S. Eto KODAI MATH. SEM. REP. 28 (1977), 159-161

A NOTE ON THE INVERSE PROBLEM FOR THE COHOMOLOGY VANISHING THEOREM

By Shun-ichi Eto

In the previous paper [2], we considered some properties of strongly qconvex spaces with positive vector bundles. The cohomology vanishing theorem played an important role there.¹⁾ An inverse problem now arises; whether the cohomology vanishing theorem characterize the strongly 1-convexity. In this paper, we prove partially affirmative answers for it.

In this paper, a complex space X is assumed to be Hausdorff and reduced. We say a complex space X is *strongly* 1-convex if there exists a C^{∞} function ψ on X and a compact subset K of X such that ψ is strongly pseudoconvex in X-K and $\{x \in X; \psi(x) < c\}$ is relatively compact in X for any $c \in \mathbf{R}$ (Andreotti-Grauert [1]).

THEOREM 1. If on a complex space X there is a compact holomorphic divisor D such that for any coherent analytic sheaf \mathcal{F} on X, we have

$$H^{i}(X, \mathcal{F} \otimes \mathcal{O}([-D]^{k})) = 0 \quad i \geq 1$$

for sufficiently large k, then, X is a strongly 1-convex space. Here [-D] denotes the line bundle induced from the divisor -D.

Proof. We assume $D = \{U_j, f_j\}$ where $\{U_j\}$ is an open covering of X and $f_j \in \Gamma(U_j, \mathcal{O}_X)$ with $f_i f_j^{-1} \in \Gamma(U_i \cap U_j, \mathcal{O}_X^*)$. Let $\{x_n\}$ be a discrete infinite sequence in X and \mathcal{J} be the ideal sheaf of $\{x_n\}$. By the assumption, for sufficiently large k the following sequence is exact.

$$\Gamma(X, \mathcal{O}([-D]^k)) \longrightarrow \Gamma(X, \mathcal{O}_X/\mathcal{G} \otimes \mathcal{O}([-D]^k)) \longrightarrow 0.$$

Now, for any $s = \{s_i\} \in \Gamma(X, \mathcal{O}([-D]^k))$, $s_i = (f_j/f_i)^k s_j$ in $U_i \cap U_j$ so we define $\hat{s} = f_i^k s_i$ in every U_i , which is a well-defined holomorphic function of X. We put $||s(x)|| := |\hat{s}(x)|$. By the above exact sequence there exists $s_0 \in \Gamma(X, \mathcal{O}([-D]^k))$ such that $||s_0(x_n)|| \to \infty$ hence $|\hat{s}_0(x_n)| \to \infty$ as $n \to \infty$. Therefore X is holomorphically convex.

Received Oct. 21, 1975.

¹⁾ Theorem II in [2] is improved by the same method of Hartshone [3] as follows: X, E and \mathcal{F} are the same as in Theorem II in [2], then there esists a positive integer k_0 such that $\Gamma(X, \mathcal{T} \otimes \mathcal{O}(E^k))$ generates $\mathcal{F}_x \otimes \mathcal{O}_x(E^k)$ for every $x \in X$ and every positive integer $k \geq k_0$.

SHUN-ICHI ETO

Next, take any two points x, y from $X-D, x\neq y$. We can find $f \in \Gamma(X, \mathcal{O}_X)$ such that $f(x)\neq f(y)$ in a similar way as above. Let $\tau: X \rightarrow Y$ be the Remmert reduction of X. Then $\Gamma(X, \mathcal{O}_X) \cong \Gamma(Y, \mathcal{O}_Y)$. Since $f(x)\neq f(y), \tau(x)\neq \tau(y)$. So $\tau: X-D \rightarrow Y-\tau(D)$ is biholomorphic. Now we take a strongly 1-complete function ϕ on Y then $\phi \circ \tau$ is strongly pseudoconvex on X-D, hence X is strongly 1-convex. Q.E.D.

If X is a subvariety of $C^n \times P^m$, the cohomology vanishing theorem characterize strongly 1-concexity.

LEMMA. Let V be a subvariety of P^m with positive dimension and H be the hyperplane bundle over V. Then, for suitable integers i $(1 \le i \le m)$ and k,

dim
$$H^{\iota}(V, \mathcal{O}(\mathbf{H}^{k})) > 0$$
.

Proof. If \mathcal{F} is a coherent sheaf on V there is a following exact sequence on V. (cf. Serre [4])

$$(*) \qquad \qquad 0 \longrightarrow (\mathcal{O}(\boldsymbol{H}^{k_m}))^{p_m} \xrightarrow{h_m} \cdots \longrightarrow (\mathcal{O}(\boldsymbol{H}^{k_1}))^{p_1} \xrightarrow{h_1} (\mathcal{O}(\boldsymbol{H}^{k_0}))^{p_0} \xrightarrow{h_0} \mathcal{F} \longrightarrow 0$$

Assume that $H^i(V, \mathcal{O}(H^k))=0$ for all $i \ge 1$ and k. From (*), there is a short exact sequence.

$$0 \longrightarrow (\mathcal{O}(\boldsymbol{H}^{k_m}))^{p_m} \xrightarrow{h_m} (\mathcal{O}(\boldsymbol{H}^{k_{m-1}}))^{p_{m-1}} \longrightarrow \mathrm{Im} (h_{m-1}) \longrightarrow 0$$

So $H^{i}(V, \operatorname{Im}(h_{m-1}))=0$ for all $i \ge 1$. By the iteration of this way we obtain $H^{i}(V, \operatorname{Im}(h_{0}))=H^{i}(V, \mathcal{F})=0$ for all $i\ge 1$. Hence V is a Stein space, which is contrary to our assumption. Q.E.D.

THEOREM 2. Let X be a subvariety of $C^n \times P^m$, and B be a line bundle over X which is the pull-back bundle of the hyperplane bundle H of P^m . If, for any coherent analytic sheaf \mathcal{F} on X, there exists an integer k_0 such that

$$H^{i}(X, \mathcal{F} \otimes \mathcal{O}(B^{k})) = 0$$

for every $k \ge k_0$, then X is a strongly 1-convex space.

Proof. Since X is holomorphically convex, it has the Remmert reduction $\pi: X \to Y$. For any $x \in Y$ the fibre $\pi^{-1}(x)$ is a subvariety of \mathbf{P}^m . Let $\{x_n\}$ be a discrete infinite sequence in Y. First, we shall show $\dim_c \pi^{-1}(x_n) = 0$ for all sufficiently large n.

Otherwise, we can take a subsequence $\{x_{n_k}\}$ of the sequence $\{x_n\}$ such that $\dim_c \pi^{-1}(x_{n_k}) > 0$ for all x_{n_k} . By Lemma there is a subsequence $\{x_\alpha\}$ such that for some $i, 1 \leq i \leq m$ and k_α $H^i(\pi^{-1}(x_\alpha), \mathcal{O}(B^{k_\alpha})) \neq 0$ for all α . Now, we put

$$\mathcal{S} := \bigoplus_{\alpha} \mathcal{O}(B^{k_{\alpha}-\alpha}|_{\pi^{-1}(x_{\alpha})})$$

which is a coherent analytic sheaf over X and $\operatorname{supp}(\mathcal{S}) = \bigcup_{\alpha} \pi^{-1}(x_{\alpha})$. Here $\hat{\mathcal{O}}$ denotes the trivial extension of \mathcal{O} to X. Then for any integer s,

160

$$\dim_{\mathbf{C}} H^{\imath}(X, \mathcal{S} \otimes \mathcal{O}(B^{s})) = \sum_{\alpha} \dim_{\mathbf{C}} H^{\imath}(\pi^{-1}(x_{\alpha}), \mathcal{O}(B^{k_{\alpha}-\alpha+s})) \neq 0,$$

which is a contradiction.

Thus, there exists a compact set K in Y such that for every $x \in Y-X \dim_c \pi^{-1}(x)=0$. Now if we take a strongly 1-complete function ϕ on Y, $\phi \circ \pi$ is strongly pseudoconvex in $X-\pi^{-1}(K)$ where $\pi^{-1}(K)$ is compact since π is proper. It follows that X is strongly 1-convex. Q.E.D.

The author doesn't know whether Theorem 2 is valid without the assumption that X is a subvariety of $C^n \times P^m$.

References

- [1] ANDREOTTI, A. et H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
- [2] ETO, S., H. KAZAMA AND K. WATANABE, On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Sci Kyushu Univ. 28 (1974), 135-146.
- [3] HARTSHONE, R., Ample vector bundles, I. H. E. S. Publ. Math. 29 (1966), 63-94.
- [4] SERRE, J.-P., Faisceaux algébriques cohérents, Ann. Math. 61 (1955), 197-278.

DEPARTMENT OF APPLIED SCIENCE, FACULTY OF ENGINEERING, KYUSHU UNIVERSITY.