (5). Then g(hfpe;, e;) = g(hfye, e,) +
g(htypeq, pes) = Alg(£veq, eq) — g(£rpeq, pe,)] = 0. Using this in (15) we obtain
(i). For (ii) we first note that g((£yh)X,Y) =g((£yh)Y,X), as V is confor-
mal and / is self-adjoint. Now, g((£yh)he;, e;) = g((£vh)e;, he;) = g(£yhe;, he;) —
g(£vei,h*e;). Using the first equation in (5) we find that g(£yhe;, he;) =
2n(k — 1)p and g(£ye;, h*e;) = —2n(k — 1)p.  Summing up, we get g((£yh)he;, e;)
= 0 completing the proof.

LemmA 3. On a (k,p)-contact manifold M,
(16) R(pei,ei)Y = =2(k + nu)pY
for an arbitrary vector field Y on M.
Proof. We first recall the formula from [3]:
R(X, Y)pZ — pR(X, V)Z = [(1 - K)(n(X)g(p Y, Z) - n(Y)g(pX, Z))
(1 =w)n(X)g(phY,Z) —n(Y)g(phX, Z))|<
—g(Y +hY,Z)(pX + phX)
+9(X +hX,Z)(pY + phY)
—g(pY +phY,Z)(X + hX)
+ g(pX + ohX,Z)(Y + hY)
— ()1 =) n(X)pY —n(Y)pX)
+ (L= @) (n(X)phY —n(Y)phX)]
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Substituting X = ¢; in the above equation, taking inner product with e; and
summing over i we get

(17) Ric(Y,9Z) = g(pR((e;; Y)Z, ;)
=2 -2n-k)g(pY,Z) + (2 = 2n— p)g(phY,Z)

Now, g(¢pR(e;, Y)Z,e;) = —g(R(e;, Y)Z,pe;) which can be expressed in terms
of the h-eigen basis (e,, pey, exp1 = & such that he, = le,, hpe, = —lpe, where

=v1—-k) as g(R(es, Y)Z, pe,) — g(R(peq, Y)Z,e,) = —g(R(eq, Y)pe,, Z) —
g(R(Y,pe,)eqs, Z) = g(R(peq,e,) Y, Z) (through Bianchi identity). We also note
that g(R((ﬂ€i7€i) Y7Z) - 29( ((pemea)Y ) HenCC we get g((ﬂR(Ej, Y)Za ei) =
—19(R(pei,e;)Y,Z). Using this and (6) in (17) we obtain (16), completing the
proof.

Proof of Theorem 2. 1f k =1, then M is Sasakian, in which case Okumura’s
theorem applies and the corresponding conclusion follows. So, let £ < 1. Tak-
ing the Lie-derivative of (2) along V' and using (9) we get

+n(Y)VxDp — n(X)VyDp
+k2pg (&, V)X +g(vS, Y)X = 2pg(S, X)Y — g€ S, X) Y]
+ul2pg(&, Y)hX + g(£E, Y)RX +g(&, Y)(Evh) X
=2pg(&, X)hY — g(£v S, X)hY — g(¢ X)(£vh) Y]
Substituting ¢ for X and using (2) in the above equation yields
(19) VyDp = g(VeDp, Y)E — g(VeDp, Q)Y +n(Y)VeDp

— ug(hty &, Y)E + 2kpny(Y)E — 2kpY
+ (Y )(Evh)E = 2uphY — p(£vh)Y

Substituting e¢; for Y, taking inner product with ¢;, summing over i=

1,...,2n+ 1, and using part (i) of Lemma 2 we have
2n+1
(20) Ap == g(Ve.Dp,e;) = 4nkp + (2n — 1)(VVp)(&, &)

i=1

The use of equation (19), first equation in (5) and part (ii) of Lemma 2 enables us
to obtain

[
=
ot

(21) g(Vhe,-Dp,ei) = 47’1(]( — l)lup

Il
_
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Now, Lie-differentiating (6) along V' and using (10) we have

(22) (2n—1)g(VxDp,Y)= (2 —2n+k+nu)pg(X,Y)
+(2=2n—u)2pg(hX.Y) + g((£yh) X, Y)]
+ (20 = 2 = 2nk — ) [(£1m)(X)n(Y) + (£0) (Y )n(X)]

Substituting X = he;, Y =e¢; in the above equation and summing over i, using
part (ii) of Lemma 2 and using (19) we obtain 2p(k — 1)(n — 1)(xu—1)=0. As
k <1 and V is non-Killing by hypothesis, it follows that either (a) x =1 or (b)
n=1, ie. dim.M =3. In the following discussion we will pursue the case (a).
Let us go back to equation (18), substitute X = pe;, ¥ =¢;, and sum over i in
order to get

R(gei, ei)tyé — g(VeDp, ei)pe; + g(VeDp, pei)e;
= klg(£v&, ei)pei — g(£vE, pei)ei] + [g(£vE, ei)hpe; — g(£vE, pei) he;]

where the first term has summation over i. Simplifying the right hand side
reduces the above equation to

R(pei, e:)ty ¢ = 2[pV:Dp + kptyé + hpty ]

Using Lemma 3 in the above equation yields

(23) (n +2k)ptyE = —oVeDp — hpty <
We also have from equation (22) that
(24) (1 =2n)(VVp)(&, &) = (2—2n—k+n+4nk)p

Now substituting X = ¢; in equation (18), taking inner product with ¢;, summing
over i, and then using equation (6) and also Lemma 2, we get

(n—2 = 2nk)£yé + (2n — Dhtpé + 2n — 4 — 6nk + k|pé + (1 — 2n)VeDp =0
Operating the above equation by ¢ gives
(20— 1)[pVeDp + hpyé] = (n — 2 — k) pky
Now comparing this with (23) provides
[(n—2—=2nk)+ (2n—1)2k +n)]pty =0

which shows that either (i) the constant within brackets vanishes, which simplifies
to k=-n—1, or (ii) £y¢ is a function multiple of & which, by Theorem 1,
implies that V' is Killing, contradicting our hypothesis. Thus we conclude that
case (a) has k = —n — 1. To prove the last part which assumes M to be compact,
we use formula (6) and the first equation in (5) to show that the norm of the
Ricci tensor is constant. We also have from (7) that the scalar curvature is
constant. Hence, by the following result of Lichnerowicz [5] “If a compact
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Riemannian manifold of dimension m > 2 admitting a non-Killing conformal
vector field has scalar curvature and norm of Ricci tensor both constant, then it is
isometric to a sphere” we conclude that M is isometric to a sphere and hence of
constant curvature. But a contact metric manifold of constant curvature is a
Sasakian manifold of curvature 1 in dimension > 3 (Olszak [9]). Therefore, M is
isometric to a unit sphere.

Proof of the Corollary. We know [3] that if the base manifold M has
constant curvature ¢, then T\ M is a (k,u)-contact manifold with k = ¢(2 — ¢),
u=—2c. If T)\M has a non-Killing conformal vector field, then Theorem 1
implies that either (i) it is a Sasakian (¢ = 1) manifold of dimension > 3 and
isometric to the unit sphere, or (ii) k=-n—1, u=1. In case (i) T'M is
conformally flat and hence M has dimension 2, by a theorem of Blair and
Koufogiorgos [2]. Thus case (i) is ruled out. Case (ii) is not compatible with
the condition k = ¢(2 — ¢), £ = —2¢, and hence ruled out. This completes the
proof.

Remark. The conclusion (ii) of Theorem 2 seems accidental and patho-
logical, and gets ruled out in special cases, for example when M is compact.
There is another situation in which (ii) can be ruled out. Under the conclusion
(ii), equation (7) reduces to r = —6n. Use of this in (11) shows Ap = —3p. Now

Ap? = —V'Vip® = =2[(V'p)(Vip) + p(V'Vip]
= —=2(|Dpl* — pAp]
Hence we obtain
(25) Ap* =2[|Dp|* + 3p7]

If we assume M to be complete, and |Dp| and p both L-integrable over M, then
by Gaffney’ theorem [4] we have [,, Ap? dv =0 (dv denotes the volume element
of M). Hence, integrating (25) over M we conclude that p =0, contradicting
our hypothesis.

In general, the contact metric in case (ii) can be D-homothetically deformed to
the standard metric of a unit tangent bundle of a space of constant curvature

1-2vn+2
‘Tliavnr2 ~
metric gets D-homothetically deformed to a (k,jf)-contact metric such that
— k+a*-1 _ u+2a-2

This can be shown by using the fact that a (k,u)-contact

k=——5—— f=———— (see [3]). Substituting k=-n—1, =1 and
a a

requiring (k, fi)-contact metric to be the standard metric on the unit tangent

bundle of a space of constant curvature ¢, so that k =c¢(2 —¢), g= —2¢, we

obtain the aforementioned value of ¢. We note that in this case ¢ lies in the
open interval (—1,0).
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So far we have confined our attention to contact (k,u)-manifolds M of
dim.M > 3. The next section addresses the 3-dimensional case.

4. The three dimensional case

In this section we resolve the 3-dimensional case using Lic-algebra theoretic
approach. We take a vector field E; corresponding to the positive eigenvalue of
h= %£Vgo. We take E; = ¢F) and E; =¢. It follows immediately that

1 1
(26) [E],Ez] = 2E3 [E3,E1] = (1 +)v—§,u>E2 [Ez,E3] = (1 -2 —E,u>E1,

where 4 =+/1 —k. Throughout this section we will assume that M is not a
Sasakian space form. Hence we assume that k < 1 and therefore 1 > 0.

As {E,, E,, E3} form an orthonormal basis of the tangent space, applying the
Koszul formula gives:

VEIEI =0 VE1E2 = (1 + ;L)E?, VElEg, = —(1 + i)EZ
VEZEI = (—1 + A)E3 VEzEz =0 VE2E3 = (1 - ;L)El

1 1
Ve, By = —EﬂEz Vi, By = E/lEl Ve, B3 =0

We now assume from now on that M admits a conformal vector field V. Using
the previously defined frame we can write V = a1 E| + ax E> + a3 E3, where a;, as,
ay are well defined functions on M. Using the conformal equation (8) we find
that the functions a;, a», as satisfy the following system of differential equations:

Ei(a1) = Ex(a2) = E3(a3) = p
Ez(al) + E; (az) =2a3A

1
Es(a)) + Ev(a3) + az (1 + 4 +§,u) =0

o1
E>(a3) + E3(a2) + ap (—1 +4A— E,u) =0.
Hence introducing local functions by, by, b3 by

b1 = Ez(al) — agi

1 1
b2:E3(a1)+§a2(1+/1+§/¢>
by = E5( 1 —1-‘v-)—l

3= 3a2)+2a1 LK

we find that the functions «a;, @y, a3 satisfy the following system of differential
equations:
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1

Ei(a1) =p Ei(ay) = —by +a3) Ei(a3) = —by — 5 @A
1
Ex(a)) =b1 +ask  Exa)=p E>(a3) = —b3 — SaB

1 1
E3(a1) = b2 —EazA E3(Clz) = b3 —ECZ]B E3(a3) =p

where A =1+ 1 +'§ and B= -1+ 41— g We now introduce another set of

auxiliary functions p;, p,, p; through the conditions
Ei(p)=n, Exp)=r, E(p)=rs.
Then we have the following lemma:
LemMMA 3. The integrability conditions for the differential equations for the

functions ay, ay, as imply that the functions by, by, by satisfy the following system
of differential equations:

Ei(br) = 5 (402 + b2+ 2)) + aali — )2+ 2+ 4)

Es(by) = %(—4@1 Fb3(A—2)) —ay (24 1) (=2 + 21— p)

E5(by) = —p

Ey(by) = %(41’3 + by (—6 — 64+ p1) + asA(—2 — 24+ 3p))

Ex(b) = 12+ 24— )y

Es(by) = 11—6(716r1 +4b3(2+ 24— 3u) + ar (=12 + 1277 — 4u — 8o+ %))
E\(b3) :%(72+2A +p)p

Es(bs) = %(41’3 + a3 A(2 — 24— 3p) + by (=6 + 62 + 1))

Es(by) = %(—w2 by (=2 + 20+ 3p) + ar(—12 + 1227 — dp + 82p + %))

Proof. Using the fact that both 1 and u are constant, we find that

E(Ei(a3)) = —Ex(by) — =2+ 22+ p)p

Bl— A=

Ey(Ex(as)) = —Ei(b3) + 7 (2= 24+ p)p.
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As
E\(Ex(@3)) — Ea(Ev(a3)) = [Ev, ExJas = 2E3(a3) = 2p,
we find that

—E(b3) + Ex(b2) + % (t=2)p=0.

Similarly, we find that
—4(r 4+ b3(2—2)) —ay (24 A) (=2 + 24 — u) — 4E> (b)) = 0
(=6 +27+p)p —4E5(br) —4E1(b3) =0
(4r3 + 2a3). — 2a32% — 3as A+ by (—6 + 6] + u) — 4E(b3) = 0
ay(—12 +120% — 4p + 82p + 11%) + 4(—4ry + by(—2 + 24+ 3p)) — 16E3(b3) = 0
a1 (=12 4+ 122% — 4 — 82 + %) + 4(—4r1 + b3(2 + 22 — 3u)) — 16E3(by) = 0
(6424 — w)p + 4E3(b1) — 4E>(by)
4(ry 4+ by(A+2)) + ar(2 — A)(=2 = 24 — u) —4E (b)) = 0
(4r3 — 2a32 — 2a30° + 3azip) + by (=6 — 64 + ) — 4E (by) =0

Looking at the above equations as a system of linear equations in the derivatives
of the functions b; and solving this system of equations explicitly completes the
proof.
Note that the above equations can also be obtained using

EV)(X, Y) = dp(X)(Y) +dp(Y)X — (X, Y)Dp,

which is a straightforward consequence of the fact that V7 is a conformal vector
field, see [13].

Similarly expressing in the same way the integrability conditions for the
functions by, by, b3, we find that r, rp, ry satisfy the following system of
differential equations:

Ei(r) = (1= 2%+ p—2u)p
Ex(r) =r(A—1) + Au(—2by + a3(,u — 2))
Ex(ry) = — gy — (= 1)((2+ 2+ by

1
— g (121422 £ 40 = 2) — A ) an)

Ei(r2) =r3(A+ 1) + u(=2by + a3(pe — 2))
Ex(r2) = (1= A%+ p+ 2Au)p
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Ey(r2) = gn + (4 1)((2— 20+ by

1
_Z(_12+4z2 — 42— 2) — 4u+ 1P)ay)

E(r3)=—-nrn1+A)+A-1)(-2+24+u)b,

|
— g (F124 427+ 42(u = 2) — dp+ )a)

Ey(r3) = n(1 = 2) + (1 + (1 +2 = 24)bs

1
_Z(_12+412 — 4 —=2) — du+ p@P)ay)

Es(r3) = (=3 + 322 — w)p.

At this point it is easy to verify that the integrability conditions for the system of
differential equations determining p are trivially satisfied. However, computing

Ey(Eqi(r3)) — E1(Ea(r3)) = —2E;3(r3),
we find that
Q+ 2 (u=2)+pp=0.

As p was supposed to be non vanishing this implies that

_202-1)
1+4%
Using
1
Es(Ei(r)) — Ei(E5(ry)) = (1 + A - 2/1) E>(rp),
we find that

A2 =1)*B+2)p=0.

Hence, as we assumed that A was positive, it follows that A=1. A straight-
forward computation shows that in the case that A =1, hence k =0 and u =0,
all integrability conditions are satisfied. Thus we proved

THEOREM 3. If a 3-dimensional non-Sasakian (k, i)-contact manifold admits a
non-Killing conformal vector field, then it is locally flat.

We now construct all possible conformal vector fields in this case.

First, we notice, by a straightforward computation, that all components of
the curvature tensor vanish identically, i.e. M is flat. Moreover, we see that the
integrability conditions for the following function # are satisfied:

E\(0) = -2, E>(0) = Es(0) = 0.
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Hence for any initial condition 6 a local solution exists. Let 6 be such a solu-
tion. Then it follows that

[cos OE, + sin 0F3, —sin 0E, + cos OFE3| = [E,, E3] =0
[E1, cos OE, + sin OF3] = E|(0)(—sin 0E, + cos 0E;3))

+cos O[E|, Ex] +sin O[E;, E5] =0
[E1, —sin OE, + cos 0E3]) = 0.

. . . 0
This means that there exist local coordinates u, v, w on M such that P E,
u

0 . 0 . . .
i cos OF, + sin OF5 and P —sin 0E, + cos OE5;. From the above differential

equations for 6 it follows that we can take § = —2u. Note that as these coor-
dinates are mutually orthogonal coordinates, we can identify these coordinates
with the standard coordinates of R?. We also have

A

0 . 0 . 0
E, =cos2u—+sin2u—, E;= —sin 2u£+cos2u—
ov ow ov ow

which allows us to express our structure in terms of the usual coordinates.
Specialising the system of differential equations for the functions ry, r;, r3 we
find that the only non vanishing derivatives are given by

a}"z -9 67'3

o _ 93 _
ou k& ou 2

So we see that there exists constants ¢, ¢, ¢3 such that r; = ¢y, r» = ¢, cos 2u +
¢z sin 2u and r3 = —c¢; sin 2u + ¢3 cos 2u.  This means that the differential equa-
tions for p, by, by, b3 now reduce respectively to

o
ou
0

a—p = coS 2ury — sin 2urz = ¢
v

(lp = sin 2ury + cos 2ur; = ¢
ow
0b,
ou
0by
v
0b,

ow

ry =«

= —ay + 3by + ¢ cos 2u + ¢3 sin 2u
= (b3 — ¢1) co8 2u + p sin 2u

= —pcos2u— (¢; — b3) sin 2u
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ob )
2 - —a3 — 3by + ¢3 cos 2u — ¢, sin 2u

ou
a_bz:pcos 2u— (b3 — ¢)) sin 2u
ov

by

(2—w: (b3 — ¢1) cos 2u + p sin 2u
0bs

0
s _
ov
oby

e
ow

3

Similarly the differential equations for the functions a;, @y, as reduce to

Oay
ou
J0ay
o
oy
ow
aaz
ou
6a2 .
—— = pcos2u — b3 sin 2u
ov
6a2
ow
oas
ou
003
v
oas

=P cos 2u — b3 sin 2u.

=p
= (a3 + by) cos 2u + (a» — by) sin 2u
= —(az — bz) cos 2u + (a3 + b]) sin 2u

=a3 — b

= b3 cos 2u + p sin 2u
=-a—bh

= —b3 cos 2u — p sin 2u

In order to solve these equations, we first note that p = cju + ;0 + c3w + ¢4 and
b3 = c3v — cw + ¢5.  Next looking at the differential equations for a3 + by and
ar» — by, we find that there exist constants ¢¢ and ¢; such that

by = —az + (cou — cjv + ¢g) cos 2u + (—eyw + c3u + ¢7) sin 2u

by = ay + (c1v — cou — ¢6) sin 2u + (—cyw + c3u + ¢7) cos 2u
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Finally solving the final differential equations we get that there exist constants cg,
¢y, c1o such that
a — 1 22 2
1 = (e3 + caut + c6v + couv + 7w + c3uw + 3 c(u”—v°—w)

ay = C(u,v,w) cos(2u) + D(u,v,w) sin(2u)

azs = —C(u,v,w) sin(2u) + D(u, v, w) cos(2u)

where  C(u,v,w) = ¢g — cut + cav + cruv + csw + czow — %cz(uz —v2+w?) and
D(u,v,w) = cy9 — cju — ¢cs5v + 64w—|—cluw+csz—lC3 u? + 02 — w2).
» Yy 2
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