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CERTAIN HYPERSURFACES IN THE EUCLIDEAN SPHERE

BY REIKO NAKA

§ 0. Introduction.

It has been proved by R. Osserman [6] that if the mean curvature vector
of a surface S in the Euclidean space E3 is always orthogonal to a fixed direc-
tion, then S is either a minimal surface, or else a locally cylindrical surface
with its generator parallel to the fixed direction.

In this paper, we consider a unit sphere Sn+1 in the Euclidean space En+2,
and study about a hypersurface Mn in Sn+1 whose mean curvature vector is
always orthogonal to a fixed direction.

We first show that when M is complete, M must be a minimal hypersurface
(Theorem I). The necessity of completeness will be discussed in § 2.

We next show that in the case n=2, M is either a minimal surface, or else
a locally cylindrical surface in S3, by the latter we mean some open piece of
such a surface as is generated by a family of semi-great circles through a
fixed pair of antipodal points of S3 (Theorem II). This corresponds exactly to
the result of R. Osserman.

I want to express hearty thanks to Professor T. Otsuki for his kindly
guidance in my studies. I wish also to thank all the members in his seminar
for their encouragement.

§ 1. A result in the complete case.

In this section, we prove the following:

THEOREM I. Let M be an n-dimensional complete Riemannian manifold iso-
metrically immersed in Sn+1. If the mean curvature vector of M is always ortho-
gonal to a fixed direction, then M is a minimal hypersurface.

Proof. As minimality is a local property, we may assume M to be orient-
able. Without loss of generality, consider Sn+1 as the unit sphere in En+2 with
center at the origin, and let /: M-*Sn+1 be the immersion in the theorem. For
£<EM, xfw denotes the position vector of f(p)^Sn+1 in En+\ and TP(M) is the
tangent space of M at p, usually identified with f*(Tp(M)). We denote by <, >
the metric on En+2, Sn+1 and M without distinction, and by D, V and Γ the
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10 REIKO NAKA

Riemannian connections on En+2, Sn+1 and M, respectively. By orientability of
M, choose a unit normal vector field ξ of M in Sπ+1, and let A be the second
fundamental tensor field of M satisfying for X<=T(M):

(U)

Then the mean curvature vector H and the scalar mean curvature h of M are
given by

where Tr denotes the trace.
Now by the assumption of the theorem, there exists a unit vector a in En+2

such that

Therefore defining the open subset Mf of M by M' : ={/>eM|A(/>)=£0}, we have

(1.2) <£, α>=0 on M' .

For the proof of the theorem, we assume M'φφ and lead to a contradiction.
First we define a tangent vector field Z on M by projecting the vector a

onto each tangent space, that is, by

Zp : — α— <#/cp), fl>*/cp)— <£/cp), fl)ί/cp) .

In the sequel we work chiefly on M' so both (1.2) and

(1.3) Z=α-<*, α>* on M'

are to be remarked.
Differentiating (1.2) on M', we have for any X<=T(M')\

y=-(AZ, xy

by (1.1) and the symmetry of A, so that

(1.4) AZ=0 on M'.

Moreover since

putting β(P)=(Xfw, α> for £eM', we obtain

(1.5) ΓzZ=-βX on M\

Next, by the Codazzi's equation and (1.4) we have

= -A(-βX)=βAX

for each ZeT(Mx), that is,
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PzA=βA on M' ,

from which it follows immediately that

(1.6) Z(h)=βh on M' .

Using this formula, we show Z never vanishes on M' as follows: if Zp=0
at some £eM', then a=(Xfw, a>#/(p) and so |/3(£)|— 1. Therefore (1.6) implies

)=0, a contradiction. On the other hand, as we get

(1.7) FZZ=-/3Z

from (1.5), Z/\Z\ is a geodesic vector field on M' where \Z\ denotes the length
of Z. Then fixing p^M1 Γ, let f(s) be the infinitely extended geodesic of M
through £ tangent to Zp, where s denotes the arc length with γ(0)=p. We
define a function / on R by

(1.8) /(s) : =<f(s), Zrcs)>

where f(s) is the velocity vector of f(s). Let (α, 6) be the maximal interval
containing zero for which γ((a, b)) lies in the connected component of M' con-
taining p.

Now differentiating (1.8) along γ, we have by (1.5)

(1.9) ^L(s)-<f(s), rr Cf)zrc.)>=<f(s), -

and thus

d2l , λ d , ,

?r(rt>=_/(5) for

Hence /(s) must be expressed as

(1.10) I(s)=c1 cos s-\-c2 sin s for se(α, b),

where
Cl = /(0)

and

Taking s0e^—^-, ~-j such that sin s0=β(p), we have

c1=<Zp, Zp)1/^ Vl-c2

2 =

and therefore from (1.10), (1.9) and (1.8), we obtain

/(s)=cos (s+s0),

(1.11) /3(r(s))=sin(s+s0),
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(1.12) Zr(s):=cos(s+s0)7 (s) for se(α, b).

Thus the non-vanishing of Z on (α, 6) implies the interval (α, b) to be finite.
Remark here that the continuous function h(γ(s)) on R must approach to zero as
s tending to a or b.

Now substituting (1.11) and (1.12) into (1.6), we have

dh Ύ
CQS(S+SO) ds

l (s)=sin(s+s0)/ι y(s), for se(α,6),

which shows immediately that

where ^ is some constant. Therefore by the above remark, cp and hence h(γ(s))
must be identically zero on (a, b\ which is a contradiction. Finally we have
M'=φ, and the proof is completed. Q. E. D.

§ 2. An example in the non-complete case.

We give an example of non-complete hypersurface M in Sn+1 whose normal
vectors are always orthogonal to a fixed direction and hence so is the mean
curvature vector. But in this case, we show that M is not necessarily a minimal
hypersurface.

Let φ:N->Sn be an immersion of an (n— l)-dimensional manifold N into a
great hypersphere Sn in Sn+1. Let a be the unit vector orthogonal to the hyper-
plane containing Sn in En+2 and ω the angle on the unit circle S1. Then we
define a geometric suspension φ- NχS1-^Sn+1 of φ by

φ(p, ω)=

Choosing local coordinates (xlt xz, ••• , xn^ on N, we see that

(2.1)

-Λ — )= — sin ω - φ+cos ω a.

Thus φ immerses TV7 :—{(£, ω^NxS1 \ωφodd multiple of π/2} into Sn+1. We
denote by M one of the connected components of W.

In the neighborhood of coordinates (xlt x2, •••, xn^) on N and (xlt x2, —,
xn.lt ω) on M chosen as above, let η and ξ be local unit vector fields normal
to N in Sn and M in Sn+1, respectively. Then as ξ is orthogonal to ψ(p, ω),
φ^(d/5xι) and ψ*(d/dω\ and therefore to ^(ί), α and dφ/dxτ (l^i^n—1), choos-
ing the direction of f suitably, we have

(2.2)
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in this neighborhood. In particular, we note that

(2.3) <f, f l>=0.

Now by B and A we denote the matrices of the second fundamental forms
of N and M respectively in the coordinates above. Then from

3V>~ \ =— cos ω-φ—sm co a

and from (2.2), it follows that

£>(p) ^

0

On the other hand, from (2.1), the matrices of the first fundamental forms G of
TV and G of M are related by

>c0) ON

0 1

therefore we obtain

(2.4) Tr AMP,
>β .

Thus it turns out that M is minimal if and only if N is minimal.
We now observe that as M is generated by a family of semi-great circles

of Sn+1 through the fixed pair of antipodal points ±α, the following definition
is somewhat reasonable.

DEFINITION. By a locally cylindrical hypersurface in Sn+1, we mean some
open piece of such a hypersurface as M constructed above.

§ 3. Characterizations of locally cylindrical hypersurfaces in Sn+1.

Here we come to prove the following :

LEMMA. Let M be a Riemannian manifold of dimension n^2 isometrically
immersed in Sn+1. Then M is locally cylindrical if and only if its normal direc-
tions are always orthogonal to a fixed direction.

Proof. As the necessity was shown above by (2.3), we prove the sufficiency.
The property to prove is local, so we may assume M to be orientable. Let

ξ be a unit vector field normal to M in Sn+1, which satisfies <£, α>— 0 for some
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fixed unit vector a in En+2. Here we note that the argument on M' in § 1 is
all available in this case on M because the condition <£, α>—0 is essential in
the process up to (1.6) in § 1, and further because the remove of the two vanish-
ing points ±a of Z from M, if necessary, gives no effects on the conclusion of
this lemma. Thus we may consider Z/\Z\ a geodesic vector field on M just as
in § 1 on M'. Moreover as we have

by (1.4), the geodesic γ through p^M tangent to Zp is in fact an arc of a great
circle in Sn+1. By the definition of Z, this great circle passes through ±α for
any p<=M. Thus our proof is almost accomplished. In fact if we cut the family
of such semi-great circles with its two ends ±α that intersect M, by the hyper-
plane El+i orthogonal to a through the origin, then we have a hypersurface N
in 52: Sn+1r\E%+1, from which we can reconstruct M by the same procedure as
is described in the previous section. Thus M is proved to be locally cylindrical.

Q. E. D.

§4. A results in the case n=2.

In the case n=2, eliminating the completeness of M, we can prove the fol-
lowing theorem by using some special properties of surfaces.

THEOREM II. Let M be a surface of class C2 in 53 whose mean curvature
vector is always orthogonal to a fixed direction. Then M is either a minimal sur-
face, or else a locally cylindrical surface in 53.

Proof. As usual let S3={x^E* \ \χ\=l}. Handling local properties, we may
assume M to be orientable, and further in this case a conformally immersed
Riemann surface since there always exist isothermal coordinates on surfaces of
class C2. Now just as in § 1, let ξ be a unit vector field normal to M in 53 and
H=hξ be the mean curvature vector field satisfying <//, α>—Λ<f, α>—0 for some
fixed unit vector a in E4. Let M' be the open subset of M defined by M': =
{p^M\h(p)^0} as before. If M'—φ then M is minimal and if M'—M then M
is locally cylindrical by Lemma in § 3, so let 5: —M—M' and assume both M'Φφ
and Sφφ. We claim in this case that <f, α>=0 holds not only on M', but
throughout M.

Now we denote by φ: M-»53 a conformal immersion of M and let z=x1+ixz

be an associated local isothermal coordinate on M where i= V—l. Setting 3=
(l/2)(d/dx1—i(d/dx2}\ we have for the metric induced by φ from 53,

ds2=2F\dz\2

where

Z oXi Z

by using the complex linearly extended inner product. Since <</>, 0>=1 and φ
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is of class C2, we have

(4.2) <φ, dkφy=(ψ for k=ι, 2 .
From now on we denote dψ/dxl and d2ψ/dxidxj by ψι and φijt respectively.

Let D be the connection of E4 as in § 1. Then the vector- valued second funda-
mental form B of M is given by

B(X, Y}=DxY-
k=l

where X and Y are any tangent vector fields of M. Then identifying d/dxτ

with ψ*(d/dxτ\ we define

1 2

—9τr Σ <0tj, ^*>^*

and

Choosing ξ=(l/2F)φ/\φ1/\φz=(l/iF)φAdφ/\Sψ as the unit normal vector of M,
we have

1

Now we define a quadratic differential ω=adz2 on M by

a '' =

which is well-defined since for another associated isothermal coordinate z=xl+ixz,
setting d— (1/2X9/9*!— i(d/dx2y), we can easily show that

By virtue of (4.1) and (4.2) we can compute α2, which we need later, as follows :

(4.3) a'= —
, dφy <dφ,
, dφy

1 0 0 0

O O F o
0 F 0 dF

0 0 dF (d2φ,52ψy
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On the other hand, since S is minimal and

we have

(4.4) Aι+j882=0 on S

or equivalently

(4.5) ddφ=-Fφ on S.

(The equivalence of (4.4) and (4.5) easily follows from (4.1) and (4.2) while (4.5)
is just Δφ=—2φ where Δ is the Laplace-Beltrami operator of M. cf. §5.) Ac-
cordingly, by (4.4) we obtain

(4.6) α=-2-(j8ιι-i]812) on S.

Moreover, noting that φ is real analytic on S [4, Lemma 1.1], we can show that
ω is holomorphic on S. In fact as

= -2dF(φ, 32φy-2F(dφ, d2φy=Q on S

by (4.3), (4.5) and (4.2), we see that ω2 and so ω are holomorphic on S.
Now we go back to the proof of the theorem. Take the universal covering

M of M. Then M is conformally equivalent to one of the unit 2-sphere, the
unit disk and the entire plane. As we can apply Theorem I in the compact
case, it is sufficient to consider the latter two cases, both of which are nice
since we can choose a fixed parameter ζ=uί+iuz all over M. We denote by S
the open subset of M which projects onto S. Then the coefficient function ά of
the lifted differential ω=άdζ2 of ω is holomorphic when restricted to S. We
extend this holomorphic function &\s on S to a function F on M as follows:

α(ζ) on S

0 on M—S.

We next show that F(ζ) is continuous on M. To do this we return to M and
consider a continuous function G on M given by

G(p}=—n/o2^N2

 12 (ft) for

which is well-defined since the right hand side is independent of the choice of
coordinates. In particusar, G(p}=Q on M' because (B(X, Y\ ξy=(AX, F> for
X, YϊΞTpM, and we have AZ=ΰ with Z^O on M1 for the tangent vector field
Z on M defined in § 1. On the other hand, as we have
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(2FY ^ on ^

by (4.4), the continuity of G implies that both /3n and β12 approach to zero as
p^M goes to the boundary dS. Therefore noting (4.6), we see that ω vanishes
on dS and does also ω on dS. The continuity of F(Q is thus obtained.

Now we recall the well-known theorem of Radό-Behnke-Stein-Cartan [2] : if
a continuous complex valued function / on a complex analytic manifold N is
holomorphic wherever f(z)Φΰ, z<=N, then / is holomorphic all over N.

Applying this to P(ζ), we have F(ζ) = Q on M since F(ζ) is holomorphic on
M and vanishes on the non-empty interior of M—S.

Finally we have /3n—/312Ξθ or B=0 on S which shows that each connected
component of S lies in some great hypersphere of S3 and hence the normal
vector ξ is constant on each component. In particular as <<?, α>=0 on M'', the
connectedness of M shows <?, α>=0 holds throughout M. Then the theorem
follows immediately from Lemma. Q. E. D.

Note. In the proof above, it is not essential to take the universal covering.
The argument on M is merely for the local argument on a coordinate neigh-
borhood of each point of M.

§ 5. Remarks.

1. For a submanifold Mn of Sn+p,

holds where Δ is the Laplace-Beltrami operator of M and a is any constant
unit vector in En+p+1, [1]. Thus if M is minimal, then

(5.1) J<*,α>=-n<*,α>

holds for all unit vector a in En+p+1. When p=l and M is complete, (5.1) for
one unit vector a in En+p+1 is sufficient for M to be minimal by Theorem I.

2. It may not be so easy to derive something in the case when the codi-
mension p is larger than 1 in Theorem I or II with an added condition such as
H is contained in some great sphere of Sn+p or as the normal connection is
flat. For the case of surfaces in Ez+p, see L. Jonker [3].

3. It was proved by K. Nomizu and B. Smyth [5] that a complete orient-
able locally cylindrical hypersurface in Sn+1 is a great hypersphere.
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