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CERTAIN HYPERSURFACES IN THE EUCLIDEAN SPHERE
By REIKO NAKA

§0. Introduction.

It has been proved by R. Osserman [6] that if the mean curvature vector
of a surface S in the Euclidean space E°® is always orthogonal to a fixed direc-
tion, then S is either a minimal surface, or else a locally cylindrical surface
with its generator parallel to the fixed direction.

In this paper, we consider a unit sphere S™*' in the Euclidean space E™*?%
and study about a hypersurface M" in S™' whose mean curvature vector is
always orthogonal to a fixed direction.

We first show that when M is complete, M must be a minimal hypersurface
(Theorem I). The necessity of completeness will be discussed in § 2.

We next show that in the case n=2, M is either a minimal surface, or else
a locally cylindrical surface in S° by the latter we mean some open piece of
such a surface as is generated by a family of semi-great circles through a
fixed pair of antipodal points of S® (Theorem II). This corresponds exactly to
the result of R. Osserman.

I want to express hearty thanks to Professor T. Otsuki for his kindly
guidance in my studies. I wish also to thank all the members in his seminar
for their encouragement.

§1. A result in the complete case.
In this section, we prove the following :

THEOREM L. Let M be an n-dimensional complete Riemanman manifold iso-
metrically immersed in S™. If the mean curvature vector of M is always ortho-
gonal to a fixed divection, then M is a minimal hypersurface.

Proof. As minimality is a local property, we may assume M to be orient-
able. Without loss of generality, consider S™"! as the unit sphere in E™*? with
center at the origin, and let f: M—S™"" be the immersion in the theorem. For
PEM, x; denotes the position vector of f(p)eS™! in E™?% and T,(M) is the
tangent space of M at p, usually identified with f«(T,(M)). We denote by <, )

the metric on E™? S™! and M without distinction, and by D, ¥V and V the
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Riemannian connections on E™*?, S™*' and M, respectively. By orientability of
M, choose a unit normal vector field & of M in S™!, and let A be the second
fundamental tensor field of M satisfying for XeT(M):

(L) AX=—V y6=—DyE.

Then the mean curvature vector H and the scalar mean curvature h of M are
given by
H=(Tr A)§=h¢,
where Tr denotes the trace.
Now by the assumption of the theorem, there exists a unit vector a in E™**
such that
{H, a)=Hn¢&, a)=0.

Therefore defining the open subset M’ of M by M’ :={ps M|h(p)+0}, we have
1.2) (&, ad=0 on M.

For the proof of the theorem, we assume M’+#¢ and lead to a contradiction.
First we define a tangent vector field Z on M by projecting the vector a
onto each tangent space, that is, by

Zy: =a—Xyp, WXsepn—LE ey & rcpy -
In the sequel we work chiefly on M’ so both (1.2) and
1.3) Z=a—<{x, adx on M

are to be remarked.
Differentiating (1.2) on M’, we have for any XeT(M’):

0=(Dx¢, )={—AX, p=—(AX, Z)=—(AZ, X
by (1.1) and the symmetry of A, so that
1.4) AZ=0 on M.

Moreover since
V3 Z=V yZ—(AX, Z56=F yZ=DyZ—(DxZ, x>x
=—LX, apx—<x, a)X+{Z, XDx=—x, a)X,
putting B(p)=<{xspm, a> for pe M’, we obtain
(1.5) VeZ=—BX on M.
Next, by the Codazzi’s equation and (1.4) we have
V2 AX=F yA)Z=V ((AZ)— AW +Z)

=—A(—pX)=BAX
for each XeT(M’), that is,
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VA=A on M,
from which it follows immediately that
(1.6) Z(hy=Bh  on M.

Using this formula, we show Z never vanishes on M’ as follows: if Z,=0
at some peM’, then a={X;p, @)X and so |B(p)|=1. Therefore (1.6) implies
h(p)=0, a contradiction. On the other hand, as we get

1.7 VyZ=—-pZ

from (1.5), Z/|Z| is a geodesic vector field on M’ where |Z| denotes the length
of Z. Then fixing peM’, let y(s) be the infinitely extended geodesic of M
through p tangent to Z, where s denotes the arc length with y(0)=p. We
define a function [ on R by

(1.8) I(s) : =<j(8), Zrewyy

where 7(s) is the velocity vector of y(s). Let (g, b) be the maximal interval
containing zero for which y((a, b)) lies in the connected component of M’ con-
taining p.

Now differentiating (1.8) along 7, we have by (1.5)

(L9) L () =CH(5), Vo Zreoy =), —BHNHS=—B(s)),

and thus

d?l d
ds? ()= ~ds (e, @

=—{7(8), Zresyy=—1Is) for s=(aq, b).
Hence I(s) must be expressed as
(1.10) I(s)=c, cos st+c,sin s for se(a, b),

where
a=U0)=<7(0), Zp>=1Z2,|
and

t=-2E- (O)=—p(p).

Taking s, (—

l\DlN

,%) such that sin s,=p(p), we have
1={Zp, Zpp"*= v/1—¢,? =co0s s,
and therefore from (1.10), (1.9) and (1.8), we obtain
I(s)=cos (s+s,),
(1.11) B(y(s))=sin (s+s,),
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1.12) Zrisy=008 (s+50)7(3) for se(q, b).

Thus the non-vanishing of Z on (g, b) implies the interval (g, b) to be finite.
Remark here that the continuous function A(y(s)) on R must approach to zero as
s tending to a or b.

Now substituting (1.11) and (1.12) into (1.6), we have

dgls'r (s)=sin (s+s)h-7(s), for se(a, b),

cos (s+s,)

which shows immediately that
_ Cp
h(y(s)= <08 (sF52) for s€(aq, b),

where ¢, is some constant. Therefore by the above remark, ¢, and hence A(y(s))
must be identically zero on (g, b), which is a contradiction. Finally we have
M’'=¢, and the proof is completed. Q.E.D.

§2. An example in the non-complete case.

We give an example of non-complete hypersurface M in S™' whose normal
vectors are always orthogonal to a fixed direction and hence so is the mean
curvature vector. But in this case, we show that M is not necessarily a minimal
hypersurface.

Let ¢: N—S™ be an immersion of an (n—1)-dimensional manifold N into a
great hypersphere S™ in S™. Let a be the unit vector orthogonal to the hyper-
plane containing S™ in E™? and o the angle on the unit circle S'. Then we
define a geometric suspension ¢ NXS!'—=S™! of ¢ by

(P, w)=cos @-p(p)+sinw-a.

Choosing local coordinates (x;, x,, --*, X,-;) on N, we see that

gb*( ai )=cosu; gfl , 1=i1=n—-1,
(2.1)
gb*(-aaw—):——sin w-ptcosw-a.

Thus ¢ immerses N’ : ={(p, w)e NXS'|w+0dd multiple of x/2} into S™!. We
denote by M one of the connected components of N,

In the neighborhood of coordinates (x,, x,, ==, X,-;) on N and (x,, x5, «--,
Xn_1, ®) on M chosen as above, let » and & be local unit vector fields normal
to N in S™ and M in S™, respectively. Then as £ is orthogonal to ¢(p, ),
¢4(0/0x,) and ¢4(0/0w), and therefore to ¢(p), a and d¢/dx, (1=i=<n-—1), choos-
ing the direction of & suitably, we have

2.2) Eom,="Npp
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in this neighborhood. In particular, we note that
(2.3) (&, ad=0.

Now by B and A we denote the matrices of the second fundamental forms
of N and M respectively in the coordinates above. Then from

o'y d%p
0x,0x, 0S5 ox,
L0, 00
ox 0w s @ ox,

) .
—-gzijz—:—cosw-go—smara

and from (2.2), it follows that

B 0
Ay, =08 a)( " ) .
0 0

On the other hand, from (2.1), the matrices of the first fundamental forms G of
N and G of M are related by

~ cos’w Gy O
G("(p,cw:( v >
0 1
therefore we obtain
1
(2.4) Tr A¢(p,w):m_ Tr B¢(p) .

Thus it turns out that M is minimal if and only if N is minimal.

We now observe that as M is generated by a family of semi-great circles
of S™! through the fixed pair of antipodal points +a, the following definition
is somewhat reasonable.

DEFINITION. By a locally cylindrical hypersurface in S™*, we mean some
open piece of such a hypersurface as M constructed above.

§3. Characterizations of locally cylindrical hypersurfaces in S™*.,

Here we come to prove the following :

LEMMA. Let M be a Riemannian manifold of dimension n=2 isometrically
immersed in S™, Then M is locally cylindrical if and only 1f its normal direc-
tions are always orthogonal to a fixed direction.

Proof. As the necessity was shown above by (2.3), we prove the sufficiency.
The property to prove is local, so we may assume M to be orientable. Let
& be a unit vector field normal to M in S™!, which satisfies <&, a)>=0 for some
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fixed unit vector a in E£™% Here we note that the argument on M’ in §1 is
all available in this case on M because the condition <&, a)=0 is essential in
the process up to (1.6) in § 1, and further because the remove of the two vanish-
ing points +a of Z from M, if necessary, gives no effects on the conclusion of
this lemma. Thus we may consider Z/|Z| a geodesic vector field on M just as
in §1 on M’. Moreover as we have

V22, &y=(Z, AZ)=0

by (1.4), the geodesic 7 through p& M tangent to Z, is in fact an arc of a great
circle in S™*'. By the definition of Z, this great circle passes through +a for
any peM. Thus our proof is almost accomplished. In fact if we cut the family
of such semi-great circles with its two ends +a that intersect M, by the hyper-
plane EZ* orthogonal to a through the origin, then we have a hypersurface N
in S7:S™!'~\E?* from which we can reconstruct M by the same procedure as
is described in the previous section. Thus M is proved to be locally cylindrical.
Q.E.D.

§4. A results in the case n=2.

In the case n=2, eliminating the completeness of M, we can prove the fol-
lowing theorem by using some special properties of surfaces.

THEOREM II. Let M be a surface of class C® in S® whose mean curvature
vector is always orthogonal to a fixed direction. Then M is either a minimal sur-
face, or else a locally cylindrical surface in S°.

Proof. As usuallet S’={x=E*| |x|=1}. Handling local properties, we may
assume M to be orientable, and further in this case a conformally immersed
Riemann surface since there always exist isothermal coordinates on surfaces of
clags C*%. Now just as in §1, let £ be a unit vector field normal to M in S® and
H=h& be the mean curvature vector field satisfying {H, a)=h<{§, a)=0 for some
fixed unit vector a in E*. Let M’ be the open subset of M defined by M’ :=
{peM|h(p)+0} as before. If M’=¢ then M is minimal and if M’=M then M
is locally cylindrical by Lemma in § 3, so let S: =M— M’ and assume both M’ #¢
and S#¢. We claim in this case that <& a>=0 holds not only on M’ but
throughout M.

Now we denote by ¢ : M—S® a conformal immersion of M and let z=x,+1ix,
be an associated local isothermal coordinate on M where i=+/—1. Setting 0=
(1/2)(0/0x,—1(8/0x,)), we have for the metric induced by ¢ from S?,

ds*=2F|dz|*
where
_ _1]og |2_ 1|04 |
(4.1) F=(3¢, ip>= 5 =5

by using the complex linearly extended inner product. Since {¢, ¢>=1 and ¢
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is of class C?, we have
4.2) (P, 3*Py={¢, a*PpY=0={0¢, 0*>=La¢, 3% for k=1,2.

From now on we denote d¢/0x, and 0°¢/0x;0x, by ¢; and ¢,,, respectively.
Let D be the connection of E* as in § 1. Then the vector-valued second funda-
mental form B of M is given by

B(X, Y)=DxY—(DxY, $>p—5p= 3DxY, 64,

where X and Y are any tangent vector fields of M. Then identifying 0/0x,
with ¢4(0/0x,), we define
0 0 1 2
By,: :B(_ax—l’ W)ZQZ’H-«[’W ¢>¢_‘ﬂ:‘—k§1 sy P2

and

ﬁi] : :<B1.]y 5>:<¢’i]7 £> :

Choosing £=(1/2F)¢ AP Ap,=(1/iF )P NIHAd¢) as the unit normal vector of M,
we have

Bu=—s SN AP NSy, .

Now we define a quadratic differential w=adz® on M by
;= g NOGAIPNT G = (B Pru—2Brs),

which is well-defined since for another associated isothermal coordinate £=X,-1%,,
setting 6=(1/2)(8/0%,—i(9/0%,)), we can easily show that

az=(-g§l)zéz + a(%)é .
By virtue of (4.1) and (4.2) we can compute a®, which we need later, as follows:
g, > <P, 00> (P, 09> (¢, 0°P)
43 e }}2 8¢, o> <a¢, 3¢y <0, ay <0, 3*¢p)
Ko, > <o, 04> <o, dg> <o, 0°¢P)
0%, <0°¢p, 0)<0°p, I)<a*p, 3°¢>
1 0 0 0
Llo 0o F o0
T Fo F 0 oF
0 0 OoF (%, 0%
=(0%p, 0% .
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On the other hand, since S is minimal and

h= g (But-u) = - PADG NG N3P,

we have

(4.4) Bii+B=0 on S
or equivalently

(4.5) 0op=—F¢ on S.

(The equivalence of (4.4) and (4.5) easily follows from (4.1) and (4.2) ; while (4.5)
is just 4d¢=—2¢ where 4 is the Laplace-Beltrami operator of M. cf. §5.) Ac-
cordingly, by (4.4) we obtain

(4.6) a=—5-(Bu—ifw) on S.

Moreover, noting that ¢ is real analytic on S [4, Lemma 1.1], we can show that
® is holomorphic on S. In fact as

=0(0%¢, °P)=2¢0(00¢), 3*¢p>=—2(F¢), 3*¢>
=—20F(J, 3*pY—2F(d, 3*d>=0 on S

by (4.3), (4.5) and (4.2), we see that w? and so @ are holomorphic on S.

Now we go back to the proof of the theorem. Take the universal covering
M of M. Then M is conformally equivalent to one of the unit 2-sphere, the
unit disk and the entire plane. As we can apply Theorem I in the compact
case, it is sufficient to consider the latter two cases, both of which are nicg
since we can chooseNa fixed parameter {=u,+1iu, all over M. We denote by S
the open subset of M which projects onto S. Then the coefficient functioNn a of
the lifted differential d=ad{* of ® is holomorphic when restricted to S. We
extend this holomorphic function &|3 on S to a function F on M as follows:

&) on §
Fo={ 07 o s,

We next show that £ (&) is continuous on M. To do this we return to M and
consider a continuous function G on M given by

cp=Lulasfe () for pem,

which is well-defined since the right hand side is independent of the choice of
coordinates. In particusar, G(»)=0 on M’ because {B(X, Y), &)=<CAX, Y ) for
X, YeT,M, and we have AZ=0 with Z+#0 on M’ for the tangent vector field
Z on M defined in §1. On the other hand, as we have
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2 2
cy=—Ll () on s

by (4.4), the continuity of G implies that both S8, and B, approach to zero as
pEM goes to the boundary 90S. Therefore noting (4.6), we see that w vanishes
on 0S and does also @ on 85. The continuity of F(£) is thus obtained.

Now we recall the well-known theorem of Radd-Behnke-Stein-Cartan [2]: if
a continuous complex valued function f on a complex analytic manifold N is
holomorphic wherever f(z)#0, z€N, then f is holomorphic all over N.
_ Applying this to FN(C), we have FV(C)_:_O on M since F(©) is holomorphic on
M and vanishes on the non-empty interior of M-S

Finally we have $8,,=f,:=0 or B=0 on S which shows that each connected
component of S lies in some great hypersphere of S° and hence the normal
vector § is constant on each component. In particular as <{§, a)=0 on M’, the
connectedness of M shows <&, a>=0 holds throughout M. Then the theorem
follows immediately from Lemma. Q.E.D.

Note. In the proof above, it is not essential to take the universal covering.
The argument on M is merely for the local argument on a coordinate neigh-
borhood of each point of M.

§5. Remarks.

1. For a submanifold M™ of S™*?,
A x, ay=<{H, ay—nlx, a)

holds where 4 is the Laplace-Beltrami operator of M and ¢ is any constant
unit vector in E™?*! [1]. Thus if M is minimal, then

(5.1) MKx, ay=—nlx, a)

holds for all unit vector a in E™?*!, When p=1 and M is complete, (5.1) for
one unit vector a in E™*?*! ig sufficient for M to be minimal by Theorem I.

2. It may not be so easy to derive something in the case when the codi-
mension p is larger than 1 in Theorem I or II with an added condition such as
H is contained in some great sphere of S™7? or as the normal connection is
flat. For the case of surfaces in E**? see L. Jonker [3].

3. It was proved by K. Nomizu and B. Smyth [5] that a complete orient-
able locally cylindrical hypersurface in S™*! is a great hypersphere.
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