CERTAIN HYPERSURFACES IN THE EUCLIDEAN SPHERE

By Reiko Naka

§ 0. Introduction.

It has been proved by R. Osserman [6] that if the mean curvature vector of a surface S in the Euclidean space E^{3} is always orthogonal to a fixed direction, then S is either a minimal surface, or else a locally cylindrical surface with its generator parallel to the fixed direction.

In this paper, we consider a unit sphere S^{n+1} in the Euclidean space E^{n+2}, and study about a hypersurface M^{n} in S^{n+1} whose mean curvature vector is always orthogonal to a fixed direction.

We first show that when M is complete, M must be a minimal hypersurface (Theorem I). The necessity of completeness will be discussed in $\S 2$.

We next show that in the case $n=2, M$ is either a minimal surface, or else a locally cylindrical surface in S^{3}, by the latter we mean some open piece of such a surface as is generated by a family of semi-great circles through a fixed pair of antipodal points of S^{3} (Theorem II). This corresponds exactly to the result of R. Osserman.

I want to express hearty thanks to Professor T. Otsuki for his kindly guidance in my studies. I wish also to thank all the members in his seminar for their encouragement.

§ 1. A result in the complete case.

In this section, we prove the following :
Theorem I. Let M be an n-dimensional complete Riemannian manifold isometrically immersed in S^{n+1}. If the mean curvature vector of M is always orthogonal to a fixed direction, then M is a minimal hypersurface.

Proof. As minimality is a local property, we may assume M to be orientable. Without loss of generality, consider S^{n+1} as the unit sphere in E^{n+2} with center at the origin, and let $f: M \rightarrow S^{n+1}$ be the immersion in the theorem. For $p \in M, x_{f(p)}$ denotes the position vector of $f(p) \in S^{n+1}$ in E^{n+2}, and $T_{p}(M)$ is the tangent space of M at p, usually identified with $f_{*}\left(T_{p}(M)\right.$. We denote by $\langle\rangle$, the metric on E^{n+2}, S^{n+1} and M without distinction, and by D, \tilde{V} and ∇ the

Received May 29, 1975.

Riemannian connections on E^{n+2}, S^{n+1} and M, respectively. By orientability of M, choose a unit normal vector field ξ of M in S^{n+1}, and let A be the second fundamental tensor field of M satisfying for $X \in T(M)$:

$$
\begin{equation*}
A X=-\tilde{V}_{x} \xi=-D_{X} \xi \tag{1.1}
\end{equation*}
$$

Then the mean curvature vector H and the scalar mean curvature h of M are given by

$$
H=(\operatorname{Tr} A) \xi=h \xi,
$$

where Tr denotes the trace.
Now by the assumption of the theorem, there exists a unit vector a in E^{n+2} such that

$$
\langle H, a\rangle=h\langle\xi, a\rangle=0 .
$$

Therefore defining the open subset M^{\prime} of M by $M^{\prime}:=\{p \in M \mid h(p) \neq 0\}$, we have

$$
\begin{equation*}
\langle\xi, a\rangle=0 \quad \text { on } \quad M^{\prime} . \tag{1.2}
\end{equation*}
$$

For the proof of the theorem, we assume $M^{\prime} \neq \phi$ and lead to a contradiction.
First we define a tangent vector field Z on M by projecting the vector a onto each tangent space, that is, by

$$
Z_{p}:=a-\left\langle x_{f(p)}, a\right\rangle x_{f(p)}-\left\langle\xi_{f(p)}, a\right\rangle \xi_{f(p)}
$$

In the sequel we work chiefly on M^{\prime} so both (1.2) and

$$
\begin{equation*}
Z=a-\langle x, a\rangle x \quad \text { on } \quad M^{\prime} \tag{1.3}
\end{equation*}
$$

are to be remarked.
Differentiating (1.2) on M^{\prime}, we have for any $X \in T\left(M^{\prime}\right)$:

$$
0=\left\langle D_{X} \xi, a\right\rangle=\langle-A X, a\rangle=-\langle A X, Z\rangle=-\langle A Z, X\rangle
$$

by (1.1) and the symmetry of A, so that

$$
\begin{equation*}
A Z=0 \quad \text { on } \quad M^{\prime} . \tag{1.4}
\end{equation*}
$$

Moreover since

$$
\begin{aligned}
\nabla_{X} Z & =\tilde{\nabla}_{X} Z-\langle A X, Z\rangle \xi=\tilde{\nabla}_{X} Z=D_{X} Z-\left\langle D_{X} Z, x\right\rangle x \\
& =-\langle X, a\rangle x-\langle x, a\rangle X+\langle Z, X\rangle x=-\langle x, a\rangle X,
\end{aligned}
$$

putting $\beta(p)=\left\langle x_{f(p)}, a\right\rangle$ for $p \in M^{\prime}$, we obtain

$$
\begin{equation*}
\nabla_{X} Z=-\beta X \quad \text { on } \quad M^{\prime} . \tag{1.5}
\end{equation*}
$$

Next, by the Codazzi's equation and (1.4) we have

$$
\begin{aligned}
\left(\nabla_{Z} A\right) X & =\left(\nabla_{X} A\right) Z=\nabla_{X}(A Z)-A\left(\nabla_{X} Z\right) \\
& =-A(-\beta X)=\beta A X
\end{aligned}
$$

for each $X \in T\left(M^{\prime}\right)$, that is,

$$
\nabla_{Z} A=\beta A \quad \text { on } \quad M^{\prime},
$$

from which it follows immediately that

$$
\begin{equation*}
Z(h)=\beta h \quad \text { on } \quad M^{\prime} . \tag{1.6}
\end{equation*}
$$

Using this formula, we show Z never vanishes on M^{\prime} as follows: if $Z_{p}=0$ at some $p \in M^{\prime}$, then $a=\left\langle x_{f(p)}, a\right\rangle x_{f(p)}$ and so $|\beta(p)|=1$. Therefore (1.6) implies $h(p)=0$, a contradiction. On the other hand, as we get

$$
\begin{equation*}
\nabla_{Z} Z=-\beta Z \tag{1.7}
\end{equation*}
$$

from (1.5), $Z /|Z|$ is a geodesic vector field on M^{\prime} where $|Z|$ denotes the length of Z. Then fixing $p \in M^{\prime}$, let $\gamma(s)$ be the infinitely extended geodesic of M through p tangent to Z_{p}, where s denotes the arc length with $\gamma(0)=p$. We define a function l on \boldsymbol{R} by

$$
\begin{equation*}
l(s):=\left\langle\dot{\gamma}(s), Z_{\gamma(s)}\right\rangle \tag{1.8}
\end{equation*}
$$

where $\dot{\gamma}(s)$ is the velocity vector of $\gamma(s)$. Let (a, b) be the maximal interval containing zero for which $\gamma((a, b))$ lies in the connected component of M^{\prime} containing p.

Now differentiating (1.8) along γ, we have by (1.5)

$$
\begin{equation*}
\frac{d l}{d s}(s)=\left\langle\dot{\gamma}(s), \nabla_{\dot{\gamma}(s)} Z_{r(s)}\right\rangle=\langle\dot{\gamma}(s),-\beta(\gamma(s)) \dot{\gamma}(s)\rangle=-\beta(\gamma(s)), \tag{1.9}
\end{equation*}
$$

and thus

$$
\begin{aligned}
\frac{d^{2} l}{d s^{2}}(s) & =-\frac{d}{d s}\left\langle x_{r(s)}, a\right\rangle \\
& =-\left\langle\dot{\gamma}(s), Z_{r(s)}\right\rangle=-l(s) \quad \text { for } \quad s \in(a, b)
\end{aligned}
$$

Hence $l(s)$ must be expressed as

$$
\begin{equation*}
l(s)=c_{1} \cos s+c_{2} \sin s \quad \text { for } \quad s \in(a, b), \tag{1.10}
\end{equation*}
$$

where

$$
c_{1}=l(0)=\left\langle\dot{\gamma}(0), Z_{p}\right\rangle=\left|Z_{p}\right|
$$

and

$$
c_{2}=\frac{d l}{d s}(0)=-\beta(p) .
$$

Taking $s_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\sin s_{0}=\beta(p)$, we have

$$
c_{1}=\left\langle Z_{p}, Z_{p}\right\rangle^{1 / 2}=\sqrt{1-c_{2}^{2}}=\cos s_{0}
$$

and therefore from (1.10), (1.9) and (1.8), we obtain

$$
\begin{align*}
& l(s)=\cos \left(s+s_{0}\right), \\
& \beta(\gamma(s))=\sin \left(s+s_{0}\right), \tag{1.11}
\end{align*}
$$

$$
\begin{equation*}
Z_{\gamma(s)}=\cos \left(s+s_{0}\right) \dot{\gamma}(s) \quad \text { for } \quad s \in(a, b) . \tag{1.12}
\end{equation*}
$$

Thus the non-vanishing of Z on (a, b) implies the interval (a, b) to be finite. Remark here that the continuous function $h(r(s))$ on \boldsymbol{R} must approach to zero as s tending to a or b.

Now substituting (1.11) and (1.12) into (1.6), we have

$$
\cos \left(s+s_{0}\right) \frac{d h \cdot \gamma}{d s}(s)=\sin \left(s+s_{0}\right) h \cdot \gamma(s), \quad \text { for } \quad s \in(a, b),
$$

which shows immediately that

$$
h(\gamma(s))=\frac{c_{p}}{\cos \left(s+s_{0}\right)} \quad \text { for } \quad s \in(a, b),
$$

where c_{p} is some constant. Therefore by the above remark, c_{p} and hence $h(\gamma(s))$ must be identically zero on (a, b), which is a contradiction. Finally we have $M^{\prime}=\phi$, and the proof is completed.
Q. E. D.

§ 2. An example in the non-complete case.

We give an example of non-complete hypersurface M in S^{n+1} whose normal vectors are always orthogonal to a fixed direction and hence so is the mean curvature vector. But in this case, we show that M is not necessarily a minimal hypersurface.

Let $\varphi: N \rightarrow S^{n}$ be an immersion of an ($n-1$)-dimensional manifold N into a great hypersphere S^{n} in S^{n+1}. Let a be the unit vector orthogonal to the hyperplane containing S^{n} in E^{n+2} and ω the angle on the unit circle S^{1}. Then we define a geometric suspension $\psi: N \times S^{1} \rightarrow S^{n+1}$ of φ by

$$
\psi(p, \omega)=\cos \omega \cdot \varphi(p)+\sin \omega \cdot a .
$$

Choosing local coordinates ($x_{1}, x_{2}, \cdots, x_{n-1}$) on N, we see that

$$
\psi_{*}\left(\frac{\partial}{\partial x_{\imath}}\right)=\cos \omega \frac{\partial \varphi}{\partial x_{\imath}}, \quad 1 \leqq \imath \leqq n-1,
$$

$$
\begin{equation*}
\psi_{*}\left(\frac{\partial}{\partial \omega}\right)=-\sin \omega \cdot \varphi+\cos \omega \cdot a \tag{2.1}
\end{equation*}
$$

Thus ψ immerses $N^{\prime}:=\left\{(p, \omega) \in N \times S^{1} \mid \omega \neq\right.$ odd multiple of $\left.\pi / 2\right\}$ into S^{n+1}. We denote by M one of the connected components of N^{\prime}.

In the neighborhood of coordinates ($x_{1}, x_{2}, \cdots, x_{n-1}$) on N and (x_{1}, x_{2}, \cdots, $\left.x_{n-1}, \omega\right)$ on M chosen as above, let η and ξ be local unit vector fields normal to N in S^{n} and M in S^{n+1}, respectively. Then as ξ is orthogonal to $\psi(p, \omega)$, $\psi_{*}\left(\partial / \partial x_{\imath}\right)$ and $\psi_{*}(\partial / \partial \omega)$, and therefore to $\varphi(p), a$ and $\partial \varphi / \partial x_{\imath}(1 \leqq i \leqq n-1)$, choosing the direction of ξ suitably, we have

$$
\begin{equation*}
\xi_{\psi(p, \omega)}=\eta_{\varphi(p)} \tag{2.2}
\end{equation*}
$$

in this neighborhood. In particular, we note that

$$
\begin{equation*}
\langle\xi, a\rangle=0 . \tag{2.3}
\end{equation*}
$$

Now by B and A we denote the matrices of the second fundamental forms of N and M respectively in the coordinates above. Then from

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}=\cos \omega \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{\jmath}} \\
& \frac{\partial^{2} \psi}{\partial x_{i} \partial \omega}=-\sin \omega \frac{\partial \varphi}{\partial x_{\imath}} \\
& \frac{\partial^{2} \psi}{\partial \omega^{2}}=-\cos \omega \cdot \varphi-\sin \omega \cdot a
\end{aligned}
$$

and from (2.2), it follows that

$$
A_{\varphi(p, \omega)}=\cos \omega\left(\begin{array}{ll}
B_{\varphi(p)} & 0 \\
0 & 0
\end{array}\right) .
$$

On the other hand, from (2.1), the matrices of the first fundamental forms G of N and \tilde{G} of M are related by

$$
\tilde{G}_{\zeta<(p, \omega)}=\left(\begin{array}{cc}
\cos ^{2} \omega G_{\varphi(p)} & 0 \\
0 & 1
\end{array}\right),
$$

therefore we obtain

$$
\begin{equation*}
\operatorname{Tr} A_{\varphi(p, \omega)}=\frac{1}{\cos \omega} \operatorname{Tr} B_{\varphi(p)} . \tag{2.4}
\end{equation*}
$$

Thus it turns out that M is minimal if and only if N is minimal.
We now observe that as M is generated by a family of semi-great circles of S^{n+1} through the fixed pair of antipodal points $\pm a$, the following definition is somewhat reasonable.

Definition. By a locally cylindrical hypersurface in S^{n+1}, we mean some open piece of such a hypersurface as M constructed above.

§ 3. Characterizations of locally cylindrical hypersurfaces in S^{n+1}.

Here we come to prove the following:
Lemma. Let M be a Riemannian manifold of dimension $n \geqq 2$ isometrically immersed in S^{n+1}. Then M is locally cylindrical if and only if its normal directions are always orthogonal to a fixed direction.

Proof. As the necessity was shown above by (2.3), we prove the sufficiency.
The property to prove is local, so we may assume M to be orientable. Let ξ be a unit vector field normal to M in S^{n+1}, which satisfies $\langle\xi, a\rangle=0$ for some
fixed unit vector a in E^{n+2}. Here we note that the argument on M^{\prime} in $\S 1$ is all available in this case on M because the condition $\langle\xi, a\rangle=0$ is essential in the process up to (1.6) in $\S 1$, and further because the remove of the two vanishing points $\pm a$ of Z from M, if necessary, gives no effects on the conclusion of this lemma. Thus we may consider $Z /|Z|$ a geodesic vector field on M just as in $\S 1$ on M^{\prime}. Moreover as we have

$$
\left\langle\tilde{V}_{z} Z, \xi\right\rangle=\langle Z, A Z\rangle=0
$$

by (1.4), the geodesic γ through $p \in M$ tangent to Z_{p} is in fact an arc of a great circle in S^{n+1}. By the definition of Z, this great circle passes through $\pm a$ for any $p \in M$. Thus our proof is almost accomplished. In fact if we cut the family of such semi-great circles with its two ends $\pm a$ that intersect M, by the hyperplane E_{a}^{n+1} orthogonal to a through the origin, then we have a hypersurface N in $S_{a}^{n}: S^{n+1} \cap E_{a}^{n+1}$, from which we can reconstruct M by the same procedure as is described in the previous section. Thus M is proved to be locally cylindrical.

> Q. E. D.

§4. A results in the case $n=2$.

In the case $n=2$, eliminating the completeness of M, we can prove the following theorem by using some special properties of surfaces.

Theorem II. Let M be a surface of class C^{2} in S^{3} whose mean curvature vector is always orthogonal to a fixed direction. Then M is either a minimal surface, or else a locally cylindrical surface in S^{3}.

Proof. As usual let $S^{3}=\left\{x \in E^{4}| | x \mid=1\right\}$. Handling local properties, we may assume M to be orientable, and further in this case a conformally immersed Riemann surface since there always exist isothermal coordinates on surfaces of class C^{2}. Now just as in $\S 1$, let ξ be a unit vector field normal to M in S^{3} and $H=h \xi$ be the mean curvature vector field satisfying $\langle H, a\rangle=h\langle\xi, a\rangle=0$ for some fixed unit vector a in E^{4}. Let M^{\prime} be the open subset of M defined by $M^{\prime}:=$ $\{p \in M \mid h(p) \neq 0\}$ as before. If $M^{\prime}=\phi$ then M is minimal and if $M^{\prime}=M$ then M is locally cylindrical by Lemma in $\S 3$, so let $S:=M-\bar{M}^{\prime}$ and assume both $M^{\prime} \neq \phi$ and $S \neq \phi$. We claim in this case that $\langle\xi, a\rangle=0$ holds not only on M^{\prime}, but throughout M.

Now we denote by $\psi: M \rightarrow S^{3}$ a conformal immersion of M and let $z=x_{1}+i x_{2}$ be an associated local isothermal coordinate on M where $i=\sqrt{-1}$. Setting $\partial=$ $(1 / 2)\left(\partial / \partial x_{1}-i\left(\partial / \partial x_{2}\right)\right)$, we have for the metric induced by ψ from S^{3},

$$
d s^{2}=2 F|d z|^{2}
$$

where

$$
\begin{equation*}
F=\langle\partial \psi, \bar{\partial} \psi\rangle=\frac{1}{2}\left|\frac{\partial \psi}{\partial x_{1}}\right|^{2}=-\frac{1}{2}\left|\frac{\partial \psi}{\partial x_{2}}\right|^{2} \tag{4.1}
\end{equation*}
$$

by using the complex linearly extended inner product. Since $\langle\psi, \psi\rangle=1$ and ψ
is of class C^{2}, we have

$$
\begin{equation*}
\left\langle\psi, \partial^{k} \psi\right\rangle=\left\langle\psi, \bar{\partial}^{k} \psi\right\rangle=0=\left\langle\partial \psi, \partial^{k} \psi\right\rangle=\left\langle\bar{\partial} \psi, \bar{\partial}^{k} \psi\right\rangle \quad \text { for } \quad k=1,2 . \tag{4.2}
\end{equation*}
$$

From now on we denote $\partial \psi / \partial x_{i}$ and $\partial^{2} \psi / \partial x_{i} \partial x_{j}$ by ψ_{i} and $\psi_{i j}$, respectively. Let D be the connection of E^{4} as in $\S 1$. Then the vector-valued second fundamental form B of M is given by

$$
B(X, Y)=D_{X} Y-\left\langle D_{X} Y, \psi\right\rangle \psi-\frac{1}{2 F} \sum_{k=1}^{2}\left\langle D_{X} Y, \psi_{k}\right\rangle \psi_{k}
$$

where X and Y are any tangent vector fields of M. Then identifying $\partial / \partial x_{\imath}$ with $\psi_{*}\left(\partial / \partial x_{\imath}\right)$, we define

$$
B_{i j}:=B\left(\frac{\partial}{\partial x_{\imath}}, \frac{\partial}{\partial x_{\jmath}}\right)=\psi_{i j}-\left\langle\psi_{i \jmath}, \psi\right\rangle \psi-\frac{1}{2 F} \sum_{k=1}^{2}\left\langle\psi_{i \jmath}, \psi_{k}\right\rangle \psi_{k}
$$

and

$$
\beta_{i \jmath}:=\left\langle B_{\imath \jmath}, \xi\right\rangle=\left\langle\psi_{i \jmath}, \xi\right\rangle
$$

Choosing $\xi=(1 / 2 F) \psi \wedge \psi_{1} \wedge \psi_{2}=(1 / i F) \psi \wedge \partial \psi \wedge \bar{\partial} \psi$ as the unit normal vector of M, we have

$$
\beta_{i j}=\frac{1}{i F} \psi \wedge \partial \psi \wedge \bar{\partial} \psi \wedge \psi_{i j} .
$$

Now we define a quadratic differential $\omega=\alpha d z^{2}$ on M by

$$
\alpha:=\frac{1}{\imath F} \psi \wedge \partial \psi \wedge \bar{\partial} \psi \wedge \partial^{2} \psi=\frac{1}{4}\left(\beta_{11}-\beta_{22}-2 \imath \beta_{12}\right),
$$

which is well-defined since for another associated isothermal coordinate $\tilde{z}=\tilde{x}_{1}+i \tilde{x}_{2}$, setting $\tilde{\partial}=(1 / 2)\left(\partial / \partial \tilde{x}_{1}-i\left(\partial / \partial \tilde{x}_{2}\right)\right)$, we can easily show that

$$
\partial^{2}=\left(\frac{d \tilde{z}}{d z}\right)^{2} \tilde{\partial}^{2}+\partial\left(\frac{d \tilde{z}}{d z}\right) \tilde{\partial} .
$$

By virtue of (4.1) and (4.2) we can compute α^{2}, which we need later, as follows:

$$
\begin{align*}
\alpha^{2} & =-\frac{1}{F^{2}}\left|\begin{array}{l}
\langle\psi, \psi\rangle\langle\psi, \partial \psi\rangle\langle\psi, \bar{\partial} \psi\rangle\left\langle\psi, \partial^{2} \psi\right\rangle \\
\langle\partial \psi, \psi\rangle\langle\partial \psi, \partial \psi\rangle\langle\partial \psi, \bar{\partial} \psi\rangle\left\langle\partial \psi, \partial^{2} \psi\right\rangle \\
\langle\bar{\partial} \psi, \psi\rangle\langle\bar{\partial} \psi, \partial \psi\rangle\langle\bar{\partial} \psi, \bar{\partial} \psi\rangle\left\langle\bar{\partial} \psi, \partial^{2} \psi\right\rangle \\
\left\langle\partial^{2} \psi, \phi\right\rangle\left\langle\partial^{2} \psi, \partial \psi\right\rangle\left\langle\partial^{2} \psi, \bar{\partial} \psi\right\rangle\left\langle\partial^{2} \psi, \partial^{2} \psi\right\rangle
\end{array}\right| \tag{4.3}\\
& =-\frac{1}{F^{2}}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & F & 0 \\
0 & F & 0 & \partial F \\
0 & 0 & \partial F & \left\langle\partial^{2} \psi, \partial^{2} \psi\right\rangle
\end{array}\right| \\
& =\left\langle\partial^{2} \psi, \partial^{2} \psi\right\rangle .
\end{align*}
$$

On the other hand, since S is minimal and

$$
h=\frac{1}{2 F}\left(\beta_{11}+\beta_{22}\right)=\frac{1}{2 F} \frac{4}{i F} \psi \wedge \partial \psi \wedge \bar{\partial} \psi \wedge \partial \overline{\bar{o}} \psi,
$$

we have

$$
\begin{equation*}
\beta_{11}+\beta_{22}=0 \text { on } S \tag{4.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\partial \bar{\partial} \psi=-F \psi \quad \text { on } \quad S . \tag{4.5}
\end{equation*}
$$

(The equivalence of (4.4) and (4.5) easily follows from (4.1) and (4.2); while (4.5) is just $\Delta \psi=-2 \psi$ where Δ is the Laplace-Beltrami operator of M. cf. §5.) Accordingly, by (4.4) we obtain

$$
\begin{equation*}
\alpha=\frac{1}{2}-\left(\beta_{11}-\imath \beta_{12}\right) \quad \text { on } \quad S . \tag{4.6}
\end{equation*}
$$

Moreover, noting that ψ is real analytic on S [4, Lemma 1.1], we can show that ω is holomorphic on S. In fact as

$$
\begin{aligned}
\bar{\partial} \alpha^{2} & =\bar{\partial}\left\langle\partial^{2} \psi, \partial^{2} \psi\right\rangle=2\left\langle\partial(\partial \bar{\partial} \psi), \partial^{2} \psi\right\rangle=-2\left\langle\partial(F \psi), \partial^{2} \psi\right\rangle \\
& =-2 \partial F\left\langle\psi, \partial^{2} \psi\right\rangle-2 F\left\langle\partial \psi, \partial^{2} \psi\right\rangle=0 \quad \text { on } \quad S
\end{aligned}
$$

by (4.3), (4.5) and (4.2), we see that ω^{2} and so ω are holomorphic on S.
Now we go back to the proof of the theorem. Take the universal covering \tilde{M} of M. Then \tilde{M} is conformally equivalent to one of the unit 2 -sphere, the unit disk and the entire plane. As we can apply Theorem I in the compact case, it is sufficient to consider the latter two cases, both of which are nice since we can choose a fixed parameter $\zeta=u_{1}+i u_{2}$ all over \tilde{M}. We denote by \widetilde{S} the open subset of \tilde{M} which projects onto S. Then the coefficient function $\tilde{\alpha}$ of the lifted differential $\tilde{\omega}=\tilde{\alpha} d \zeta^{2}$ of ω is holomorphic when restricted to \tilde{S}. We extend this holomorphic function $\tilde{\alpha} \mid \tilde{S}$ on \tilde{S} to a function \tilde{F} on \tilde{M} as follows:

$$
\tilde{F}(\zeta)=\left\{\begin{array}{lll}
\tilde{\alpha}(\zeta) & \text { on } & \tilde{S} \\
0 & \text { on } & \tilde{M}-\tilde{S}
\end{array}\right.
$$

We next show that $\tilde{F}(\zeta)$ is continuous on \tilde{M}. To do this we return to M and consider a continuous function G on M given by

$$
G(p)=\frac{\beta_{11} \beta_{22}-\beta_{12}^{2}}{(2 F)^{2}}(p) \quad \text { for } \quad p \in M
$$

which is well-defined since the right hand side is independent of the choice of coordinates. In particusar, $G(p)=0$ on M^{\prime} because $\langle B(X, Y), \xi\rangle=\langle A X, Y\rangle$ for $X, Y \in T_{p} M$, and we have $A Z=0$ with $Z \neq 0$ on M^{\prime} for the tangent vector field Z on M defined in $\S 1$. On the other hand, as we have

$$
G(p)=-\frac{\beta_{11}^{2}+\beta_{12}^{2}}{(2 F)^{2}}(p) \quad \text { on } \quad S
$$

by (4.4), the continuity of G implies that both β_{11} and β_{12} approach to zero as $p \in M$ goes to the boundary ∂S. Therefore noting (4.6), we see that ω vanishes on ∂S and does also $\tilde{\omega}$ on $\partial \tilde{S}$. The continuity of $\widetilde{F}(\zeta)$ is thus obtained.

Now we recall the well-known theorem of Radó-Behnke-Stein-Cartan [2]: if a continuous complex valued function f on a complex analytic manifold N is holomorphic wherever $f(z) \neq 0, z \in N$, then f is holomorphic all over N.

Applying this to $\tilde{F}(\zeta)$, we have $\widetilde{F}(\zeta) \equiv 0$ on \tilde{M} since $\tilde{F}(\zeta)$ is holomorphic on \tilde{M} and vanishes on the non-empty interior of $\tilde{M}-\widetilde{S}$.

Finally we have $\beta_{11}=\beta_{12} \equiv 0$ or $B \equiv 0$ on S which shows that each connected component of S lies in some great hypersphere of S^{3} and hence the normal vector ξ is constant on each component. In particular as $\langle\xi, a\rangle=0$ on M^{\prime}, the connectedness of M shows $\langle\xi, a\rangle=0$ holds throughout M. Then the theorem follows immediately from Lemma.
Q. E. D.

Note. In the proof above, it is not essential to take the universal covering. The argument on \tilde{M} is merely for the local argument on a coordinate neighborhood of each point of M.

§ 5. Remarks.

1. For a submanifold M^{n} of S^{n+p},

$$
\Delta\langle x, a\rangle=\langle H, a\rangle-n\langle x, a\rangle
$$

holds where Δ is the Laplace-Beltrami operator of M and a is any constant unit vector in E^{n+p+1}, [1]. Thus if M is minimal, then

$$
\begin{equation*}
\Delta\langle x, a\rangle=-n\langle x, a\rangle \tag{5.1}
\end{equation*}
$$

holds for all unit vector a in E^{n+p+1}. When $p=1$ and M is complete, (5.1) for one unit vector a in E^{n+p+1} is sufficient for M to be minimal by Theorem I.
2. It may not be so easy to derive something in the case when the codimension p is larger than 1 in Theorem I or II with an added condition such as H is contained in some great sphere of S^{n+p} or as the normal connection is flat. For the case of surfaces in E^{2+p}, see L. Jonker [3].
3. It was proved by K. Nomizu and B. Smyth [5] that a complete orientable locally cylindrical hypersurface in S^{n+1} is a great hypersphere.

Bibliography

[1] S.S. Chern, Minimal Submanifolds in a Riemannian Manifold, University of Kansas, Technical Report 19, 1968.
[2] E. Heinz, Ein elementarer Beweis des Satzes von Radó-Behnke-Stein-Cartan über analytische Funktionen, Math. Ann., Vol. 131, 1956, pp. 258-259.
[3] L. Jonker, A theorem on minimal surfaces, J. Diff. Geom., 3, 1969, pp. 351-360.
[4] H. B. Lawson, Complete minimal surfaces in S^{3}, Ann. of Math., 92, pp. 335374.
[5] K. Nomizu and B. Smyth, On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comm. Math. Helv., 44, 1969, pp. 484-490.
[6] R. Osserman, Remarks on minımal surfaces, Comm. pure and Appl. Math., Vol. 12, 1959, pp. 233-239.

Tokyo Institute of Technology

