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Abstract

In this paper we study n-dimensional complete spacelike submanifolds with constant
normalized scalar curvature immersed in semi-Riemannian space forms. By extending
Cheng-Yau’s technique to these ambients, we obtain results to such submanifolds
satisfying certain conditions on both the squared norm of the second fundamental
form and the mean curvature. We also characterize compact non-negatively curved
submanifolds in De Sitter space of index p.

1. Introduction

In recent years, the study of spacelike submanifolds in semi-Riemannian
ambients has got increasing interest motivated by theirs importance in problems
related to Physics, more specifically in the theory of general relativity.

Concerning to the mathematical viewpoint, such submanifolds appear in
several uniqueness problems, for instance, constant mean curvature spacelike
hypersurfaces exhibit nice Bernstein’s type properties.

Here, we are interested in characterizing complete spacelike submanifolds
with constant scalar curvature immersed in semi-Riemannian space forms by
annalysing the growth of the squared of the second fundamental form of the
immersion or the behaviour of its mean curvature. We recall that a submanifold
immersed is said to be spacelike if its induced metric is positive definite.

The complete connected semi-Riemannian manifolds of index p with con-

stant curvature ¢, defined as below, will be denoted by Q;H”’ (¢). They may be

considered, up to isometries, as the De Sitter space S;,H”’ (¢), if ¢ > 0, the semi-
Euclidean space R)*”, if ¢ =0 and the semi-hyperbolic space H,”(c), if ¢ < 0.
Those manifolds will be defined in Section 2.

Before stating our main results, we shall give a brief summary of principal
results already current in this theory.
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The initial step in this context is due to Goddard [18], that conjectured that
complete spacelike hypersurfaces with constant mean curvature in S”“( ) are
totally umbilical. The totally umbilical hypersurfaces of S{"*!(1) are obtained by
intersecting S”“( ) with linear hyperplanes of R”Jr

J. Ramanathan [27] proved Goddard’s conjecture for S{(1) and 0 < H < 1.
Moreover, if H > 1, he showed that the conjecture is false, as can be seen from
an example due to Dajczer-Nomizu [14]. Independently, K. Akutagawa proved
in [2] that Goddard’s conjecture is true when n =2 and either H> < ¢ or M?
is compact or when n >3 and H? < Lnnz D ¢. He also constructed complete
spacelike rotational surfaces in S7(1) with constant H satisfying H > 1 which are
not totally umbilical.

In [24], S. Montiel proved that Goddard’s conjecture is true provided that
M" is compact. Furthermore, he exhibited examples of complete spacelike hyper-
4(n—1)

— and
being not totally umbilical, the so called hyperbolic cylinders, which are isometric
to the Riemannian product H!(sinh r) x 8"~ !(cosh r) of a hyperbolic line and
an (n — 1)-dimensional sphere of constant sectional curvatures 1 — coth? r and
1 — tanh? r, respectively. We point out that in [25] Montiel characterized the
hyperbolic cylinders as the only complete non-compact spacelike hypersurfaces
4(n—1)
n2

surfaces in S!""!(1) with constant mean curvature H satisfying H> >

in S{”’l with constant mean curvature H satisfying H> =
more than one topological end.

In higher codimension, the condition on the mean curvature is replaced by
a condition on the mean curvature vector. Let M” be a spacelike submanifold
of Q,’j” (¢) with parallel mean curvature vector #. When M”" is maximal, i.e.,
h =0, T. Ishihara [21] established the following inequality for the squared norm
S of the second fundamental form B of M”

and having

1 S
1.1 —A — .
(L.1) 3 SZS(nc—i—p)

We recall that a submanifold M" of QI’,”" (¢) is totally geodesic if its second
fundamental form B vanishes identically. As an important application of (1.1),
Ishihara proved that maximal complete spacelike submanifolds in Q”*” (c), ¢ >0,
are totally umbilical and, if ¢ < 0, then 0 < S < —npc. Moreover, he determined
all the complete spacelike maximal submanifolds M" of Q”*p (¢), ¢ < 0, satistying
S = —npc (cf. [21], Theorem 1.3).

R. Aiyama [3] studied compact spacelike submanifolds in S;*” (¢) with
parallel mean curvature vector and proved that if the normal connection of M"
is flat, then M” is totally umbilical. In the same work [3], it was proved that
compact spacelike submanifolds in SI’}“’ (¢) with parallel mean curvature vector
and non-negative sectional curvatures are also totally umbilical.
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Q. M. Cheng [11] showed that Akutagawa’s result [2] is valid for complete
spacelike submanifolds in S"*”(c) with parallel mean curvature vector.

In [8], [9], Chaves-Sousa obtained the following inequality for the squared
norm of the traceless tensor ® = B — Hyg, where ¢ stands for the induced metric
on a spacelike submanifold in Q,*”(c) with parallel mean curvature vector

ﬂ_ n(n—2)
D nn—1)

As an application of (1.2), Brasil-Chaves-Mariano [5] obtained an other
limitation for the supremum of the mean curvature

4(n—1)c
(n—2)p+4(n—1)
as an extension of Akutagawa’s [2] and Cheng’s [11] results.

Moreover, Chaves-Sousa [9] obtained a Lorentzian version of results ob-
tained by Yano-Ishihara [31] and also by Yau [32] for Riemannian submanifolds.
More precisely they proved that complete spacelike submanifolds in Q;*P(c) with
parallel mean curvature vector, non-negative sectional curvatures and constant
scalar curvature are totally umbilical or a product M; x My x --- x My, where
each M; is a totally umbilical submanifold of Q,*”(c) and the M}s are mutually
perpendicular along their intersections.

In [4], L. Alias and A. Romero developed some integral formulas for
compact spacelike hypersurfaces in de Sitter space S!"'(1) and obtained char-
acterizations for totally umbilical spacelike hypersurfaces with constant higher
order mean curvature.

Motivated by this brief description, it would be natural to replace the
assumption on the mean curvature vector by a suitable one on the scalar
curvature and to characterize the complete spacelike submanifolds in Q;,”" (¢)
satisfying this new condition.

In order to study hypersurfaces with constant scalar curvature, Cheng and
Yau [13] introduced a new self-adjoint differential operator [] acting on C>-
functions defined on Riemannian manifolds. Using this approach, they were
able to classify compact hypersurfaces M” with constant normalized scalar
curvature R satisfying R > ¢ and non-negative sectional curvatures immersed
in Riemannian space forms of constant curvature c.

There are some interesting and recent results related to the study of spacelike
hypersurfaces with constant scalar curvature in De Sitter space. Y. Zheng [33]
proved that a compact spacelike hypersurface in Sf’“(c) with constant normal-
ized scalar curvature R, R < ¢, and non-negative sectional curvatures is totally
umbilical. Later, Q. M. Cheng and S. Ishikawa [12] showed that Zheng’s result
in [33] is also true without additional assumptions on the sectional curvatures of
the hypersurface.

In [20], Z. Hu, M. Scherfner and S. Zhai classified spacelike hypersurfaces in
De Sitter space S{"!(c) with constant scalar curvature and two distinct principal
curvatures.

(1.2) %A|<D|2 > |c1>|2< Hq>|+n(c—H2)>.

(1.3) sup H? <
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Recently, Camargo-Chaves-Sousa [7] answered a question posed by H. Li
in Section 4 of [23] with an additional hypothesis on the mean curvature. The
authors proved that a complete spacelike hypersurface in S{'*'(1), n > 3, with

constant normalized scalar curvature R satisfying n-2 < R <1 and bounded
mean curvature is totally umbilical. n

We recall that the immersion x: M” — Q,""(c) is substantial if its codi-
mension can not be reduced. The smallest codimension for which an immersion
x can be reduced is called the substantial codimension of x.

It should be pointed out that the normalized mean curvature vector is defined

h .
by m, where / is the mean curvature vector of M", and the normalized scalar

curvature R satisfies n(n — 1)R = tr(Ric), where Ric is the Ricci curvature tensor
of M".

In this paper, we extend Cheng-Yau’s technique to complete submanifolds in
Q;“’ (¢) in order to prove the following results

THEOREM 1.1. Let x:M”—>Q;’+p(c), n >3, be a substantial isometric
immersion of a complete Riemannian manifold. Assume that the normalized
mean curvature vector of M" in Q[’,’+p (¢c) is parallel and that M" has constant
normalized scalar curvature R satisfying R < c¢. For x > —n(c — R), set

:n—l—px+(n—l)(p+l)(R—c)
np V4

"2 S R )+ (R ).

(14) PR(X)

+ nc

n—2

If Pr(sup S) =0, then p=1. Moreover, if R< )c, when ¢ >0, then

either S =n(c— R) and M" is totally umbilical or Pg(sup S) =0 and sup S =
C,(R), where

~nf(—=nR+ (n—2)c)(n—2)(n—1)(R—c)+n((n—1)(R—c) + c)z]
Cu(R) = (—=nR+ (n—2)c)(n—2) '

COROLLARY 1.1. Let x: M" — Q;”“”(c), n>3 and ¢ >0, be a substantial
isometric immersion of a complete Riemannian manifold. ~Assume that the normal-
ized mean curvature vector of M" in Q,*’(c) is parallel and that M" has constant
normalized scalar curvature R satisfying R < c¢. For x > —n(c — R), set

(1.5) PR(X):n—;p—px+(n—1)(P;1)(R—c)+nc

! ; 2 V(x—n(n—1)(R-c))(x+n(R-c)).
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If Pr(sup S) = 0 and sup S is attained on M", then p =1 and M" is either totally
umbilical or isometric to a hyperbolic cylinder H'(sinh r) x 8"~ (cosh r).

COROLLARY 1.2. Let M" be a complete spacelike submanifold in Q;’*” (o),
n >3, with parallel normalized mean curvature vector and constant normalized
scalar curvature R satisfying R < c¢. If the mean curvature H of M" satisfies

4(n—1)c

2
(1.6) sup H- < 12 tan 1)

then M" is totally umbilical.

We also extend Theorem 4.1 in [30], characterizing the compact spacelike
submanifolds in Sl’,”” (¢) with parallel normalized mean curvature vector, con-
stant normalized scalar curvature R satisfying R < ¢ and non-negative sectional
curvatures. More precisely, we prove the following

THEOREM 1.2. Let M" be a compact spacelike submanifold in S[’ZH’ (c), with
parallel normalized mean curvature vector, constant normalized scalar curvature
R satisfying R<c. If M" has non-negative sectional curvatures, then M" is
isometric to a sphere S"(c1), ¢ > 0.

COROLLARY 1.3. Let M" be a complete spacelike submanifold in Q;’ﬂ’ (c),
with parallel normalized mean curvature vector, constant normalized scalar cur-
vature R satisfying R <c. If M" has non-negative sectional curvatures, then
either

(i) inf K =0, where inf K denotes the infimum of the sectional curvatures of

M?"; or
(1) ¢ >0 and M" is totally umbilical.

Remark 1.1. The assumption about parallel normalized mean curvature
vector was introduced by Chen in [10]. Submanifolds with nonzero parallel
mean curvature vector also have parallel normalized mean curvature vector.
The condition to have parallel normalized mean curvature vector is much weaker
than the condition to have parallel mean curvature vector. For instance, every
hypersurface in a semi-Riemannian manifold always has parallel normalized
mean curvature vector.

2. Preliminaries

In this section we will introduce some basic facts and notations that will
appear on the paper.

Let R,’,’*” denotes an (n+ p)-dimensional real vector space endowed with
an inner product of index p given by (x,y)> = —>7 Xy + Z;’IP”H X;yj, where
X = (X1,X2,...Xu4p) is the natural coordinate of RI’]”P . The manifold R;’*" is
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called semi-Euclidean space and it has constant curvature ¢ = 0. We also define
the semi-Riemannian manifolds S;*’(c), with ¢ > 0, called De Sitter space, and
H;’*p (c), with ¢ <0, called semi-Hyperbolic space, as follows:

n+p+1
+ Hp+l
S, P(c) =9 (x1,%2, ... Xpyp1) € RJTP Zx + Z x

Jj=p+1

n+p+1
n+p _ n+p+1 |
H) (c)—{()cl,x%...x,,ﬂ,ﬂ)eRp+1 x4 x =

J=p+2

Let M" be an n-dimensional Riemannian manifold immersed in Q"*‘” (o).
When the indefinite Riemannian metric of Q}"”(c) induces a Riemannian ‘metric
of on M", the immersion is called spacelike. We choose a local field of semi-
Riemannian orthonormal frames ey, ..., ¢e,;, in Q’H'” (¢) such that, at each point
p of M" ey, ... e, span the tangent space TM to M" at p. We make the
following standard convention of indices

1SA737C7"'S’1+[)’ 1Siajak7"'sna ”1"'13“7/37%"'3”"'17-

Take the correspondent dual coframe {wi,...,ws:p} so that the semi-
Riemannian metric of Q)" (c) is given by

dSZ:Z,SAwf“ g=lLeg=—-L1<i<nn+1<a<n+p.
A

Then the structure equations of Q”*” (c) are given by

(2.1) dwy = ZSBCUAB Awp, w4p+ wpg =0.
B
1
(22) dCOAB = ZSCCOAC/\COCB —izgceDKABCD(Dcl\(DD.
C C,D
(2.3) Kupep = ceqe(04cOBp — 4p0BC).

Next, we restrict those forms to M”. First of all, we get
(2.4) w, =0, n+l<a<n+p.

So the Riemannian metric of M" is written as ds’> = >, w?.
Since 0 =dw, =), wy Aw;, from Cartan’s lemma, we can write

(2.5) o =) hjoy =
J

Let B= Z“ i j hjwiw;e, be the second fundamental form. We will denote by

1 1
h :ZZW(Z,-h;,-)eOC and by H = |h] = S (3, h2)? the mean curvature vector

and the mean curvature of M", respectively.
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The structure equations of M" are given by

(26) dC()l' = Z wij A wj, wij =+ wji =0.
J
1
(2.7) d(,()ij = Z Wik N\ Wi — EZ Rij»k/a)k N Qj.
k k,l

Using the structure equations we obtain the Gauss equation

(2.8) Ry = c(Oudp — Sudj) — Z(hf,‘(h]j‘ hihs,).

o

The components of the Ricci curvature tensor Ric and the normalized scalar
curvature R are given, respectively, by

(29) le - C(n - 1 /k - Z (Z hu) 'k + thk it

(2.10) nin—1)(R—c)=S—n’H?,

where S =3 . (h; ) denotes the square of the length of the second fundamental
form of M".
We also have the structure equations of the normal bundle of M"

(2.11) do, == oy nag, O+ wp =0.
B
1
(2.12) dw,p = — Z Wy A Dyg — 3 Z Ry pij0; A @),
y iJ
where
(2.13) Ry = _(hjhly — W5ihf).

/

The covariant derivatives /7 of hj satisfy

(2.14) Zhukwk =dh} + Zh,kwk, + Z o — Zh,,c%

Then, by exterior differentiation of (2.5), we obtain the Codazzi equations

(2.15) iie = Njie = hig-
Similarly, we have the second covariant derivatives /i, of hj so that
(2.16) > higer=dhjy +>  hjop+ > hijoy
1 1 1

+ 2w = e
7 7
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By exterior differentiation of (2.14), we can get the following Ricci formulas
(2.17) B = e =3 h Rt + > W Ruig + > Wi Ry,
m m s

The Laplacian Ahjf of h is defined by Ahj =73, hi,. From (2.15) and
(2.17), we have '

(2.18) AR =R+ > b R + > 1 R + Y g R
k m,k m,k k,p

h
If H#0, we choose ¢,,1 = I Thus

(2.19) H"! ::1 tr(h""'Y=H and H” ::l tr(h*) =0, a>n+2,
n n

where h” denotes the matrix [A7].

Putting together (2.14) and (2.19) we get

(2.20) ZH;“wk = dH, ZH,f‘a)k = —Hop1y, Voa>n+1,
k k

where dH =), Hiw;.
The formulas (2.16), (2.19) and (2.20) yield

" 1
(2.21) Hy™' = Hy T H Z HkﬂHlﬁv
p>n+1

where VH; = Z/ Hyw; = dH + Z/ Howy,.
It follows from (2.8), (2.13), (2.18) and (2.19) that

(2.22) AR = nHy + enhft — enHoy + > WD hb
Bke,m
1 1
pk,m Bk,m

—nHY ettt 4> h}}jlhfflkh;g;
m B.k,m

(2.23) A} = nH} + nchi + hi bl hf —2 > hit bl
B.k,m B.k,m
+ > g —nH > b
fileom m
o B 1B
+ Zh Wonl  Ya>n+2.

Jm” mk ki
B.k,m
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Since JAS =13, AhE)? =3, 1k (hi)? + X, hiAhE, by using (2.22)
and (2.23), it is straightforward to verify that

1
(2.24) SAS =Y (hi)’+nd hIHI+nc(S—nH?)

AN o, i, j
—nHZtr (K" (h +Ztr (h*hP))?

+ > N(hh — WP,

where N(A) =tr(4A4"), for all matrix 4 = [ay].

Remark 2.1.  Recall that M" is a submanifold with parallel normalized mean
. h . : .
curvature vector if VLE =0, where V* is the normal connection of M" in

Q"*p(c). It implies that w11, = 0, for all o and by (2.12) and (2.13) it is possible
10" show that h"*\h* = h*h"*Y, for all o. Furthermore, (2.20) and (2.21) yield

(2.25) H!=0, Vka>n+1, H}'=Hy.
From (2.16) and (2.25) we obtain

ZHk,wl a),,ﬂy =0 and so
(2.26) H;=0, oa>n+1.
We will need the following algebraic lemma, whose proof can be found in
[28].

LemMa 2.1. Let A,B:R" — R" be symmetric linear maps such that
AB— BA =0 and tr(4) =tr(B) =0. Then

(2.27) tr 42B) < —" =2 N(4)\/N(B).
n(n—1)

Moreover, the equality holds if, and only if, n — 1 of the eigenvalues x; of A
and the corresponding eigenvalues y; of B satisfy

N(4)
nn—1)’

Yi= n(]Z(f)l) (resp. Yi=— N(B) )

x| =

XiXj = 0,
(2.28)
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Consider the following symmetric tensor

(2.29) D= Dlwwje,
o, i, ]
where @7 = hj — H*j;.
It is easy to check that @ is traceless and

N(®*) = N(h*) —n(H*)?>, n+l1<a<n+p and

where ®* denotes the matrix [®/].
Let 7=, ; Tjwiw; be a symmetric tensor on M" defined by

(2.31) Ty = nHoy — ™.

According to Cheng-Yau [13], we introduce the operator [] associated to T
acting on any C’-function f by

(2.32) o) = Z Ty fij-

Since Ty is divergence-free, if M" is a compact orientable manifold, it
follows, from Proposition 1 in [13], that [J is self-adjoint relative to the
L*inner product of M", ie, [, fO(g) = [,,90(f). In particular, it implies
IM acsf) =o.

The proof of the next result follows essentially from the pattern of the proof
of Theorem 2.1 in [19].

LEMMA 2.2. Let M" be a spacelike submanifold in QI'JW’ (¢). Suppose that
the normalized scalar curvature R is constant and R < c. Then

(2.33) > (h)? = VHP >0

i,j ko

and the symmetric tensor T defined by (2.31) is positive semi-definite. ~Moreover
i) when R—c <0, if the equality holds on M", then H is constant and T is
positive definite;
ii) when R—c =0, if the equality occurs on M", then either H is constant
or M" lies in a totally geodesic subspace Q™ (c) of Q;’ﬂ’(c) and, in the
former case, the matrix h"' has rank 1.

We also will need the well known generalized Maximum Principle due to H.
Omori [26].

LEmMMmA 2.3. Let M" be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and f : M" — R be a smooth
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function which is bounded from above on M". Then there is a sequence of points
{pr} in M" such that

Jim f(pic) =sup [, lim [Vf(pi)| =0 and

lim sup max{(V*f(px))(X,X) : |X]| =1} <0.

k— o0
The next proposition has an essential role in the proofs of our results.
PROPOSITION 2.1. Let M" be a complete spacelike submanifold in Q;’*p (¢)

with parallel normalized mean curvature vector and constant normalized scalar
curvature R, R < c¢. Then the following inequality holds

(2.34) O(nH) > | of ~ M=) i) ton(e— HY) ).
P n(n—1)
Proof. Take a local field of orthonormal frames {ej,...,e,,} such that

€ntl :%. By (2.32), ((rnH) takes the form

(2.35) O(nH) = nHA(nH) Zh”“ nH),

Notice that
1
(2.36) nHAnH) = 5 A(nH)? —n?|VH|.

Combining (2.35) and (2.36), we get

(
1 2 n+1
(2.37) O(nH) :EA(nH) — n?|VH|? —n;h Hj.
Moreover, as R is constant, from (2.10), we have AS = A(nH)>.

Therefore, from (2.24) and (2.37) we can write

(238) [OnH) = Z( 2 —n’\VH> +nY hiH,

o, i, j, k o, i, j
—nZh”“H + ne(S — nH?) —nHZtr R (h*)?)
+Ztr (R h"))? + Y N —W'h?).

P Y

Since M" has parallel normalized mean curvature vector, (2.25), (2.26) and
(2.38) yield
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(2.39) OmH) = > (hy)? —n?|VH|?

o, i, j k
+ne(S —nH?) —nH > (k" (h*)?)

+ ) [te(h?h)? + > N(h*hE — PR,
o, f o, f

From (2.19) and (2.30), we get
i =Rt — Hoy,
N(chJrl) — tr(q)nJrl)Z _ tr(thrl)Z _ I’ZHZ — N(hn+1) _ }’ZHZ,
tr(hn+1)3 _ tr(q)n+l)3 + 3HN<(Dn+1> + nH3
®; =hj, N(@*)=N(h"), oa=n+2.

By (2.40), (2.39) and Lemma 2.2, we see that
(2.41) O(nH) = n|®*(c — H?) + ) _[tr(®*DF))?

o f
—nH Y (@ (@%)?) + > N(@*0F — ofd?).
o o, f

(2.40)

As it was already seen in Remark 2.1, the matrix 4"*! commutes with every
matrix A%, for all « and, therefore, by definition, the traceless matrix ®"*! com-
mutes with the traceless matrices ®“, for all «. Hence we can apply Lemma 2.1
in order to obtain

(2.42) > (@ (07)?) < % N(@")|®|?

£L| E
n(n—1)

Moreover, Cauchy-Schwarz inequality implies that

(2.43) D < pd (N(@)* < p) (tr 0*DF)%,
o o, fi
By putting (2.42) and (2.43) into (2.41), we arrive to (2.34). O

The following proposition appeared in [6] and [7], for p =1 and ¢ > 0.

PROPOSITION 2.2. Let M" be a complete spacelike submanifold in QI’,”” (¢)
with constant normalized scalar curvature R, R < c. If the mean curvature H
of M" is bounded, then there is a sequence of points {pi} € M" such that
limy_,oo nH(pr) =nsup H, limg_,o|VnH(pr)| =0 and limsup,_ . (C(nH)(pr))
<0.
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Proof. Choose a local orthonormal frame field e,...,e, at p e M" such
that 2! = 216, Thus, by (2.32), O(nH) = 3 ,(nH — ™) (nH),;, Vi.

As R<e (2.10) implies that S —n’H?>=n(n—1)(R—c) <0 and
> i (h )2 =S <n*H? Hence (A"")* < S <n>H?, which shows that
(2.44) 0<nH— |, Vi

From (2.8) and (2.44), we have

(2.45) Ry =c— > _(hih% — (h%)*) = ¢ — pn” H.
o
Since H is bounded, it follows from (2.45) that the sectional curvatures are
bounded from below. Therefore, we may apply Lemma 2.3 to nH, obtaining a

sequence of points {px} € M" such that

lim nH(px) =nsup H; lim|VeH(pi)| =0
k— oo k— o0

2.46
(246) and limsup(nH;(pr)) < 0.
k— o0

By evaluating (2.44) at points p; of the sequence above, we get

(2.47) 0 < nH(p) =127 (p)| < nH(pi) — 27" (pe)
< nH (pi) + 127 (pio)| < 2nH (py).

Using once more that H is bounded, from (2.47) we infer that
{nH(pi) — A" (pi)} is non-negative and bounded.

By applying [(J(nH) at py, taking the limit and using (2.46) and (2.47), we
get

lim sup(C(nH)(p th sup(nH — 2" (pr) limsup(nHy(pr)) <0. O

k—oo i k—o0 k—oo

Set h¢ the second fundamental form with respect to the normal direction
¢ Given an isometric immersion ¥ : M — Q""?(c), the first normal space of
Vv at pe M, Ni(p), is defined to be the orthogonal complement of the set
{¢e Tle;hf =0}.

We recall the following indefinite version of a theorem due to Erbacher (see
[15] and [16]).

THEOREM 2.1. Let ¥ : M — Q"?(c) be an isometric immersion of a con-
nected indefinite Riemannian manzfold into a space form. If there exists a k-
dimensional parallel normal subbundle L(p) which contains the first normal space

Ni(p) for all pe M, then there exists a (n+ p — k)-dimensional totally geodesic
submanifold Q"+~ of QP (c) such that y(M") = Q"P=k ie. W admits a reduc-
tion of codimension to k.



222 F. E. C. CAMARGO, R. M. B. CHAVES AND L. A. M. SOUSA JR.

3. Proofs of the results

Proof of Theorem 1.1. The following relations may be readily deduced from
the Gauss equation (2.10) and the formula (2.30):

S—nn—1)(R-c¢)

(3.1) H? = 3 ;
(32) |(D|2:(n—1)S+n(n—1)(R—c)'
n
(3.3) |®* = n(n—1)(R—c+ H?).
Set  P(H,|®|) :ﬂ—umqn +n(c—H?) and Q(H,R)=
p nn—1)
n(n —1 p)H2+n(n_1)(Rfc)+ncfn(n72)H R—c+ H?. 1If Pgr(x) given

p
by (1.4), by virtue of (3.1), (3.2) and (3.3), it is straightforward to verify that
(3-4) Pr(S) = P(H,|®|) = Q(H, R).

Taking into account our assumption, we will show that if p > 2, then H
is bounded. From (3.1), (3.4) and that R is constant, we get Pgr(sup S) =
Q(sup H,R) and, therefore,

):n(n—l—p) supH2+n(n_1)(R—c)

P
+nc—n(n—2)sup Hy/ R — ¢+ sup H2.

(3.5) 0 < Q(sup H,R

Thus,
_1-
(3.6) (n—2) supH\/R—c—i—suszs%susz
-1
+(n )(R—c)—i—c
P

Squaring the last inequality, we obtain

22 —2)2 — n—l—p2
(3.7 (sup H?) [( 2 - (Pt )]

+ sup H> [(n ~2)*(R—¢)— 2wR - 2<HT_p>2(R —¢)

B TCELE A

Solving inequation (3.7), we arrive to
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2 [ _(—2)2 n—1-p\’ e
(3.8) sup H* < A4 [( (n—2) +2< » >>(R )

+2(”_;_p>R+\/Z ,

where

A= (n—2)> [(R — P n—-2)’ +4(n—1p—19) (R— c)R+4R2}

(n—2)" - (”—17—?)2
P
Hence, H is bounded.

By our assumptions, Proposition 2.1 and equality (3.4), we may write
(3.9) O(nH) > |®*Pg(S).

Moreover, as H is bounded, we may apply Proposition 2.2 to obtain a
sequence of points p; in M” such that

and

A=2

(3.10) l}Lm (nH(pr)) =nsup H and
(3.11) liin sup(C(nH)(pr)) < 0.

As R is constant, it is clear from (3.1) and (3.3) that limy_. S(px) =sup S
and limy_,o,[®|(px) = sup|®D|.

By evaluating inequality (3.9) at the points p; of the sequence obtained by
Proposition 2.2 and taking limsup,_ , it gives

(3.12) 0 > lim sup(C1(nH)(px)) = sup|®|* Pr(sup S).

k— o0

As we are assuming Pgr(sup S) >0, we infer from (3.12)

(3.13) sup|®|* P (sup S) = lim sup(CI(nH)(px)) = 0.
k— o0

Then sup|®|> =0 or Pg(sup S) =0. If p>2, we shall prove that sup|®| = 0.

If the equality holds in (3.12), all the estimates employed to derive this
inequality are, actually, equalities. In this way, the inequalities used to prove
Proposition 2.1 become equalities. In particular, from (2.42) and (2.43), we
deduce that
(3.14) lim sup(N (®"*!(px))) = lim sup(||*(px)) = sup|®|*.

k— o0 k— o0

2
(315) sup0l* =p Y limsup(N(@)*(p) = p Y- (timsup N@7)(p0))

k— o0
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Let C* = limsupy_,. (N(®*)(px)), « = n+ 1. Notice that 3, C* = sup|®|”.
It follows from (3.14) that C* =0, for all « > n+ 2, which together with (3.15)
yield sup|®|* = p >, (C*)* = p(C™")? = p sup|®|*. Since p =2, we conclude
that sup|®| = 0.

Keeping in mind Theorem 2.1, it is easy to see that the codimension of the
immersion can be reduced which contradicts our initial hypothesis. It shows that
the substantial codimension of the immersion x is one.

If p=1 and R<(n_2

)c, when ¢ >0, from (3.7) we obtain

[(n—2)(R—¢) + R)?
(n—2)(=nR+ (n—2)c)’
Therefore, H is bounded and we can follow the pattern of the preceeding
proof to conclude that sup|®| =0 or Pg(sup.S) =0.

It follows from (3.2) that S < n(c — R) and the equality holds if, and only if|
M" is totally umbilical. Moreover, Pgr(sup S) =0 if, and only if,

(3.16) sup H? <

n[(=nR+ (n—2)e)(n—2)(n = 1)(R—¢) +n((n— 1)(R = ¢) + ¢)?]
(=nR+ (n—2)c)(n—2)

sup S =

This completes our proof. ]

Remark 3.1.  As already pointed out in the Introduction, in [7] we proved
that a complete spacelike hypersurface in Sf“ (1), n = 3, with constant normalized

i n. n—2 . .
scalar curvature R satisfying —— < R < 1 and with bounded mean curvature is
totally umbilical. n

Remark 3.2. When R=c=0 and p =1, Pg(S) is the zero polynomial and
cylinders over plane curves are non totally umbilical examples of hypersurfaces in
R/™ with vanishing scalar curvature. However, if we assume in addition that
the mean curvature H is constant, we claim that M" is either totally umbilical or
isometric to a cylinder R"* x Sk, 1 <k <n—1.

Indeed, by Proposition 2.1 we may write

0=0(nH) > Y "} +|®f <c1>|2 —%Hm +n(c— H2)>

i,j,k

= "k 4O PR(S) =D by

ij.k ij.k

It yields hj =0, Vi,j, k. Consequently, M" is a hypersurface of Rf“ with
constant principal curvatures and, according to the congruence theorem of Abe-
Koike-Yamaguchi [1], M" is either totally umbilical or isometric to a cylinder
R xSk Il<k<n-1.
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-2
Proof of Corollary 1.1.  As R is constant and 0 < R < (n P

¢, by Lemma

2.2 it means that [ is positive definite and so [J is a second order elliptic
operator. By virtue of our assumptions and Proposition 2.1, we get [(S) >
2nH[(nH) > 0. Since sup S is attained on M", by applying the Maximum
Principle to elliptic equations (see [17]), we obtain that S is constant on M” and
it is clear from (3.1) that H is also constant.

As H is constant and Pg(S) >0 by assumption, from (3.9) we have
0 = [(nH) > |®|*Pg(S) > 0. Hence the equality in Proposition 2.1 holds and
all the inequalities used to prove this proposition become equalities. It turns out
that

(3.17) > hh =0 and |t(@"!)’| = (n-2)

ik Vvn(n—1)

Lemma 2.1 and that equality show that M" is a spacelike hypersurface of S{”l
with at most two constant principal curvatures everywhere. Hence, it follows
from the congruence theorem of Abe-Koike-Yamaguchi [1] that M” is either
totally umbilical or isometric to the hyperbolic cylinder H!(sinh r) x 8"~ !(cosh r),
which finishes our proof. U

D/,

Remark 3.3. We give now a brief exposition of a method developed hy
Hu, Scherfner and Zhai [20] of constructing hypersurfaces with constant scalar
curvature in S]',’+1 with two principal curvatures and constant scalar curvature R

o n—
satisfying 0 < R < <

n
in Corollary 1.1 on the sup S can not be dropped.

2) c. It will follow from Example 1 that the assumptions

Example 1. Let us consider S{*'(1) as S7™(1) = R/ =R} x R%, and
denote the standard immersion by x : H"~'(—1) — R", with {é,,...,é,} being a
local orthonormal frame field in R” such that {ej,...,e,_;} is tangent to
H" !'(~1) and x = ¢, is the timelike normal vector field.

Let us take a plane curve ¢ in R? = C with a given supporting function
h(0) > 0.

The generic point g(6) of ¢ is expressed as
(4.3) q(0) = " (h(0) + il (0)).

The Frenet frame of & is given by
(44) e_n+1 = ei0> e_n+2 = ei(t‘)+n/2)
and the arc length u of & is given by
(4.5) du = {h(0) + h"(0)} d0.

Using é,,; and ¢&,.,, we have

(46) q= h,én+l — hé,.o, dq = e,y du.
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Supposing ¢ is in the outside of the unit circle, we define a function p(6) > 0
by

(4.7) P =lal> =1 =r+H)* - 1.
From now on, we assume /i + 4" > 0. Define a spacelike hypersurface M” by
g H" (1) x R — S/ (1) c R"?,
with
(4.8) ¢ = péy+q = pe, +h'e 1 — héys.

From a standard computation, we obtain the following second order
differential equation

d’h dh\’
1 P DR = 1)+ 1]—5 —2h(—
(3.18) i = IR = 1)+ 1153 - 202
+h(h* = 1)[nR(h* = 1) +n—2] = 0.
Therefore, by assuming R constant, we can solve (3.18) and determine #.

Proof of Corollary 1.2. Since (sup S)* =sup S2, (sup H)* =sup H? and
(sup|®|)? = sup|®|* from (3.4), we get

(3.19) Pgr(sup S) = P(sup H,sup|D|).

. . . -2
Consider the quadratic polynomial P(x) _x_\;% sup Hx +
n(n —
n(c—sup H?) and denote by A its discriminant. It is easily seen that the

4(n—1 .

(2n ) yields A < 0. Then (3.19) shows that
(n=2)p+4n-1)
Pr(sup S) = P(sup H,sup|®|) > 0. By applying Theorem 1.1, we conclude that
M" is totally umbilical. ]

assumption sup H? <

Proof of Theorem 1.2. By using (2.13), it is easily checked that
gk R =352, s N(h*hP — hPh?), thus (2.18) implies

1 1 o) 2 o \2 UA o
(3.20) FAS =33 A = > (hj) + D hidh;

% 0,] i, j,k % 0,J

= () +n Zh;H; +%%}:N(h“hﬁ — Ph)

o, i,j,k o, 1, ]

+ Z h;h/:anzt'j‘k"" Z h;h:;,iRmkjk-

wi,j k,m 20, J kym

As R is constant, by (2.10), we have AS = A(nH)*. From (2.37), we get also

1
(3.21) O(nH) :2AS—n2|VH|2 —ny_ hHj.
i,j
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Note that the normalized mean curvature vector / is parallel, from (2.26) we

have Y, . h#HZ =",  hi"'Hy, which together with (3.20) and (3.21) imply
1
_ 2 _ 2 vy B_ b
(3.22) D(nH)f“;k(h;k) — n’|VH]| +§ZN(hah )
+ Z hz]hkm mijk + Z hy mi ”7k/k'
o i, jk,m o,i,j,k,m

Next, we will obtain a pointwise estimate for the last two terms. For each
fixed o, let A be an eigenvalue of A% i.e. h; = 1/0;, and denotes by inf K the
infimum of the sectional curvatures at a point p of M". Then

(323) <Z hl hkm Wll/k+ Z hz]hmszkfk>

i,j k,m i,j,k,m

Z =20 2¢) Riie + Z (/1;)2)Rl_kik
ik

Z Rikie = (1nf K)Z(i[z — )P
ik

i,k
= (inf K)(2nN (h*) — 2n*(H*)*) = 2n(inf K)N(®%).

Therefore

(324) Z h;//lloc(mlejk+ Z hl/hmlR’Wklk

o, i, j, k,m o, i, j,k,m

> n(inf K) Y~ N(@*) = n(inf K)|®|*.

In view of R;; >0, from (3.22), (3.23) and Lemma (2.2), we get

(3.25) O(nH) > > (hy)* —n*|VH|* + n(inf K)|®|*
o ijk
+5 ZN h*hf — ) >
o f

As M" is compact and [] is self-adjoint, from (3.25), we deduce that

0> “ V22 VHE + ST NGB - W) | a.
> | (Z}( ) = VHT 433N >>

It turns out that h*h# = hPh* Yo,p and so the normal bundle of M™" is
flat. Furthermore, we have the equality >, ; k(h;k) = n?|VH|?, hence, from
Lemma 2.2 we obtain that either H is constant or M" lies in a totally geodesic
subspace S'"!(c) of S,7(c) and, in this case, the matrix h"*! has rank 1.

If H is constant, then M" has mean parallel vector and flat normal bundle
thus, according to Theorem 1 in [3], we conclude that M" is totally umbilical.



228 F. E. C. CAMARGO, R. M. B. CHAVES AND L. A. M. SOUSA JR.

Otherwise, h"*! has rank 1 and, from (3.23), we may write

(3.26) 2 > K R + > W R R
ij,k,m ij,ke,m

=Y (4 = ) R = 2n% (n — 1) H.
ik

Inserting (3.26) into (3.22) and taking into account that Exﬁi‘j’k(h;kf =
n2|VH|?, N(h*h* — h#h*) =0 and the self-adjointness of [J, we obtain

(3.27) 0= J O(nH) dM = n*(n — 1)J H? dM.

M M
It shows that H =0, which leads to a contradiction. Consequently, M" is
totally umbilical. Since the sphere S"(c¢;) is the only compact totally umbilical
spacelike submanifold of S,’}*p (¢), our proof is finished. O

Proof of Corollary 1.3. Corollary 1.3 follows immediately from Myers’
Theorem and Theorem (1.2).
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