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ON THE TRUNCATED DEFECT RELATION
FOR HOLOMORPHIC CURVES

NOBUSHIGE ToDA

Abstract

For a transcendental holomorphic curve and a subset of C"*! — {0} in subgeneral
position, we consider the truncated defect relation by using a generalization of Nochka
weight function introduced in [12] and its supplement in Section 3. When it is not
extremal, we estimate the sum of defects and when it is extremal, we investigate the
number of vectors each defect of which is equal to 1 or the structure of vectors each
defect of which is positive.

1. Introduction

Let /' =[fi,..., fu+1] be a holomorphic curve from C into the n-dimensional
complex projective space P"(C) with a reduced representation

(fiseeos fr1) : € — C"™ — {0},

where n is a positive integer. We use the following notations:

@I = (AGE+-+ i ()D)2

and for a vector a = (aj,...,a,1) € crl— {0}
lal = (Jlar)* + -+ |awet]D)"?, (@ f) = arfi + -+ dust fots
(a,f(2)) =arfi(z) + -+ a1 fur1 (2).

The characteristic function of f is defined as follows (see [13]):

2n
T(0.1) =55 | ol e do - togl (O]

We suppose throughout the paper that f is transcendental; that is to say,
. T(r,
lim (r /) =

r—o  logr o

and that f is linearly non-degenerate over C; namely, fi,...,f,+1 are linearly
independent over C.
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It is well-known that f is linearly non-degenerate over C if and only if the
Wronskian W = W(fi,..., fus1) of fi,..., fus1 is not identically equal to zero.

For meromorphic functions in the complex plane we use the standard
notation of the Nevanlinna theory of meromorphic functions ([4, 5]).

For ae C"™' — {0}, we write

I N P 1 A I
) =], e o iy 40 N =¥(n )

We then have the First Fundamental Theorem ([13, p. 76]):
T(r,f) =m(r,a,f)+ N(r,a f)+ O(1).
We call the quantity

N e T

the defect of a with respect to f.
Let v(c,(a, f)) be the order of zero of (a, f(z)) at z=c and

nu(r,a, f) = Z min{v(c, (a, f)), n}.

le|<r

We put for r >0

No(r.a. ) :J n(t,a, f) —tnn(O,a,f) dt + (0, f) log r
0
and put
(r’ a’ f)
op(a, f)=1—limsup ————=,
@) =1 =16 )
which is called the truncated defect of a with respect to f. It is easy to see that
(1.1) 0<d(a,f)<ona f) <1

since 0 < N,(r,a,f) < N(r,a, /)< T(r,f)+0() (r=1).
We denote by S(r, f) the quantity satisfying

S(r,f)=o(T(r,f)) (r— co,r¢kE),

where E is a subset of (0,00) of finite linear measure.

Let X be a subset of C""!'—{0} in N-subgeneral position satisfying
#X >2N —n+ 1, where N is an integer satisfying N > n.

Let ¢ be an integer satisfying 2N —n+1 < g < co and Q a subset of X such
that #0 = ¢. For a non-empty subset P of Q, we denote by V(P) the vector
space spanned by elements of P and by d(P) the dimension of V(P). We put

Op={PcQ|0<#P<N+1}.
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Lemma 1.A (see [3, Theorem 2.4.11], [2], [7]). There is a function
®:Q — (0,1] and a constant 0 satisfying the following properties:
(l.a) For any a€ Q, 0 < fw(a) < 1;
(1) g @N =0+ 1) =3 ycgule) —n 1)
(le) (N+1)/(n+1)<0<(2N—n+1)/(n+1);
(1.d) For any Pe Op, > ,.pw(a) <d(P).

We call o the Nochka weight function and 6 the Nochka constant. This
lemma was used to prove the Cartan conjecture. The result is as follows.
Cartan ([1], N =n) and Nochka ([6], N > n) gave the following

THEOREM 1.A (see [3, Theorem 3.3.8 and Corollary 3.3.9]). For any ¢q
elements a; (j=1,...,q) of X 2N —n+1<¢q < ), we have the following in-
equalities:

q
(1) > o(a)su(a;, f) <n+1;

(I1) > 6u(aj, /) <2N —n+1.

J=1

The Nochka weight function is defined for a finite subset of C""' — {0} in
N-subgeneral position, so that we can not let ¢ tend to oo in Theorem
1.A(I). This is incovenient to apply it to holomorphic curves with an infinite
number of positive truncated defects. To avoid this inconvenience we general-
ized it to any subset of C"*!'—{0} in N-subgeneral position in [12]. A
proposition similar to [3, Proposition 3.4.4], a generalizaton of the Nochka
weight function, which has properties similar to Lemma 1.A, are given in Section
2. In Section 3, a supplement to Proposition 2.3 in Section 2 is given and in
Section 4 a truncated defect relation with a new weight is given, which will be
used later.

Let

D* =D (X./) = {acX|d,(a ) >0}
and
D' =D)(X,f)={aeD"[5,(a,f)=1}.

Then, we obtain that the set DT is at most countable as in the case of
meromorphic functions (see [5, p.79]) and the truncated defect relation

(1.2) > ula,f) = dula, f) <2N —n+1.
acX aeD*
In Section 5, we shall give an upper bound smaller than 2N —n+ 1 for

Z(S,,(a

acX

in several cases when N >n > 2.
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We are also interested in a holomorphic curve f such that the equality holds
in the truncated defect relation (1.2). It is said that f is extremal for the
truncated defect relation when

(1.3) > ula,f)=2N—n+1.
aeD+

In [9, Theorems 3.2 and 3.3], we obtained the following results.

THEOREM 1.B. Suppose that N > n > 2 and that (1.3) is satisfied. Then,

(1] If D' contains n+ 1 linearly independent vectors, then #D' = 2N —n + 1.

[I] If D' contains n linearly independent vectors and if #D' < 2N —n+ 1,
then #D' = N.

One of main purposes of this paper is to extend Theorem 1.B to the case
when D! contains at most n linearly independent vectors by using the gener-
alization of the Nochka weight function given in Section 2 and the results in
Sections 3 and 4. The result is given in Section 6. Further we unify Theorems
3.1(II) and 4.1(II) in [10] into one theorem, Theorem 6.2 in the section.

2. Generalization of Nochka weight function

Let N, n and X be as in Section 1 such that 2N —n+ 1 < #X < o0. We
note that X is in N-subgeneral position and that #X is not always finite. For a
non-empty finite subset S of X, we denote by V(S) the vector space spanned by
elements of S and by d(S) the dimension of V(S). We put

O={ScX|0<#S<N+1}.

Lemma 2.1 ([3, p.68]). For S1,S, €0,
d(S] USz) + d(S] ﬂSz) < d(S]) + d(Sz).

Lemma 2.2 ([3, p.68]). For Rc S (R,Se0),
#R—d(R) < #S—d(S) <N —n.
For R< S(R,S € 0), we put

d(S) — d(R)

ARS) == SR

Then, by Lemma 2.2 we have the following

ProposiTiION 2.1 ([3, p.67]). 0<A(R;S) <1
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LemMa 2.3 ([12, Lemma 2.3]). #{d(S)/#S|S e 0} is finite.

. d(S
DerNITION 2.1 ([12, Definition 2.1]). 1 = min Q
Set #S

ProposITION 2.2 ([12, Proposition 2.2]).

I/(N-n+1)<i<(n+1)/(N+1).

LemMa 2.4 ([12, Lemma 2.4]). For a fixed Re O, #{A(R;S)|Rg S € O}
< 0.

ProposITION 2.3 (|12, Proposition 2.3]). (I) When 2 > (n+1)/(2N —n+ 1),
for any S e O it holds that

n+1 <d(S)
2N —n+1 = #S

(I1) When 7. < (n+1)/(2N —n+1), there exist an integer p (1 <p<
(n+1)/2) and a subfamily {T;|1 <i < p} of(O satisfying the following conditions:

() ¢p=TocTic <T) dT,)<n+1)/2 )
n+1—-d(T,
(i) A(To; Th) < A(Ty; 1) < - < A(T)- lvT)<2N—n+1f;éTp;
, (iif) When 1 <i < p, for any U € O such that T;_y g U; if d(Ti—;) < d(U),
then
(a) A(Tifl, )<A( io1; ) and

(b) A(T'iflvT) :A(T'lfh ) Only lf cT;
(iv) For any U e O such that T, < U, if d(T,) < d(U), then

n+1—-d(T,)
< A(T,; U).
2N —n+1—#T, — (Tp; U)

Note 2.1. (a) The case “A< (n+1)/(2N —n+1)" occurs only when
N>n>2.

In fact, if N=mn, then A=1 or if n=1 then 1/N < 1 from Proposition
2.2. They contradict the fact “A < (n+1)/2N —n+1)".

(b) From Proposition 2.3(1I)(ii), we have the inequalities:

d(T1)<d(T2)<'” d(T,) n+1 n+1—-d(T,)
#T #T> #T, 2N-—-n+1 2N—n+1—-#T,

2.1) A=

~

(see the proof of [12, Proposition 2.3]) and
(2.2) 0<d(Th) <d(Tr) < <d(Tp-1) < d(T}).

According to Proposition 2.3, we define a weight function w and a constant /
for X as follows:
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DErFINITION 2.2 ([12, Definition 3.1]). (I) When 1> (n+1)/(2N —n+1).
For any ae X

n+1 2N —n+1
M/(a) = m and /= W
(II) When A< (n+1)/2N —n+1).
A(T,',l;Ti) if aeT,-—Ti,l (i:17...7p)
w@)={ nrl-d)
f X —-T,
IN—n+l-#1, " “F r

and
2N —n+1-#T,
- n+1-d(T,)

where Ty =¢, T; and A(T;_;T;) (i=1,...,p) are those given in Proposition
2.3(11).

Note 2.2.

(){h(2Nn+l)/(n+1) if A=m+1)/2N—-n+1);

YV \h<@N-ntD)/n+1) if i<@m+1)/2N—n+1)
¢ if A>=m+1)/2N —n+1);

(b) {“GX”’W(“)<1}:{T,, if A<(n+1)/2N-—n+1)

ProrosITION 2.4 ([12, Theorem 3.1]).

(a) For any ae X, 0 < hw(a) < 1;

(b-1) For any Q = X satisfying (i) Q > {a e X | hw(a) < 1} and (ii) 2N —n+
1 < #0 < o,

#Q—(ZN—n+1)—h(Zw(a)—n—1>;
acQ

(6-2) Y pex(I —hw(a)) =2N —n+1—h(n+1);
() N\n<h<(2N—-n+1)/(n+1);
(d) For any Se, ), .sw(a) <d(S).

Remark 2.1. (b-1) is given in the proof of [12, Theorem 3.1] and (b-2) is
[12, Theorem 3.1(b)].

3. Supplement to Proposition 2.3

Let N, n, X and O etc. be as in Section 2. By taking Lemma 2.2 into
consideration, we say that an element S of (0 is maximal if it satisfies the equality

#S = d(S)+ N —n.
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ProrosiTION 3.1. Let R,S € O such that R< S. If R is maximal, so is S.
This is trivial from Lemma 2.2. From now on throughout this section we
suppose that

n+1

(s

Then, N >n>2 (Note 2.1(a)) and there exist sets

1
¢:T0,T1,...,Tp <1S[)<n—; )
in O satisfying Proposition 2.3(II)(i), (ii), (iii) and (iv).
We put
0,={Se0|T, g S,d(T,) <d(S)}.
DEerFINTION 3.1. We say that
(I) X is of type I if for any Se 0O,
n+1—-d(T,)

= A(T; S).
l 2N—n+1—#Tp< (T7:5)
(II) X is of type II if for some Se @,
h—l _ n+1 7d(Tp) —A(T 'S)
PR

2N —n+1-#T,
(A) We first treat the case that X is of type I
Lemma 3.1, Suppose that X is of type I.  Then, #{A(Ty;S)|S € 0,} < .
This is a direct consequence of Lemma 2.4.
DerNITION 3.2, We put

lp = ?élél A(T,; S).

PropoSITION 3.2.  Suppose that X is of type 1. Then,
(a) A1 < A,
(b) Further, if T, is not maximal,
3.1) P n+1-d(T,) n+1-d(T,)
’ 2N -n+1-#T, N+1-d(T,)’

Proof. (a) This is trivial from Definitions 3.1(I) and 3.2.
(b) As #T, < d(T,)+ N —n, we easily have (3.1). O
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DrerINITION 3.3, When X is of type I and 7, is not maximal, we put

. n+1—-d(T,)
A —mln{ﬂbp,N_i_ T—d(T,))"

COROLLARY 3.1.  Suppose that X is of type I and T, is not maximal. Then,

1 1
Al ——>— .
'""h = NN —n)

Proof. (a) For any S e 0,,

. 1 d(S)—d(T,) n+1-d(T))
A(Tp,S)—E, #S—#Tpp 72N_n+1_p#T
(d(S) = d(T,)@N —n+ 1 = #T,) = (#5 ~ #T,)(n + 1 = d(Ty)
(#S — #T,)(2N —n+ 1 — #T) .

As this fraction is positive (Proposition 3.2(a)), the numerator is a positive
integer, so that the numerator > 1. Further, the denominator is at most equal to
(N+1—-1)2N —n+1-1)=N(2N —n). This implies that

1 1

1 .
)Lp—%ffgrél(gl}, A(T,S)f% > NON—n)

(b) Next, we estimate the following.

2y nrl=d@) 1 (1 —d(T))(N —n+d(T,) ~#T)
' N+1-d(T,) h (N+1-d(T,))2N —n+1—#T,)

As this fraction is positive (Proposition 3.2(b)) and N —n+d(T,) > #T,
since T, is not maximal, we have the following inequalities.

(3.3) N —n+d(T,) —#T, > 1,
n+1—d(T,) n+ 1 1
(34) N+ 1—d(T,) IN-nil N’
1 1
(3.5)

>
2N —n+1—-#T, ~ 2N —n

since d(T,) < (n+1)/2 and #7T, > 1. From (3.2), (3.3), (3.4) and (3.5) we have
the inequality
n+1-4d(T),) _1> 1
N+1-d(T,) h~ NQ2N-n)
From (a) and (b) we obtain this corollary. O
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PRrOPOSITION 3.3.  Suppose that X is of type I and that T, is not maximal.
Let

_[wla) if aeTy
M@ =\A if aex-—T,

Then, for any S € O,

(3.6) Zwl (@) <d(S).

Proof. Let Se@. a) When d(SUT,)=n+1. From Lemma 2.1, we
have the inequality

(3.7) n+1—d(T,) =d(SUT,) —d(T,) <d(S).

As wi(a) = w(a) < h™! for ae T, (Note 2.2(b)) and h~! < A; by Proposition
3.2, from Lemma 2.2 and (3.7) we have the inequality

> wie) < Ai#S < A(d(S) + N —n)

aesS
— d(S)A (1 + %) < d(S)A, (1 + %)
— d(S)A,

)
since Aj(N+1—d(T,))/(n+1—d(T,)) <1 by the definition of A;.
b) When d(SUT,) <n and S < T,. From Proposition 2.4(d),

Zwl (a) = Zw(a) <d(S).

aesS acsS

c) When d(SUT,) <n and S—T,#¢. We have that SUT, e O since
#(SUT,) <N. We prepare two inequalities.

(c.1) d(T,) <d(SUTy).

(Proof.) Suppose to the contrary that

(3.8) d(T,) = d(SUT,).
Then, we have from (2.2) that
(3.9) d(SUT,) —d(Ty1) = d(T,) = d(Ty-1) >0,

and from Proposition 2.3(II)(iii) that

o d(Ty) —d(Ty ) d(SUT,) —d(T, )
ANT,-1;T)y) = #%,—#Tpp_l < #(SU%;)—#Y?,_] = (%)

since Tp-1 & T, & SUT, and d(T,-) <d(T,) =d(SUT,) from (3.8) and (3.9).
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On the other hand from (3.8)

(*) < d(TP) B d(TP*I)
#Tp - #Tpfl
since #7T, < #(SUT,). This is a contradiction. (c.1) must hold.
(c. ) (#S — #(Sﬂ T,)) <d(S)—d(SNT,).
(Proof.) Note that #S —#(SNT,) > 0. From the facts that
(
(i

=ANTp-1;T))

i) SUT, e0,
i) (c. ) d(T,) <d(SUT,) and
(i) 7, £ SUT,,
we have that SUT, e 0, Then, by Definition 3.2 we have the inequality
#(SU Tp) - #T)

Here, we have the relations
#(SUT,) =#T,+#S —#(SNTp)
and
d(SUT,) <d(T,)+d(S)—d(SNT,)
from Lemma 2.1, so that we have

d(S) —d(SNT,)
) < s —#snT))

which reduces to (c.2). Note that (c.2) is valid when SN T, = ¢.
Now, we prove (3.2)incasec). AsSNT,eCif SNT,#¢and SNT,cT,,
by using (c.2) and Proposition 2.4(d) we have the inequality

Zwl(a): Z wia) + Z wi(a)

acS aeSNT, aeS—SNT,
<d(SNT,)+A#(S—-SNT,)
<d(SNT,)+ A (#S —#SNT,)
<d(SNT,)+ (d(S)—d(SNTy,)) =d(S).
since wi(a) =A; (ae X —1T,). We obtain this proposition. O
(B) From now on in this subsection we suppose that X is of type II. We
put
0p(1/h) = {S € O, | A(T,S) = 1 /h}.
As X is of type II,

PrOPOSITION 3.4.  (,(1/h) is not empty.



362 NOBUSHIGE TODA
ProposITION 3.5.  For any Se 0,(1/h),
dS)<(n+1)/2 and #S< (2N -n+1)/2.

Proof. We first note that d(S) <n. In fact, if d(S)=n+1, then from
Definition 3.1(II), #S = 2N —n+ 1, which is contrary to the fact that Se @ as
N>n>=2We have #S < N. From the equality

d(S)—d(T,)  n+1-4d(T),)

— =,
#S —#T, 2N —n+1—#T,

and Note 2.2(a), we have the inequality

nl ot 1-d(S)
AN —n+1 TON—nt+1-#S

from which we obtain the inequality

2N —n+1

d(S) ==~ <#S<d(S)+ N —n

due to Lemma 2.2, so that d(S) < (n+1)/2 and #S < (2N —n+1)/2. O

ProposITION 3.6. If' Si,S> € O0,(1/h), then SiUS> e O,(1/h).

Proof. (a) First, we prove that S;US> e (,. As
d(s) —d(T,) _d(S$:)—d(T,)
#S1 — #T, #S, — #T, ’

from Lemma 2.2, we have the inequality

d(Sy) +d(S>) — 2d(T,)
= h™ (#S) + #S;, — 2#T,)
<Y d(S) + N —n+d(S2) + N —n— 2#T,)
=h'(d(S)) + d(S2) — 2d(T))) + 2k (N — n+ d(T,) — #T),
so that

257!
1—h!

d(S1) +d(S2) — 2d(T,) < (N —n+d(T,) - #T,) = (%)

since /~! < (n/N) < 1 from Proposition 2.4(c). Here, we have the equality

n+1—d(T,) 2N —2n+d(T,) — #T,
2N —n+1—#T, 2N -—n+1—#T, '

1—h't=1
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so that we have

\ N —n+d(T,) — #T,
2N — 2n+d(T,) — #T,

<h'2N —n+1-#T,)=n+1-d(T,)

(%) = 2~ 2N —n+1— #T,)

since d(T,) < #T, from (2.1) and /~! < 1. We obtain the inequality
d(S1)+d(Sy) —d(T,) <n+1,
so that by Lemma 2.1 we have the inequality
d(S1USy) <d(S1)+d(S:) —d(S1NS) <d(S1)+d(S) —d(T,) <n+1

since S1NS, > 7T,. That is, d(S1US>) <n and so #(S;US,) <N. We have
that S;US, € @. In addition, as

d(Tp) < d(Sl) < d(S] USz)

we have that S;1US; € 0,.
(b) Next, we prove the inequality

(3.10) WY #(S1 N Sy) — #T,) <d(S1NS,) —d(T).

As this inequality is trivial when #(S1 N S,) — #7, = 0, we prove (3.10) when
#(S1NSy) —#T, >0. We first prove that

(3.11) d(T,) <d(SiNS).
In fact, suppose to the contrary that d(7),) = d(S;NS,). Then,
S1NS, e (9,,_1 = {SE @| Tp_l & S,d(Tp_l) < d(S)}
since 71 £ T, & S1NSy and d(T,—1) < d(T,) =d(S1NS,), so that we have the
inequality
. d(T,) —d(T,-1)
_ . > _ . — _ . _ - £ =~ F 7
A(Tp 17S1 N Sz) = Srenépr: A(Tp 1,S) A(Tp 15 Tp) #Tp — #Tp_]
d(S1NSy) —d(Ty,—)
#(S1NSy) — #Tp_1

This is a contradiction. We obtain (3.11) and S1 NS, € ¢,. From Proposition
2.3(II)(iv), we have the inequality
' < A(Ty; S1NSy).

This means that (3.10) holds.
(c) Finally, we prove that S;US, e 0,(1/h). From Lemma 2.1 and (3.10)
we have

= A(Tpfl;Sl N Sz)

d(S1) +d(S2) —d(Si1NS) —d(T))
#S1 4+ #S: — #(S1 N SH) — #7T,

<h!

< A(T);81US,) <
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since S1,S2 € 0y(1/h) and the following inequality holds from (3.10):
d(S)) 4+ d(Sy) —d($i N S,) —d(T))
=d(S1) —d(T,) +d(S:) —d(T,) — (d(SiNS2) —d(T}))
< h ' (#S) — #T, + #S2 — #T, — (#(S1 N Sy) — #T,))
= 7V (#S) + #5, — #(S1 N S2) — #7T)).

Namely, we have that A(7,;S1US,) =h~!. This means that S;US, e
Op(1/h). O

PROPOSITION 3.7.  #0,(1/h) is finite.
Proof. We have only to prove this proposition when #X is not finite.

Suppose to the contrary that #0,(1/h) = co. Then, there are sets Si,S,...
satsfying

O, (1/h) > {S1,8,..., 8.}, S;#8;if i)

#{@ S,} = 0.

There exists an integer v satisfying

N+l<#{ S;}.
i=1

On the other hand, (J,_, Sie C,(1/h) from Proposition 3.6 and so from

Proposition 3.5
v 2N — 1
# U S,‘ < 7’1 + .
i=1 2

From these two inequalities we obtain that n + 1 < 0, which is absurd. This
implies that #0,(1/h) is finite. O

and

<

DEFINITION 3.4. We put )y = USe(ﬂ‘/,(l/h) S.
PropOSITION 3.8. (a) Tpi1 € Oy(1/h). If S€O,(1/h), then S < Tpyy.
(b)

n+1—-d(T,)

AT, ;T, T = =A(T,; T,
(pla I)<h 2N_n+1_#Tp ([7 p+1)

ot 1—d(T)
_2N—l’l+1—#Tp+1.
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Proof.  We obtain (a) from Definition 3.4 and Proposition 3.6. We have
(b) from (a) and Proposition 2.3(IT)(ii). O
We put
Fo={Se0|T, g S.d(T,) < d(S),S ~ Ty1 # 4}.

ProrosiTION 3.9.  Z, is not empty.

Proof. We can choose an element S from ¢ such that T, & S and #S =
N + 1 since #T), < #Tp11 < 2N —n+1)/2 < N + 1 from Proposition 3.5. This
set S belongs to %, since d(T,) < d(Tpt1) <(n+1)/2<n+1=4d(S) from
Proposition 3.5, so that S — 7, # ¢. O

ProposITION 3.10.  #{A(T);S)|S € #,} is finite.
This is due to Lemma 2.4.

DEFINITION 3.5, We put 7, = mingc 7, A(7);S).
ProposITION 3.11. h™' <7,

Proof. First we note that
(3.12) ' < A(T,;8) (SeZ,).

In fact, by Proposition 2.3(I1)(iv), h~' < A(T};S). If there exists an ele-
ment S e #, such that h~! = A(T);S), then by Proposition 3.8(a), S = T)1,
which is a contradiction. We have (3.12). By Proposition 3.10, we have this
proposition. O

ProposITION 3.12. T, is not maximal and we have

pot o nt1-dT) _n+1-d(T,)
TON—n+1—#T, N+1-d(T,)

Proof. Suppose that 7, is maximal. Then, from Lemma 2.2, T, is
maximal and we have #7),,| — #7, = d(T,+1) — d(T,) so that from Proposition
3.8(b)

- +1—-4d(T))

1>ht =0 o — N(Tp; Tpir) = 1

> 2N—n+1—#Tp ([Ja IJ-H) 5
which is absurd. This means that T}, is not maximal. As #7, <d(T,) + N —n,

we have the inequality
P n+1—-d(T,) < n+1—d(T,) :n+1—d(Tp)
2N —n+1—-#T, 2N—-n+1—(N—-n+d(Tp)) N+1-d(T,)

0
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DEerFINITION 3.6, When X is of type II, we put
. n+1—d(T,)

Ay = — PR

’ “%WN+vwmﬁ

COROLLARY 3.2. Suppose that X is of type Il. Then,

1 1
S —
*"h = NQ2N—n)

Proof. (a) For any Se 7,

. I d(S)—d(T,) n+1-d(T,) 1
ATy S) h #S—#T, 2N—n+1—#TpZN(2N—n)

as in the case of Proof (a) of Corollary 3.1.
(b) As in Proof (b) of Corollary 3.1

n+1—-d(T,) 1> 1
N+1-d(T,) h~ NQ2N-n)

From (a) and (b) we have

1 1
ARV (o -

ProrosiTiON 3.13.  Suppose that X is of type II. Let

(a) = w(a) if ae Ty
"2 )_ A2 lf aGX—Tp+1.

Then, for any S € O,

(3.13) sz(a) <d(S).

Proof. We proceed this proof as in that of Proposition 3.3. Let S e (.
a) When d(SUT,) =n+1. From Lemma 2.1, we have the inequality

(3.14) n+1-d(T,) =d(SUT,) —d(T,) <d(S).

As wa(a) = w(a) <h! for ae T,+1 and h~' < A, by Propositions 3.11 and
3.12, from Lemma 2.2 and (3.14) we have the inequality
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3" wa(a) < As#S < Ay(d(S) + N —n)

" - d(S)A2(1 +N_”) < d(S)A2(1 +&>

)
since Ao(N+1—-d(T))/(n+1—d(T,)) <1 by the definition of A,.
b) When d(SUT,)<n and ScT,. As wy(a)=w(a) (acS), from
Proposition 2.4(d),

D waa) =D wia) <d(S).

acs acs

c) When d(SUT,) <n and S— Ty #¢. As #(SUT,) <N, SUT, 0.
We prepare two inequalities.

(c.1) d(T,) < d(SUTp).

(Proof.) We suppose to the contrary that

(3.15) d(T,) =d(SUT,).
Then, we have from (2.2) that
(3.16) d(SUT,) —d(Ty—1) =d(T,) —d(Tp-1) >0

and from Proposition 2.3(II)(iii) that

] _d(Ty,) —d(T,~1) d(SUT,)—d(T,1)
ATy 15T, = #T, — #T, < HSUT,) —#T, = (x)

since 7,1 £ T, £ SUT, and d(T,_1) < d(T,) = d(SUT,) from (3.15) and (3.16).
On the other hand from (3.15)
(*) < d(TP) — d(Tpfl)
#Tp - #Tpfl
since #T, <#(SUT,) as S—1T,;1 #¢. This is a contradiction. (c.1) must
hold.

=ATp-1;Tp)

(€2) (#S—#(SNTy))n, <d(S) —d(SNT),).
(Proof.) Note that #S — #(SNT,) > 0. From the facts that
(i) SUT, e0;
(i) (c.l): d(T,) <d(SUTy);
(i) 7, < SUT, and
(IV) S - TP‘H # ¢>
we have that SUT, € #,. Then, by Definition 3.5 we have the inequality
n, < d#ESU T,) —d(Tp) ~ (#4).
(SUT,) — #T,
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Here, we have the relations

#(SUT,) =#T, +#S —#(SNT)p)
and
d(SUT,) <d(T,) +d(S)—d(SNT,)

from Lemma 2.1, so that we have

d(S) —d(SNT,)
() < g —%(sn Tpp) !

which reduces to (c.2). Note that (c.2) holds if SNT, = ¢.
Now, we prove (3.13) in case c). As SNT,e@ if SNT,#¢ and
SNT, c T, by using (c.2) and Proposition 2.4(d) we have the inequality

sz(a): Z w(a) + Z wo(a)

acs acSNT, aeS—SNT,
<d(SNT,)) +A#(S — SNT))
<d(SNTy) +n,(#S = #(SNT),))
<d(SNT,)+ (d(S) — d(SNT,)) = d(S).

since wao(a) =w(a) =1/h <A, for ae T, —T,. O

4. A defect relation

Let f, X, N and n etc. be as in Section 1. Let us remember the definition
of D:
D" ={ae X|d(a,f) >0},
which is at most countable. We use the same notations used in Sections 2 and 3,

such as
A,w, h, O, etc..

The purpose of this section is to generalize Theorem 1.A(I) for later use.
To that end, we consider the following set of weight functions on X:

DEFINITION 4.1. # ={1: X — (0,1]|VS€ O, ,.s7(a) <d(S)}.
Example 4.1. (a) w (in Definition 2.2 and Proposition 2.4), w; (in Prop-
osition 3.3) and w, (in Proposition 3.13) are in #".

(b) Let 7, : X — (0,1] such that 7,(a) =1 for any ae X. Then 7, € ¥
In fact, for any S e 0,

> () = A#S < (d(S)/#S)#S = d(S).

First of all, we prepare some lemmas for later use.
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LemMa 4.1 (see [8, Proposition 10]). Let te W and Q ={ai,...,a;} < X
(N+1<g< ), then the following inequalities hold.
q

(1) > wla)m(r,a;, f) < (n+ DT (r, f) = N(r, 1/ W) + S(r, f);

1

~.
Il

M=

(1) > t(a)é(a;, /) <n+1.

j=1

~
Il

For an entire function ¢(z), let v(c,g) be the order of zero of g(z) at z =c.

Lemma 4.2 (cf. [3, (3.2.14)]). Let te# and Q=A{a,...,a;} =X
(N+1<q< o). Then, for ce C

> @, (a £)) = n)" < (e, W),
acQ
where xt = max(x,0) for a real number x.

In fact, as is seen from the proof of the inequality [3, (3.2.14), p. 102],
among the four properties of w in Lemma 1.A, only the property (1.d) is
necessary to prove it. Therefore, the proof is effective if we change w for our
weight function 7 € #~ which has the same property as Lemma 1.A(1.d) and we
have this lemma.

Asin [11, Lemmas 2.5 and 2.6], we obtain the following Lemmas 4.3 and 4.4:
Lemma 4.3, Lette W anday,...,aje X (N+1<q< o). Then, we have

the inequalities for r >0

(1) > w@){n(r.a;, f) = na(r,a;, )} < n(r, 1/ W).

j=1

(IT)

-

T(aj){(n(r7 aﬁf) - nn(ra aj’f)) - (n(oaajvf) - nn<07aj’f))}

<n(r, 1/ W) —n(0,1/W).

J

Lemma 4.4 (cf. [3, p. 105]). Lette # and ay,...,a;e X (N+1<qg< ).
Then, we have the inequality

4 1
> @) (N ) = Nyl ) < N (rg ) ()
j=1
THEOREM 4.1. Let f be as in Section 1. For any te€ W we have the
inequality

Z (a)on(a, f) <n—+1.

acX
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Proof. As is cited in the beginning of this section, we know that the set D+
is at most countable. If #D" < N + 1, then

> t@dna, f) < Y (@) <d(DT) <n+1

aeD+t aeD+t

since DT € 0.

We have only to prove this theorem when #D" >N +2. Let Q=
{ai,...,a,} (N+1<g< o) be a subset of D*. Then, by Lemma 4.1(I),
the first fundamental theorem and Lemma 4.4 we have the inequality

> (@) (T(r, f) = Nu(r,aj, ) < (n+ )T (r, f) + S(r, ) (r=1),
j=1

from which we easily obtain the inequality

q
(4.1) > t(a)du(ay, f) <n+ 1.
=
1) When #D" < 4o0. Let Q= D" and we have

> t(@)du(a, f) <n+1.

aeD*t

2) When #D" =+4w. Let D" ={a;|jeN}. Then, from (4.1) we have
the inequality

> c(@inla /) = lim > wla)onla /) <0t 1
aeD+ T j=1

As Oy(a, f) =0 for ae X — DT, we have the inequality
Z 1(0)5,1(a,f) = Z T(a)é,,(a, f) <n+1l.

acX aeD+

From 1) and 2) we have our theorem. O

CoroLLARY 4.1. (I) (cf. Theorem 1.A(I)) >, .y w(a)d,(a,f) <n+ 1.
(H) Zan5;1(a,f) = (” + 1)/;”'

We have this corollary from Theorem 4.1 since w and 7, are in % .

5. Estimate of the sum of truncated defects

Let f, X, N and n etc. be as in Section 1, 2 or 3. The purpose of this

section is to estimate
> dula, f)
acX

in several cases. We suppose that N > n throughout this section.
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LemMA 5.1. For Se0, if

n+1 <d(S)
2N —n+1 = #S°

(5.1)

then

#S _2N-n+l 1
dis) = n+1 nn+1)

Proof. From (5.1) we have the inequality
(n+ D)#S < (2N —n+ 1)d(S),
which reduces to
(m+1D)#S < (2N —n+1)d(S) — 1

since two numbers (n+ 1)#S and (2N —n + 1)d(S) are positive integers. From
this inequality we have the inequality

#S - 2N —n+1 1
dis) = n+1 dS)(n+1)
(a) When d(S) < n, we easily have that
#S - 2N-n+1 1
dis) = n+1 nn+1)

(5.2)

(b) When d(S) =n+1, we have the inequality

#S N+1 2N-n+1 1
< < -
diS) = n+1 n+1 n(n+1)

since S e ® and

2N —n+1 1 N+1 1 1
- — = N-n—-]=0.
n+1 nn+1) n+1 n+l

n

We have our lemma. O

LeEMMA 5.2. We have the equality

AN —n+1= dula,f) =Y (1—hw(@)(l-3,(a,[))

acX acX

+ h(n +1- Zw(a)é,,(a,f)).

acX

Proof. (A) When 2> (n+1)/(2N —n+1). From Definition 2.2(I) we
have the relations
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(I —hw(a))(1 —oy(a,f)) =0 (aeX)
and

h<n+ 1- Zw(a)én(a,f)> =2N-n+1- Z&n(a,f)

acX acX

since iw(a) =1 (ae X), so that we have this lemma in this case.

(B) When A < (n+1)/(2N —n+1). We note that #X >2N —n+1. Let
Q be any finite subset of X satisfying #Q >2N —n+1 and Q o T,. Then,
as the equality

h Z w(a)d,(a, ) + #0 — th(u)

ac0 acQ
= {0u(a. f) + (1 — hw(a))(1 - 6,(a, 1))}

holds, from Proposition 2.4(b.1) we have the equality

(5.3) h(E:WWWAmf)—n—1>

acQ
= Z{én(a,f) + (1 =hw(a))(l —dn(a, f))} — (2N —n+1).
acQ
We note that
(5.4) hw(a) =1 (aeX —T,).

(a) When #(T,UD") < +oo. In (53), let Q> T,UD". Then, since
on(a,f)=0 (ae X — Q) and (5.4) holds, we obtain this lemma from (5.3) in
this case.

(b) When #(7,UD*)=+oco. Let D* ={a;|je N} and in (5.3) we take
0=T,U{ai,...,ar} (k>2N —n+1) and then let k tend to infinity. We then
have the equality

(5.5) h( Z w(a)o,(a, f) —n — 1)
aeT,UD*

= Y {0ula /) + (1~ hw(@)(1 =du(a, f)} = 2N —n+1).

aeT,UD"

As oy(a,f)=0 (ae X —T,UD") and (5.4) holds, we obtain this lemma
from (5.5) in this case.
From (A) and (B) we obtain this lemma. O

(I) The case when A > (n+1)/(2N —n+1).
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THEOREM 5.1. If 2> (n+1)/(2N —n+1), then

. 1
D Gula,f) <2N —n+1—-.
acX h

Proof. By the definition of A, there exists a set S, € ¢ such that

n+1 < _d(S,)
2N —n+1 O#S,

From Lemma 5.1, we have the inequality

#S, <2N—n+1 1
ds,) = n+1 nn+1)

From this inequality and Corollary 4.1(IT), we have the estimate

> dula, f) < ”Il <ON-nt1-1)
n

acX

which is our theorem.

When n is even, we obtain a little better result than Theorem 5.1.

THEOREM 5.2. Suppose that N >n=2m (me N) and we put
0 =min{l/m,(N —n)/(m+1)}.
If > (n+1)/(2N —n+1), then
> bula,f) <2N —n+1-46.

acX

Proof. Suppose to the contrary that

> Oula, f)>2N —n+1-06.

acX

Then, from this inequality and Corollary 4.1(1I) we have that

n—+1

FSON_—n+l-o

373

and by the definition of A, there exists a set S, € 0 such that 1 = d(S,)/#S, so

that

d(S,,)< n+1
#S, 2N —-n+1-6"

(5.6)
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From (5.6) and Lemma 2.2, we have the inequality

n+1 n+1
AS) <N T a7 S Ny i TS
so that
d(S0)<(n+1)(N—n)_ n+1

2(N—n)—6 2-6/(N—n)
From this inequality we have the inequality

n+1 _1+m5/(N—n)<
S22 5/N—n) "T 2 6/N_n) =

since 0 < (N —n)/(m+ 1), so that we have the inequality

d(S,) —m

(5.7 d(s,) <m.
As (n+1)/2N —n+1) < 2=d(S,)/#S,, from (5.7) we obtain the inequality
(5.8) #S, <2N—n—i—1_ 1 <2N—n—|—1_ 1
’ aes,) =  n+1 dS,)(n+1) =  n+1 m(n+1)

as in the case of (5.2).
On the other hand, from (5.6) and (5.8)

2N —n+1-9¢ #S0<2N—n—|—1_ 1
n+1 ais,) = n+1 mn+1)’

from which we have that 6 > 1/m, which is a contradiction to the choice of o.
This implies that this theorem must hold. O

Note 5.1. 0=1/(m+1) when N—n=1 and 6 = 1/m otherwise.
(IT) The case when A= (n+1)/(2N —n+1).

LemMa 5.3.  Suppose that N >n=2m (meN) and A= (n+1)/2N —n+1).

0(2) = {Se@’%:z},

Let

then, we have the followings.
) O(4) is not empty.
b) For S e O(1), (i) S is not maximal; (ii) #S < N —m and (iii) d(S) < m.

;

(C) IfS],SzE(f(i), then S1US, E(O(l)

(d) #0(A) is finite.

(e) Put Uy = USeco oS- Then, Uy e O(A), and if S e O(), then S < Uj.
(f) Let

01(0)={Se0|S—U # ¢}
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Then, 01(2) is not empty and #{d(S)/#S|S e 01(1)} < 0.
(g) Let
A1 = min d(S)/#S.

Se(2)
Then, A < 2.
(h) Let
(A if aeUyg
o _{/11 if acX—U.
Then, t1 €W .

Proof. (a) This is tivial from our assumption.
(b) (i) As Se0(2),
n+1 2(N —n)

(5.9) #S —d(S) =#S — 5 #S =5

#S.

If S is maximal: #S =4d(S)+ N —n,
#S=02N—-n+1)/2=N-m+1/2,
which is absurd. We have (i).

(i) From (i) and (5.9), #S < N —m+1/2, so that #S < N —m.
(iif) As S e O(4),
n+1 2m+ 1

1
#S5< T (N—m)<m+=,

d(S)=————
(5) 2N—n+1"" T 2(N—-m)+1 2

so that d(S) < m.
(c) From Lemma 2.1 and (b)(iii),
d(Sl USz) < d(S]) + d(Sz) — d(S1 ﬂSz) < d(Sl) + d(Sz) <2m=n,

so that #(S1US;) < N and S;US, € 0.
On the other hand, by the definition of 24

l#(Sl N Sz) < d(S] n Sz).
From Lemma 2.1 and this inequality we have the inequality

d(S1USQ) < d(Sl)-i-d(Sz)—d(SlﬂSz) 1
T #(S1US) T #S1+#S - #S1NS) T
namely, d(S;US,)/#(S1US,) =4 and we have (c).

(d) We have only to prove this proposition when #X is not finite. Suppose
to the contrary that #((/) is not finite. Then, there are sets Si, .S, ... such that

@(}.)D{Sl,SZ,...,S,‘,...}, S,;ﬁsjlf‘l#]

and
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#{@ S,} = 0.

There exists an integer v satisfying

N+1<#{ Si}.
i=1

On the other hand, (], S;e ¢(Z) by (c) and so by (b)(ii)

#{US,} <N —m.
i=1

From these two inequalities we obtain that m + 1 < 0, which is absurd.
This implies that #0(1) is finite.

(e) From (c) and (d) we easily obtain this assertion.

(f) A subset S of X such that #S =N + 1 belongs to ¢ and S — U; # ¢
since #U; < N —m by (b)(ii). From Lemma 2.3 we obtain that #{d(S)/#S |
Se0,(A)} < 0.

(2) By the definitions of 1 and A;, we have 1 < ;. Suppose that 1= 4,.
Then, there exists a set S e 0)(4) satisfying d(S)/#S = A, which means that
Se0(4).

On the other hand, as S € 0)(4), S— U, # ¢ and SUU, € O()) by (c). But,
SU U, 2 Uj, which contradicts (e). This means that (g) must hold.

(h) The fact that 7; : X — (0, 1] is trivial. For any S e 0,

(i) When S < Uj, by the definition of 4,

<

> () = A#S < (d(S)/#S)#S = d(S).

(i) When S — U; # ¢, by the definition of 4; and (g)

> ni(a) < #S < (d(S)/#S)#S = d(S).

aes

(i) and (i) imply that 7, € #". O
THEOREM 5.3.  Suppose that N >n=2m. If A= mn+1)/2N —n+1), then

1
> ula, f) SON—ntl-o-

acX

Proof. Suppose that
1
(5.10) Zén(a,f)>2an+172—n.

acX
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From Lemma 5.3(h), Theorem 4.1 and (5.10), we have the inequality

n—+1 X n—+1 1
< 1 n N 3
; ni(@n(a,f) <n+ <Z2N—n+1 DTN a1

so that we have the inequality

, n+1 n+1
(511) (Al 2N —n+ 1) anZUl 5 ae;Ul (TI (a) - 2]v_—,,l_|_1>5n(a’f)
n+1 1

SIN—=n +1 2n°
On the other hand, as #U; < N —m due to Lemma 5.3(b) and (e), we have
the inequality
1
(5.12) > On(a,f)>N—m+1-—
acX-U,

from (5.10) and (1.1). Further, by the definition of 4;, there is a set S e @;(1)
such that

M =d(S)/#S>n+1)/2N —n+1)
from Lemma 5.3(g). From Lemma 5.1 we obtain the inequality

#S <2N—n+1_ 1
dis) = n+1 n(n+1)

and we have the inequality
d(S)/#S=n+1)/2N—n+1-1/n),

so that
n+1 n+1 . n+l
2N—n+1"2N-n+1-1/n 2N —-n+1
_n+l 1
n 2N—-n+1-1/n)2N —n+1)’
From (5.11), (5.12) and (5.13), we have the inequality

n+1 1 Nemal— 1 n+1 1
n 2N-n+1-1/m)2N—-n+1) 2n 2N—n+1 2n

(5.13) I —

and so we have the inequality

1 1 1 1
N—m+1—ﬂ<§(2N—n+l—Z) N — m+§—ﬂ
which is absurd. This implies that (5.10) does not hold and we have this
theorem. n
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COROLLARY 5.1.  Suppose that N >n=2m. If

1
OIN —n+1-—
> ula, f) > 2N —n+ o

acX

then A< (n+1)/(2N —n+1).

Proof. As 1/(2n) <min{l/m,(N —n)/(m+ 1)}, we have this corollary
from Theorems 5.2 and 5.3 immediately. O

(IIT) The case when A< (n+1)/2N —n+1).

THEOREM 5.4. Suppose that (1) X is of type I and T, is not maximal or (ii)
X is of type II.  Then,

(5.14) Z&n(a,f)gzzv—nﬂ—i.

acX 2n

Proof. When T, is not maximal, we have

5.15 4T, <d(T)+N-n<"T1yy 2N -ntl
( ). P 2 2
from Proposition 2.3(II)(i).
When X is of type II, we have
2N — 1
(5.16) #T01 < f’”

from Propositions 3.5 and 3.8.
We have only to prove (5.14) when

> ula, f) 22N—n+1—%.

acX

Let j=1 or 2. From (1.1) and (5.15) or (5.16), we have the inequality

S bwa )= dula f) = D Oula,f)

aeX—Tyj 1 acX aeTyj

1
ZZN*V[‘F]*E*#TPJU;]

1 2N—n+1
IN—-n+l-c-—2""T°
> ntl—s 5

= (2N - n)/2,

so that we have the inequality
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(5.17) Z wi(a)o,(a, f) — Z w(a)d,(a, f)
aeX acX
= Y (wia)—w(a))du(a, f)
aeX—Tyj1
=<N~%)M£;rI%MJ)

- 1 2N—n 1
~“N2N-n) 2 2N

from Corollary 3.1 or Corollary 3.2.
On the other hand, we obtain the inequality

(5.18) > wilada(a, f) = > w(@da(a, f)

acX aeX

<n+1-> wad(a,f)

acX

< %<2N—n+1—2(5n(a7f)>

aeX

from Theorem 4.1 and Lemma 5.2. As N/n < h (Proposition 2.4(c)), from (5.17)
and (5.18) we have the inequality

1 N

< — —
N <2N —-n+1 g(én(a,f),

which reduces to (5.14). O

6. Extremal truncated defect relation

Let f, X, N and n etc. be as in Section 1 or 2. We use notations in
Sections 1 through 4 freely. We consider holomorphic curves extremal for the
truncated defect relation in this section. First of all, we give the following
lemma, which plays a fundamental role in this section.

Lemma 6.1. Suppose that N >n. The truncated defect relation for f is
extremal:

(6.1) > oua, f)=2N—n+1
acX
if and only if the following two conditions (a) and (b) hold:
(@) (1 —=hw(a))(l —=d,(a,f)) =0 (ae X);
(b) ZanW(a)éﬂ(a?f) =n-+ L.
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Proof. As (1 —hw(a))(1 —0u(a, f)) >0 for any ae X by (1.1) and Prop-
osition 2.4(a), from Corollary 4.1(I) and (1.2), we easily obtain this lemma from
Lemma 5.2. |

From now on throughout this section we suppose that

(i) N >n and that

(ii) (6.1) holds.

As is given in Section 1, let us remember the following set:

D'={aec X|o,(a,f) =1}

One of the main purposes of this section is to estimate #D! under the
conditions (i) and (ii).
First of all, we can rewrite Theorem 1.B as follows.

ProposSITION 6.1. (1) If d(D') =n+ 1, then, #D' = 2N —n+ 1.
(I1) If d(D') = n, then #D' = N.

According to this proposition, we have only to estimate #D' when d(D') <n.
Then, #D' < N. We have D' € O if D' # ¢ and #D" > 2N —n+2.

Lemma 6.2. A< (n+1)/2N —n+1).

Proof. From Corollary 4.1(II) and (6.1) we have the inequality 2N —n+1 <
(n+1)/2, so that A< (n+1)/(2N —n+1). O

From this lemma we consider the extremal truncated defect relation in two
cases.

(I) The case when A < (n+1)/(2N —n+1).

We note that A < (n+1)/(2N —n+ 1) when n is even due to Corollary 5.1
under the conditions (i) and (ii).

THEOREM 6.1.  Suppose that (i) N > n, (i) (6.1) holds and (iii) d(D') <n. If
i< (n+1)/2N —n+1), in particular, if n is even, then D' # ¢ and D' is
maximal:

#D' =d(D')+ N — n.

Proof. We apply Proposition 2.3(IT). (a) We first note that
(6.2) T,< D'

In fact, from Note 2.2(b) 7, = {a € X |hw(a) < 1} and due to Lemma 6.1,
Ou(a,f) =1 for ae T,. This implies that D! # ¢.

(b) X is of type L

In fact, suppose to the contrary that X is of type II. Then, the truncated
defect relation for f is not extremal from Theorem 5.4. This implies that X
must be of type L
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(c) T, is maximal.

In fact, suppose to the contrary that 7, is not maximal. Then, the
truncated defect relation for f is not extremal from Theorem 5.4. This implies
that 7, must be maximal.

From (6.2) and Proposition 3.1, D! is maximal:
#D' =d(D')+ N —n.

We obtain our theorem. O

(I) The case when 1= (n+1)/(2N —n+1).
Let
0" ={ScD"|0<#S <N +1}
and

acs

W= {r+ : DT — (0,1]|VS e (9+,ZT+(a) < d(S)}.
We apply the results in Sections 2, 3 and 4 to D" in place of X.

PROPOSITION 6.2. (a) #{d(S)/#S|Se (0"} < .
(b) Let

i+ : d(S)

mi
Seot #S

and let t+: D" — (0,1] such that t*(a) = A*. Then, vt e W ™.
(c) AT =4

Proof. (a) As 0% = O, we have that
(d(S)/#S|S e 0"} < {d(S)/#S|S e O},

so that from Lemma 2.3 we have (a).

(b) As in Example 4.1(b), we obtain that t* e » .

(c) By the definitions of 4 and A", we have that A <A". On the other
hand, by applying Corollary 4.1(II) to D" and t* we obtain the inequality

1
N—n+1=Y .af) < ”; ,
aeD* -
so that A" < (n+1)/(2N —n+1) = 4. That is, we obtain (c). O

We note that from Corollary 5.1, n is odd. Let n=2m — 1 for a positive
integer m. Then A" =m/(N —m+1).
We put

Fo={Se0*d(S)/#S =m/(N —m+1)}.
As AT =m/(N—m+1),
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PROPOSITION 6.3. % is not empty.

PRrROPOSITION 6.4. For any Se€ %, (a) d(S)<m; (b) #S <N —m+ 1.

Proof. (a) As d(S)/#S=m/(N —m+1), we have

B m 48 < m
T N—-m+1 “N-m+1

d(S) (d(S)+ N —n)

by Lemma 2.2, so that
(N =2m+1)d(S) <m(N —2m+ 1),

which reduces to d(S) < m.
(b) #S = {(N —m+ 1)/m}d(S) < N —m + 1. O

PROPOSITION 6.5.  For any element Sy e Fy, {S € Fo|S — So # ¢} # ¢.

Proof. We put
T ={Se0"|S—Sy # ¢}

(a) Z is not empty.
(Proof.) Suppose to the contrary that for some Sye€ %y, 7 is empty.
Then, any S e O" is a subset of Sy, so that USE@+ S =Sy. Since

2N—n+1g#D+:#< U S)z#SOSN—m—i—l,
Se0"

by Proposition 6.4(b), we have that N + 1 < m < n, which is absurd. Therefore,
1 is not empty.

(b) #{d(S)/#S|S € 7} is finite.

We have (b) from Lemma 2.3.

(c) We put A; = minge s d(S)/#S. Then, A" = ;.

(Proof.) By the definitions of 2% and A;, we have A" < A;. Suppose that
T < A1. Let

{/1+ if ae Sp;
t(a) = :
M if aeDT = S.
Then, te w'™.
This is because
1) The fact that z: D™ — (0,1] is trivial.
2) For any Se 0™,
(i) When S < Sp, by the definition of 47,

> () = AT#S < (d(S)/#S)#S = d(S).

acsS
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(i) When S — Sy # ¢, by the definition of 4,

> (@) < #S < (d(S)/#S)#S = d(S).

acs

1) and 2) imply that e % . By Theorem 4.1 for D" and the assumption
(6.1) we obtain the inequality

> t@du(a, ) <n+1="Y " i6,(a,f),
aeD+t acD+t
from which we obtain the inequality

0<(2i—=4") Y dulaf) =) (x(a)=2")du(a f) <0

acDt—S, aeD+

since D* 2 S and 7(a) = 4 > A" (ae D* —S;). This is a contradiction. We
have that 17 = A,.
Now, there exists an element S} € #| satisfying

d(Sl)/#Sl =1 = AT,
This S; belongs to %, and satisfies that S} — Sy # ¢. O

PROPOSITION 6.6. Let S| and Sy be in Z. IfSl nsS, # ¢, then S1US,; € %.

Proof. As S1,S, € %,

6.3 =
(63) #S1 #S)

From Proposition 6.4(a) and Lemma 2.1 we obtain the inequality
d(Sl USz) < d(S]) + d(Sz) - d(Sl ﬂSz) <2m—1=n

as d(S1NS,;) > 1 by our assumption, which implies that #(S;US,) < N. This
implies that S;US; € 0. As #(S] ﬂSz) < #(S] USz) <N, §1NS e 0.
Next, by the definition of 2%, we have the inequalities

d(S1USy) d(S1NSy)
R a4 d IT< 22—
#(Sl USz) an #(Sl ﬂSz)

From (6.3), Lemma 2.1 and these inequalities we have the inequality

< d(Sl U Sz) < d(Sl) + d(Sz) — d(S] ﬂSz)
T #(SIUS) T #SIH#S - #(S1NS)

which implies that d(S;US,)/#(S1US,) = 4", so that S;US, € F. O

<),

Here we give a definition.
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DeriNITION 6.1 ([10, Definition 2.3]). Let # be a family of non-empty
subsets of DT,

We say that two sets S1, S, € # have a relation S} ~ S, if and only if either

(1) SlﬂSg ?5¢ or

(i) there exist sets Rj,...,R,€# such that

RNR#¢ (j=1,....5+1), Ry=S1, Ry1 =25

Lemma 6.2 ([10, Lemma 2.6]). The relation “~” in F is an equivalence
relation.

We apply Definition 6.1 and Lemma 6.2 to & = %; and classify %; by the
equivalence relation “~”’. We put

'%/NZ{‘@IV"P@[?}; Mk: U S (k:l77p)7
SG.”?/c

where p is a positive integer or +oo.
PROPOSITION 6.7.  For each k, #%. is finite.
Proof. We have only to prove this proposition when #D™ is not finite.
(a) Let Sy be any element of %, and put
o ={SeP|SoNS # ¢}.

Then, #./ is finite.
(Proof.) Suppose that #.</ is infinite. Then, there are sets S}, S»,... such
that

ﬂD{Sl,Sz,,S,,}, S,#S] lfl;‘é]

#{O S,} = 00.

There exists an integer v satisfying

and

i=1

(6.4) N+1<#{OS,}.

On the other hand, U,-V:o S; € %y by Proposition 6.6 and so by Proposition
6.4(b)

#{US,} <N-m+1,
i=1

which is a contradiction to (6.4). #.</ must be finite.
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(b) Suppose that there exist Si,...,S, € Z such that S;NS;=¢ if 1 <i#
j<gq. Then, g < N—m+1.

(Proof.) As Si,...,S, belong to the same class &, from Definition 6.1 and
Proposition 6.6, there exists a set S in %, such that Ulq:l S; = S, so that due
to Proposition 6.4(b)

i=1

q
qs#<US,-> <#S<N-m+1,

that is, g < N —m+ 1.
(c) Now, we prove our proposition. Suppose to the contrary that for some
k, #% is infinite. It is easy to see that there are an infinite number of elements

S],Sz,...,S,',...; S,ﬂszqﬁ (lﬁl#j)

of #%, from (a). This is a contradiction to (b). We have that #% is finite.
O

ProposITION 6.8 (see [10, Lemma 3.2 and Proposition 4.5]). The sets My
(k=1,...,p) have the following properties:
a) MyeFy (1 <k<p);
b) p=2;
c) MiNM;=¢ (k#/¢) and
d) dMy)=m, #M; =N -m+1 (1 <k < p).

Proof. (a) From Definition 6.1, Propositions 6.6 and 6.7 we have this
assertion.

(b) As M, belongs to Z,, we apply Proposition 6.5 to M;. There exists
an element S € %, such that S — M| # ¢. In this case, SN M| = ¢. In fact, if
SN M; # ¢, then, by the definition of the relation “~”, § ~ M;. This means
that Se#, and so S < M; by the definition of M;, which implies that
S — M, =¢. This is a contradiction. We have that p > 2.

(c) This is trivial by the definition of {M; |k =1,..., p}.

(d) By Proposition 6.4(a), we have d(My) <m. Suppose to the contrary
that there exists at least one k such that d(M;) <m — 1. For simplicity we
may suppose without loss of generality that Kk = 1. Then, by Lemma 2.1

d(Ml UM2> < d(Ml) +d(M2) <2m-—1=nmn,
so that #(MiUM;) < N and M{UM, e OF. As My, M, € F,

b dMUMy) _d(My) +d(Mr) _ .
T #(MUM,) T #M + #M, ’

and we have that 17 = d(M; U M,)/#(M; U M,), and so M; UM, e F. Then,
as

M ~ M UM, ~ M,
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which is a contradiction since M| € 2, and M, € #,. This implies that d(My)
=m (k=1,...,p) and we have #M;=((N—-—m+1)/m)d(M;)=N—-—m+1
(k=1,...,p). We have (d). O

We put
P
Xo = | M.

PrOPOSITION 6.9 (see [10, Lemma 3.3 and Proposition 4.6]). (a) Xo = D™;
(b) When #Dt < o, (N—m+1)|#D% and p=#D"/(N—m+1) and
when #D% = oo, then p = .

Proof. (a) Suppose to the contrary that Xo < D*. We put
gZZ{SG@+|S—XO ;é¢}

1) &, is not empty.
(Proof.) For example, S = {a}, where ae DT — X, belongs to .
2) We put /A, = minge s, d(S)/#S. Then, " < ;.

(Proof.) First, we note that #{d(S)/#S|S € %} is finite by Lemma 2.3.
Now, by the definition of 2™ and A, we have A" < /J,. Suppose that A" = /,.
Then, there exists an element S € %, such that

dS)/#S =" =m/(N —m+1),

which implies that S € %; that is to say, S = Xy, which is a contradiction. We
have that 1" < /.
3) We define
+ )
o>(a) _{}, ¥f ace Xy;
}vz if aeD™ 7X().
Then, 7, € . This is because
o) The fact that 7, : Dt — (0,1] is trivial.
p) For any Se 7,
(i) When S = X, by the definition of A7,

> na(a) = AT#S < (d(S)[#S)#S = d(S).

aes

(i) When S — Xy # ¢ : S € #,, by the definition of 1, and 2) of this proof,

> na(a) < o#S < (d(S)/#S)#S = d(S).

aeS

4) By Theorem 4.1 for Dt and the assumption (6.1) we obtain the inequality

Z n(a)on(a, f) <n+1= Z j~+5n(avf)

aeD* aeDt
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from which we obtain the inequality

<(a=2%) Y e f) =) (ra(@) = 2")5u(a, /) <0

aeD+t—X) aeD+

since D" 2 X, and t12(a) =1 > A" (ae DT — X;). This is a contradiction.
We have that X, = D+.
(b) When #D* < +o00. As (N—m+1)p=#D*t from Proposition 6.8(a)
and (a) of this proposition, (N —m+1)|#D" and p = #D*/(N —m+1).
When #D*t = +o00, we easily obtain that p =+o0 from (a) of this prop-
osition. O

ProposITION 6.10 (see [10, Lemma 3.4 and Proposition 4.7]). Any m ele-
ments of D are linearly independent.

Proof. Let by,..., b, be any m elements of D*.

Case 1. MO {by,...,b,} = ¢ for some k (1 <k < p).
We suppose without loss of generality that k = 1. As d(M;) = m, there are
m linearly independent vectors ¢j,...,¢, in M, and as #M; =N —m+ 1,

#(M]U{b],,bm}) =N+1.

In addition, D" is in N-subgeneral position, there are n+ 1 = 2m linearly
independent vectors in M, U {by,...,b,}. This implies that n+ 1 vectors by, ...,
by ci,..., ¢, are linearly independent, and so by,...,b,, are linearly independent.

We note that if #D* = 400, only this case occurs.

Case 2. MiN{by,...,b,} # ¢ for any k (1 <k < p). (This case occurs
only when #D* < 40.)

(o) First we note that any m elements {u,...,u,} of M; (1 <k < p) are
linearly independent.

In fact, there is an integer / # k such that M,N M; = ¢, so that
{wi,...,uy} "M; =¢. From Case 1, {uy,...,u,} are linearly independent.

() Now we suppose without loss of generality that

M| >by,...,b, and M1ﬂ{b/+1,...,bm}:¢ (IS/SW!—I).

Let {c/41,...,¢cn} be any m — ¢ vectors in M; —{by,...,b;}. Then the
vectors {by,...,bs,c/41,...,cn} are linearly independent since any m vectors in
M, are linearly independent from (o).

Let dy,...,d, be any / vectors in D" — (M U{bsy1,...,b,}). Then,
(6.5) {dv,....d;bsi1,.... 0} N M) = @,
and so from Case 1, m vectors dy,...,d;, b;.1,..., b, are linearly independent.
As #M; =N —m+1, (6.5) implies that

#(M U{dy,....dsbsyys. . by}) =N+ 1
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As D% is in N-subgeneral position, there are n+ 1 = 2m linearly indepen-
dent vectors in M;U{dy,...,d; bsi1,...,b,}. By taking into consideration that
d(M\) = m, 2m vectors

bl7'--7bfa Crily- -5 Cmy d1>'”7d/7 b/+1a"‘7bm

are linearly independent, so that the vectors by,...,b,, are linearly independent.
O

Summarizing Propositions 6.3 through 6.10, we have the following theorem
when A= m+1)/2N —n+1).

THEOREM 6.2 (see [10, Theorems 3.1(II) and 4.1(I1)]). Suppose that (i)
N >n and that (i) (6.1) holds:

> ula,f)=2N—n+1.

acX

If .=(n+1)/2N—-n+1), then n is odd (we put n=2m—1) and the
following properties of Dt hold:

There are mutually disjoint subsets M;,..., M, of D" satisfying

(@) DT =J;_, M

(b) d(My) =m, #M;; =N —m+1 (1 <k < p);

(c) any m elements of D are linearly independent,
where if #Dt < +o0, (N—m+1)|#D" and p=#D}/(N—m+1), and if
#D" = +o0, p=+o0.

Remark 6.1. By using the inequality (1.1), we are able to obtain the results
for d(a, f) corresponding to those obtained for J,(a, f) in Sections 4, 5 and 6.
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