MANIFOLDS WITH ANTINORMAL ($f, g, u, v, \lambda)$-STRUCTURE

By Kentaro Yano and U-Hang Ki
To Professor Shigeru Ishihara on his fiftieth birthday

0 . Introduction.

It is now well known that submanifolds of codimension 2 of an almost Hermitian manifold and hypersurfaces of an almost contact metric manifold admit an (f, g, u, v, λ)-structure, that is, a set of a tensor field f of type (1,1), a Riemannian metric g, two 1 -forms u and v and a function λ satisfying

$$
\begin{align*}
& f^{2} X=-X+u(X) U+v(X) V \\
& g(f X, f Y)=g(X, Y)-u(X) u(Y)-v(X) v(Y), \tag{0.1}\\
& u(f X)=\lambda v(X), \quad v(f X)=-\lambda u(X), \\
& u(U)=1-\lambda^{2}, \quad u(V)=0, \quad v(U)=0, \quad v(V)=1-\lambda^{2}
\end{align*}
$$

for arbitrary vector fields X and Y, U and V being vector fields defined by $u(X)=g(U, X)$ and $v(X)=g(V, X)$ respectively. If the tensor defined by

$$
\begin{equation*}
S(X, Y)=N(X, Y)+(d u)(X, Y) U+(d v)(X, Y) V \tag{0.2}
\end{equation*}
$$

$N(X, Y)$ being the Nijenhuis tensor formed with f, vanishes, the (f, g, u, v, λ)structure is said to be normal.

In the sequel we assume that the dimension of the manifold denoted by M is greater than 2.

Okumura and one of the present authors [8] proved
Theorem 0.1. Let M be a complete differentiable manifold with normal (f, g, u, v, λ)-structure satisfying

$$
d u=2 \omega, \quad d v=2 \phi \omega,
$$

ω being a 2-form defined by $\omega(X, Y)=g(f X, Y)$ and ϕ a function on M. If $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then M is isometric to an even-dimensional sphere.

Received December 24, 1971.

The present authors [6] proved
Theorem 0.2. Let M be a complete differentiable manifold with normal (f, g, u, v, λ)-structure satisfying

$$
\mathcal{L}_{U} g=-2 c \lambda g \quad \text { or } \quad d v=2 c \omega,
$$

\mathcal{L}_{U} denoting the Lie derivation with respect to the vector field U and c a non-zero constant. If $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then M is isometric to an evendimensional sphere.

Okumura and one of the present authors [9] proved
Theorem 0.3. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space E be such that the connection induced in the normal bundle of M is trivial. If the (f, g, u, v, λ)-structure induced on M is normal, $\lambda\left(1-\lambda^{2}\right)$ being almost everywhere non-zero, then M is a sphere, a plane, or a product of a sphere and a plane.

A typical example of an even-dimensional differentiable manifold with a normal (f, g, u, v, λ)-structure is an even-dimensional sphere $S^{2 n}$.
$S^{n} \times S^{n}$ is also a typical example of an even-dimensional differentiable manifold which admits an (f, g, u, v, λ)-structure, but the structure is not normal. Blair, Ludden and one of the present authors [1,2] proved

Theorem 0.4. If M is a complete orientable hypersurface of $S^{2 n+1}$ of constant scalar curvature satisfying $f K+K f=0, K$ being the Weingarten tensor and $\lambda \neq$ constant, $\lambda\left(1-\lambda^{2}\right)$ being almost everywhere non-zero, then M is a natural sphere $S^{2 n}$ or $S^{n} \times S^{n}$.

The (f, g, u, v, λ)-structure induced on an orientable hypersurface of $S^{2 n+1}(1)$ with induced metric tensor $g_{j i}$ and the second fundamental tensor $k_{j i}$ satisfies

$$
\begin{equation*}
\nabla_{j} f_{i}{ }^{h}=-g_{j i} u^{h}+\delta_{j}^{h} u_{i}-k_{j i} v^{h}+k_{j}{ }^{h} v_{i}, \tag{0.3}
\end{equation*}
$$

$$
\nabla_{j} u_{i}=f_{j i}-\lambda k_{j i},
$$

$$
\begin{gather*}
\nabla_{j} v_{i}=-k_{j t} f_{\imath}^{t}+\lambda g_{j i}, \tag{0.5}\\
\nabla_{j} \lambda=k_{j i} u^{2}-v_{j}, \tag{0.6}
\end{gather*}
$$

where $f_{i}{ }^{h}, u_{i}, v_{i}$ and λ are components of f, u, v and λ respectively, ∇_{J} being the operator of covariant differentiation with respect to $g_{j i}$. Here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, 2 n\}$.

One of the present authors [4] proved
Theorem 0.5. Suppose that a complete orientable $2 n$-dimensional differentiable manifold $M^{2 n}$ is immersed in $S^{2 n+1}(1)$ as a hypersurface. If (f, g, u, v, λ)-structure induced on this hypersurface is such that $\lambda \neq$ const. and $\lambda\left(1-\lambda^{2}\right)$ is almost every-
where non-zero and if it satisfies $\nabla_{i} \lambda=c v_{i}, c$ being a non-zero constant, then c must be -1 or -2 and when $c=-1, M^{2 n}$ is isometric to $S^{2 n}(1)$ and when $c=-2, M^{2 n}$ is isometric to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

Theorem 0.6. If $M^{2 n}$ is a complete orientable hypersurface of $S^{2 n+1}(1)$ satisfying $f_{t}{ }^{h} k_{i}{ }^{t}+k_{t}{ }^{h} f_{2}{ }^{t}=0$ and $K(\gamma)=$ const., where $f_{i}{ }^{h}$ is the tensor field of type $(1,1)$ defining the (f, g, u, v, λ)-structure induced on $M^{2 n}, \lambda\left(1-\lambda^{2}\right)$ being almost everywhere non-zero, $k_{j i}$ the second fundamental tensor of the hypersurface and $K(\gamma)$ the sectional curvature of $M^{2 n}$ with respect to the section γ spanned by u^{h} and v^{h}, then $M^{2 n}$ is isometric to a natural sphere $S^{2 n}(1)$ or to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

Theorem 0.7. Assume that a complete $2 n$-dimensional differentiable manifold $M^{2 n}$ admits an (f, g, u, v, λ)-structure such that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere nonzero, and

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 f_{j i}, \quad \nabla_{i} \lambda=-v_{i}
$$

or

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 f_{j i}, \quad \nabla_{i} \lambda=-2 v_{i} .
$$

At a point at which $\lambda \neq 0$, we define a tensor field $k_{j i}$ of type $(0,2)$ by

$$
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda k_{j i}
$$

and assume that u_{i} satisfies

$$
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}+2 v_{k} k_{j i} .
$$

Then $M^{2 n}$ is isometric to $S^{2 n}(1)$ if $\nabla_{i} \lambda=-v_{i}$ and isometric to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ if $\nabla_{i} \lambda=-2 v_{i}$.

We note here that Theorems $0.3 \sim 0.6$ state properties of (f, g, u, v, λ)-structures induced on submanifolds of codimension 2 of a Euclidean space $E^{2 n+2}$ or on hypersurfaces of a sphere $S^{2 n+1}(1)$, while Theorems $0.1,0.2$ and 0.7 state intrinsic properties of (f, g, u, v, λ)-structures of manifolds themselves.

In the present paper we first of all show that for an (f, g, u, v, λ)-structure induced on a hypersurface of $S^{2 n+1}(1)$ the conditions

$$
\begin{equation*}
f_{t}{ }^{h} k_{i}{ }^{t}+k_{t}{ }^{h} f_{\imath}{ }^{t}=0 \tag{0.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{j i}{ }^{h}=2 v_{j}\left(\nabla_{i} v^{h}-\lambda \delta_{i}^{h}\right)-2 v_{i}\left(\nabla_{j} v^{h}-\lambda \delta_{j}^{h}\right) \tag{0.8}
\end{equation*}
$$

are equivalent.
Since the commutativity of f and K and the condition $S=0$ are equivalent for a hypersurface of $S^{2 n+1}(1)$ and an ($\left.f, g, u, v, \lambda\right)$-structure satisfying $S=0$ is said to be normal, we say that an (f, g, u, v, λ)-structure satisfying (0.7) or (0.8) is antinormal. (See [2], [3], [4], [5]).

We study in the present paper properties of (f, g, u, v, λ)-structures which are antinormal in this sense.

1. A necessary and sufficient condition to be $\boldsymbol{f} \boldsymbol{K}+\boldsymbol{K} \boldsymbol{f}=0$.

We prove in this section
Theorem 1.1. In an orientable hypersurface M with an (f, g, u, v, λ)-structure of $S^{2 n+1}(1)$ (or of a Sasakian manifold) such that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, the conditions (0.7) and (0.8) are equivalent.

Proof. We know that the (f, g, u, v, λ)-structure induced on an orientable hypersurface of $S^{2 n+1}(1)$ or of a Sasakian manifold satisfies $(0.3) \sim(0.6)$.

We substitute these into

$$
\begin{align*}
S_{j i}{ }^{h}= & f_{j}^{t} \nabla_{t} f_{i}^{h}-f_{\imath} \nabla_{t} f_{j}^{h}-\left(\nabla_{j} f_{\imath}^{t}-\nabla_{\imath} f_{j}^{l}\right) f_{t}^{h} \\
& +\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h} \tag{1.1}
\end{align*}
$$

and find

$$
S_{j i h}=-v_{j}\left(k_{i t} f_{h}{ }^{t}+k_{h t} f_{\imath}{ }^{t}\right)+v_{i}\left(k_{j t} f_{h}{ }^{t}+k_{h t} f_{j}{ }^{t}\right)
$$

or, using (0.5),

$$
\begin{equation*}
S_{j i h}=v_{j}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}-2 \lambda g_{i h}\right)-v_{i}\left(\nabla_{j} v_{h}+\nabla_{h} v_{j}-2 \lambda g_{j h}\right), \tag{1.2}
\end{equation*}
$$

where $S_{j i n}=S_{j i}{ }^{t} g_{t h}$.
Suppose now that (0.7) is satisfied. Then we have

$$
\begin{equation*}
k_{j t} f_{v}^{t}-k_{i l} f_{j}^{t}=0 \tag{1.3}
\end{equation*}
$$

and consequently, we have, from (0.5),

$$
\nabla_{j} v_{i}-\nabla_{i} v_{j}=0
$$

Thus (1.2) gives (0.8).
Conversely suppose that (0.8) is satisfied. Then substituting (0.3) $\sim(0.6)$ into (0.8), we find

$$
\begin{equation*}
v_{j}\left(k_{i t} f_{h}^{t}-k_{h t} f_{i}^{t}\right)-v_{i}\left(k_{j t} f_{h}^{t}-k_{h t} f_{j}^{t}\right)=0 . \tag{1.4}
\end{equation*}
$$

Transvecting v^{3} to (1.4), we find

$$
\left(1-\lambda^{2}\right)\left(k_{i t} f_{h}^{t}-k_{h t} f_{2}^{l}\right)=v_{i} \alpha_{h},
$$

where

$$
\alpha_{h}=\left(k_{j t} f_{h}{ }^{t}-k_{h t} f_{j}\right) v^{j},
$$

from which

$$
v_{i} \alpha_{h}+v_{h} \alpha_{i}=0
$$

and consequently $\alpha_{i}=0$. Thus we have

$$
\left(1-\lambda^{2}\right)\left(k_{i t} f_{h}^{t}-k_{h t} f_{\imath}{ }^{l}\right)=0,
$$

from which

$$
k_{i t} f_{n}{ }^{t}-k_{h t} f_{i}^{t}=0,
$$

and we have (0.7). Thus the theorem is proved.
Combining Theorems 0.6 and 1.1, we have
Theorem 1.2. If $M^{2 n}$ is a complete orientable hypersurface of $S^{2 n+1}(1)$ with antinormal (f, g, u, v, λ)-structure and with $K(\gamma)=$ const. $\lambda\left(1-\lambda^{2}\right)$ being almost everywhere non-zero, where $K(\gamma)$ is the sectional curvature with respect to the section r spanned by u^{h} and v^{h}, then $M^{2 n}$ is isometric to the unit sphere $S^{2 n}(1)$ or to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

2. Lemmas.

The present authors [6] proved following general formulas which an (f, g, u, v, λ)structure satisfies, that is,

$$
\begin{align*}
& S_{j i h}-\left(f_{j} f_{t i h}-f_{i}^{l} f_{t j h}\right) \\
= & -\left(f_{j}^{t} \nabla_{n} f_{t i}-f_{i}^{t} \nabla_{h} f_{t j}\right)+u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right) \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{S_{j i h}-\left(f_{j}^{t} f_{t i h}-f_{i}^{t} f_{t j h}\right)\right\} u^{j} \\
= & \left(\nabla_{i} u_{h}+\nabla_{h} u_{i}\right)-u_{i}\left(\nabla_{t} u_{h}+\nabla_{h} u_{t}\right) u^{t}+\lambda f_{\imath}^{t}\left(\nabla_{t} v_{h}+\nabla_{h} v_{t}\right) \tag{2.2}\\
& -\lambda^{2}\left(\nabla_{i} u_{h}-\nabla_{h} u_{i}\right)-\left(\lambda f_{i}^{t}+v_{i} u^{t}\right)\left(\nabla_{t} v_{h}-\nabla_{h} v_{t}\right),
\end{align*}
$$

where

$$
\begin{equation*}
f_{j i h}=\nabla_{J} f_{i n}+\nabla_{\imath} f_{h j}+\nabla_{h} f_{j i .} . \tag{2.3}
\end{equation*}
$$

We now prove a series of lemmas.
Lemma 2.1. Assume that a differentiable manifold admits an (f, g, u, v, λ)structure such that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero,

$$
\begin{equation*}
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 f_{j i} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{j i}^{h}=2 v_{j}\left(\nabla_{i} v^{h}-\lambda \delta_{i}^{h}\right)-2 v_{i}\left(\nabla_{j} v^{h}-\lambda \delta_{j}^{h}\right) \tag{2.5}
\end{equation*}
$$

At a point at which $\lambda \neq 0$, we define a tensor field $k_{j i}$ of type $(0,2)$ by

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda k_{j i} . \tag{2.6}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
\nabla_{j} u_{i}=f_{j i}-\lambda k_{j i}, \tag{2.7}\\
\nabla_{j} v_{i}=-k_{j t} f_{i}^{t}+\lambda g_{j i} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\nabla_{j} \lambda=k_{j i} u^{i}-v_{j} . \tag{2.9}
\end{equation*}
$$

Proof. Equation (2.7) follows from (2.4) and (2.6). Transvecting u^{2} to (2.7) and using $u_{i} u^{i}=1-\lambda^{2}$, we find

$$
-\lambda \nabla_{j} \lambda=\lambda v_{j}-\lambda k_{j i} u^{2}
$$

from which (2.9) follows.
Differentiating (2.4) covariantly, we find

$$
\nabla_{k} \nabla_{j} u_{i}-\nabla_{k} \nabla_{i} u_{\jmath}=2 \nabla_{k} f_{j i}
$$

from which

$$
\begin{equation*}
f_{k j i}=\nabla_{k} f_{j i}+\nabla_{\jmath} f_{i k}+\nabla_{\imath} f_{k j}=0 \tag{2.10}
\end{equation*}
$$

Thus substituting (2.5), (2.7) and (2.10) into (2.2), we obtain

$$
\begin{aligned}
& -2 v_{i}\left(\nabla_{j} v_{h}-\lambda g_{j h}\right) u^{j} \\
= & -2 \lambda k_{i h}+2 \lambda u_{i} k_{t h} u^{t}+\lambda f_{2}^{t}\left(\nabla_{t} v_{h}+\nabla_{h} v_{t}\right) \\
& -2 \lambda^{2} f_{i h}-\lambda f_{\imath}^{t}\left(\nabla_{t} v_{h}-\nabla_{h} v_{t}\right)-v_{i}\left(\nabla_{t} v_{h}-\nabla_{h} v_{t}\right) u^{t},
\end{aligned}
$$

from which

$$
\begin{aligned}
& -2 \lambda k_{i h}+2 \lambda u_{i} k_{t h} u^{t}+2 \lambda f_{\imath}^{t} \nabla_{h} v_{t}-2 \lambda^{2} f_{i h} \\
& +v_{i}\left(u^{t} \nabla_{t} v_{h}\right)-v_{i}\left(\nabla_{h} u_{t}\right) v^{t}-2 \lambda v_{i} u_{h}=0
\end{aligned}
$$

or

$$
\begin{align*}
& -2 \lambda k_{i h}+2 \lambda u_{i} k_{t h} u^{t}+2 \lambda f_{\imath}^{t} \nabla_{h} v_{t}-2 \lambda^{2} f_{i h} \\
& +v_{i}\left(u^{t} \nabla_{t} v_{h}\right)+\lambda v_{i} k_{t h} v^{t}-\lambda v_{i} u_{h}=0 \tag{2.11}
\end{align*}
$$

by virtue of (2.7).
Transvecting (2.11) with v^{i}, we find

$$
\begin{aligned}
& -2 \lambda k_{t h} v^{t}+2 \lambda^{2} u^{t} \nabla_{h} v_{t}-2 \lambda^{3} u_{h} \\
& +\left(1-\lambda^{2}\right)\left(u^{t} \nabla_{t} v_{h}\right)+\lambda\left(1-\lambda^{2}\right) k_{t h} v^{t}-\lambda\left(1-\lambda^{2}\right) u_{h}=0,
\end{aligned}
$$

from which, using $u^{t} \nabla_{h} v_{t}=-v^{t}\left(\nabla_{h} u_{t}\right)=-v^{t}\left(f_{h t}-\lambda k_{h t}\right)=\lambda u_{h}+\lambda k_{t h} v^{t}$

$$
\begin{equation*}
u^{t} \nabla_{t} v_{h}=\lambda\left(u_{h}+k_{t h} v^{l}\right) . \tag{2.12}
\end{equation*}
$$

Substituting (2.12) into (2.11), we find

$$
-2 \lambda k_{i h}+2 \lambda u_{i} k_{t h} u^{t}+2 \lambda f_{\imath}{ }^{t} \nabla_{h} v_{t}-2 \lambda^{2} f_{i h}+2 \lambda v_{i} k_{t h} v^{t}=0,
$$

or

$$
f_{\imath}^{t} \nabla_{h} v_{t}=k_{i h}+\lambda f_{i h}-u_{i} k_{t h} u^{t}-v_{i} k_{t h} v^{t},
$$

from which, transvecting with $f_{k}{ }^{i}$,

$$
\begin{aligned}
& \left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right) \nabla_{h} v_{t} \\
= & k_{h t} f_{k}^{t}+\lambda\left(-g_{k h}+u_{k} u_{h}+v_{k} v_{h}\right)-\lambda v_{k} k_{t h} u^{t}+\lambda u_{k} k_{t h} v^{t},
\end{aligned}
$$

or, using (2.7) and (2.9),

$$
\begin{aligned}
& -\nabla_{h} v_{k}-u_{k}\left(f_{h t}-\lambda k_{h t}\right) v^{t}-\lambda v_{k}\left(k_{h t} u^{t}-v_{h}\right) \\
= & k_{h t} f_{k}^{t}-\lambda g_{k h}+\lambda u_{k} u_{h}+\lambda v_{k} v_{h}-\lambda v_{k} k_{t h} u^{t}+\lambda u_{k} k_{t h} v^{t},
\end{aligned}
$$

from which,

$$
\nabla_{h} v_{k}=-k_{h t} f_{k}{ }^{t}+\lambda g_{h k}
$$

which proves (2.8).
Substituting (2.8) into (2.12), we find

$$
u^{t}\left(-k_{t s} f_{n}^{s}+\lambda g_{t h}\right)=\lambda\left(u_{h}+k_{t h} v^{t}\right),
$$

or

$$
\begin{equation*}
k_{t s} u^{t} f_{h}^{s}+\lambda k_{t h} v^{t}=0, \tag{2.13}
\end{equation*}
$$

from which, transvecting v^{h},

$$
\begin{equation*}
k_{j i} u^{j} u^{2}+k_{j i} v^{j} v^{2}=0 . \tag{2.14}
\end{equation*}
$$

Lemma 2.2. Under the same assumptions as those in Lemma 2.1, we have

$$
\begin{equation*}
k_{j t} f_{\imath}^{t}-k_{i t} f_{j}^{t}=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{k} f_{j i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j} . \tag{2.16}
\end{equation*}
$$

Proof. Substituting (2.5) and (2.10) into (2.1), we find

$$
\begin{align*}
& f_{j}^{t} \nabla_{h} f_{t i}-f_{\imath} \nabla_{h} f_{t j} \tag{2.17}\\
= & u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)-v_{j}\left(\nabla_{i} v_{h}-2 \lambda g_{i n}\right)+v_{i}\left(\nabla_{j} v_{h}-2 \lambda g_{j h}\right) .
\end{align*}
$$

We compute the first member of (2.17) as follows.

$$
\begin{aligned}
& f_{j}^{t} \nabla_{h} f_{t i}-f_{\imath}{ }^{t} \nabla_{h} f_{t j} \\
= & \nabla_{h}\left(f_{j} f_{t i}\right)+2 f_{\imath}{ }^{t} \nabla_{h} f_{j t} \\
= & \nabla_{h}\left(-g_{j i}+u_{j} u_{i}+v_{j} v_{i}\right)+2 f_{\imath} \nabla_{h} f_{j t} \\
= & \left(\nabla_{h} u_{j}\right) u_{i}+u_{j}\left(\nabla_{h} u_{i}\right)+\left(\nabla_{h} v_{j}\right) v_{i}+v_{j}\left(\nabla_{h} v_{i}\right)+2 f_{\imath} \nabla_{\nabla_{h}} f_{j t} .
\end{aligned}
$$

Thus (2.17) becomes

$$
\begin{aligned}
2 f_{\imath} \nabla_{h} f_{j t}= & u_{j}\left(\nabla_{i} u_{h}-\nabla_{h} u_{i}\right)-u_{i}\left(\nabla_{j} u_{h}+\nabla_{h} u_{j}\right) \\
& -v_{j}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}-2 \lambda g_{i h}\right)+v_{i}\left(\nabla_{j} v_{h}-\nabla_{h} v_{j}-2 \lambda g_{j h}\right) .
\end{aligned}
$$

Substituting (2.7) and (2.8) into this, we find

$$
\begin{aligned}
2 f_{\imath} \nabla_{h} f_{j t}= & 2 u_{j} f_{i h}+2 \lambda u_{i} k_{j h}-v_{j}\left(-k_{i t} f_{h}^{t}-k_{h l} f_{\imath}\right) \\
& +v_{i}\left(-k_{j t} f_{h}^{t}+k_{h t} f_{j}^{t}-2 \lambda g_{j h}\right),
\end{aligned}
$$

from which, transvecting $f_{k}{ }^{i}$, we obtain

$$
\begin{align*}
& 2\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right) \nabla_{h} f_{j t} \\
= & 2 u_{j}\left(-g_{k h}+u_{k} u_{h}+v_{k} v_{h}\right)+2 \lambda^{2} v_{k} k_{j h} \tag{2.18}\\
& +v_{j}\left\{k_{t s} f_{k}^{t} f_{h}^{s}+k_{h t}\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right)\right\}-\lambda u_{k}\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}-2 \lambda g_{j h}\right) .
\end{align*}
$$

We compute the first member of (2.18) as follows:

$$
\begin{aligned}
& 2\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right) \nabla_{h} f_{j t} \\
= & -2 \nabla_{h} f_{j k}+2 u_{k}\left(\nabla_{h}\left(f_{j t} u^{t}\right)-f_{j}^{t}\left(\nabla_{h} u_{t}\right)\right\}+2 v_{k}\left\{\nabla_{h}\left(f_{j t} v^{t}\right)-f_{j}^{t}\left(\nabla_{h} v_{t}\right)\right\} \\
= & -2 \nabla_{h} f_{j k}+2 u_{k}\left\{\left(\nabla_{h} \lambda\right) v_{j}+\lambda\left(\nabla_{h} v_{j}\right)-f_{j}^{t}\left(\nabla_{h} u_{t}\right)\right\}-2 v_{k}\left\{\left(\nabla_{h} \lambda\right) u_{j}+\lambda\left(\nabla_{h} u_{j}\right)+f_{j}^{t}\left(\nabla_{h} v_{t}\right)\right\},
\end{aligned}
$$

or, using (2.7), (2.8) and (2.9),

$$
\begin{aligned}
& 2\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right) \nabla_{h} f_{j t} \\
= & -2 \nabla_{h} f_{j k}+2 u_{k}\left\{\left(k_{h t} u^{t}-v_{h}\right) v_{j}+\lambda\left(-k_{h t} f_{j}^{t}+\lambda g_{h j}\right)\right. \\
& \left.-\left(g_{j h}-u_{j} u_{h}-v_{j} v_{h}-\lambda k_{h t} f_{j}^{t}\right)\right\} \\
& -2 v_{k}\left(k_{h t} u^{t}-v_{h}\right) u_{j}+\lambda\left(f_{h j}-\lambda k_{h j}\right) \\
& \left.+\left(k_{h j}-k_{h t} u^{t} u_{j}-k_{h t} v^{t} v_{j}+\lambda f_{j h}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & -2 \nabla_{h} f_{j k}+2 u_{k} v_{j} k_{h t} u^{t}-2\left(1-\lambda^{2}\right) u_{k} g_{j h}+2 u_{k} u_{j} u_{h} \\
& +2 v_{k} u_{j} v_{h}-2\left(1-\lambda^{2}\right) v_{k} k_{h j}+2 v_{k} v_{j} k_{h t} v^{t} .
\end{aligned}
$$

Thus (2.18) becomes

$$
\begin{aligned}
& -2 \nabla_{h} f_{j k}+2 u_{k} v_{j} k_{h t} u^{t}-2\left(1-\lambda^{2}\right) u_{k} g_{j h}+2 u_{k} u_{j} u_{h} \\
& +2 v_{k} u_{j} v_{h}-2\left(1-\lambda^{2}\right) v_{k} k_{h j}+2 v_{k} v_{j} k_{h t} v^{t} \\
= & 2 u_{j}\left(-g_{k h}+u_{k} u_{h}+v_{k} v_{h}\right)+2 \lambda^{2} v_{k} k_{j h} \\
& +v_{j}\left\{k_{t s} f_{k} f_{f_{h}}{ }^{s}+k_{h t}\left(-\partial_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right)\right\} \\
& -\lambda u_{k}\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}-2 \lambda g_{j h}\right),
\end{aligned}
$$

or

$$
\begin{align*}
2 \nabla_{h} f_{j k}= & 2 u_{j} g_{k h}-2 u_{k} g_{j h}-2 v_{k} k_{h j}+v_{j} k_{h k} \\
& +u_{k} v_{j} k_{h t} u^{t}+v_{k} v_{j} k_{h t} v^{t} \tag{2.19}\\
& -v_{j} k_{t s} f_{k}^{t} f_{h}^{s}+\lambda u_{k}\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}\right) .
\end{align*}
$$

Taking the skew-symmetric part of (2.19) with respect to h and k and using $\nabla_{h} f_{j k}-\nabla_{k} f_{j h}=-\nabla_{j} f_{k h}$, we find

$$
\begin{align*}
-2 V_{J} f_{k h}= & -2\left(u_{k} g_{j h}-u_{h} g_{j k}\right)-2\left(v_{k} k_{h j}-v_{h} k_{k j}\right)+v_{j}\left(u_{k} k_{h t} u^{t}-u_{h} k_{k t} u^{t}\right. \tag{2.20}\\
& \left.+v_{k} k_{h t} v^{t}-v_{h} k_{k t} v^{t}\right)+\lambda u_{k}\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}\right)-\lambda u_{h}\left(k_{k t} f_{j}^{t}-k_{j t} f_{k}^{t}\right) .
\end{align*}
$$

Now, transvecting u^{3} to (2.19) and taking account of (2.13), we find

$$
\begin{equation*}
u^{t} \nabla_{j} f_{t h}=\left(1-\lambda^{2}\right) g_{j h}-u_{j} u_{h}-v_{h} k_{j t} u^{t} . \tag{2.21}
\end{equation*}
$$

On the other hand, transvecting u^{k} to (2.20) and taking account of (2.13), we find

$$
\begin{align*}
-2 u^{t} \nabla_{J} f_{t h}= & -2\left(1-\lambda^{2}\right) g_{j h}+2 u_{j} u_{h}+2 v_{h} k_{j t} u^{t} \\
& \left.+v_{j}\left(1-\lambda^{2}\right) k_{h t} u^{t}-u_{h} k_{t s} u^{t} u^{s}-v_{h} k_{t s} u^{t} v^{s}\right\} \tag{2.22}\\
& +\lambda\left(1-\lambda^{2}\right)\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}\right) .
\end{align*}
$$

Adding twice of (2.21) and (2.22), we find

$$
\begin{equation*}
\left.v_{j}\left(1-\lambda^{2}\right) k_{h t} u^{t}-u_{h} k_{t s} u^{t} u^{s}-v_{h} k_{t s} u^{t} v^{s}\right\}+\lambda\left(1-\lambda^{2}\right)\left(k_{h t} f_{j}^{t}-k_{j t} f_{h}^{t}\right)=0, \tag{2.23}
\end{equation*}
$$

from which, taking the symmetric part,

$$
\begin{aligned}
& v_{j}\left\{\left(1-\lambda^{2}\right) k_{h t} u^{t}-u_{h} k_{t s} u^{t} u^{s}-v_{h} k_{t s} u^{t} v^{s}\right\} \\
& \quad+v_{h}\left\{\left(1-\lambda^{2}\right) k_{j t} u^{t}-u_{j} k_{t s} u^{t} u^{s}-v_{j} k_{t s} u^{t} v^{s}\right\}=0,
\end{aligned}
$$

Transvecting this with v^{j}, we find

$$
\begin{equation*}
\left(1-\lambda^{2}\right) k_{h t} u^{t}=k_{t s} u^{t} u^{s} u_{h}+k_{t s} u^{t} v^{s} v_{h} . \tag{2.24}
\end{equation*}
$$

Substituting (2.24) into (2.23), we find

$$
\begin{equation*}
k_{j t} f_{n}^{t}-k_{h t} f_{j}^{t}=0, \tag{2.25}
\end{equation*}
$$

which proves (2.15).
From (2.13), we have

$$
\left(1-\lambda^{2}\right) k_{t s} u^{t} f_{h}^{s}+\lambda\left(1-\lambda^{2}\right) k_{t h} v^{t}=0 .
$$

Substituting (2.24) into this equation, we find

$$
\lambda k_{t s} u^{t} u^{s} v_{h}-\lambda k_{t s} u^{t} v^{s} u_{h}+\lambda\left(1-\lambda^{2}\right) k_{t h} v^{t}=0
$$

from which,

$$
\begin{equation*}
\left(1-\lambda^{2}\right) k_{j t} v^{t}=k_{t s} u^{t} v^{s} u_{j}-k_{t s} u^{t} u^{s} v_{j} \tag{2.26}
\end{equation*}
$$

Substituting (2.24), (2.25) and (2.26) into (2.20) $\times\left(1-\lambda^{2}\right)$, we find

$$
2\left(1-\lambda^{2}\right) \nabla_{j} f_{k h}=2\left(1-\lambda^{2}\right)\left(u_{k} g_{j h}-u_{h} g_{j k}\right)+2\left(1-\lambda^{2}\right)\left(v_{k} k_{h j}-v_{h} k_{k j}\right)
$$

which proves (2.16).
Lemma 2.3. Under the same assumptions as those in Lemma 2.1, we have, at a point at which $1-\lambda^{2} \neq 0$,

$$
\begin{align*}
k_{t}{ }^{\prime} & =0 \tag{2.27}\\
k_{j t} u^{t} & =\beta v_{j} \tag{2.28}\\
k_{j t} v^{t} & =\beta u_{j} \tag{2.29}
\end{align*}
$$

where

$$
\beta=\frac{1}{1-\lambda^{2}} k_{t s} u^{t} v^{s} .
$$

Proof. Differentiating (2.9) covariantly and using (2.7) and (2.8), we find

$$
\nabla_{k} \nabla_{j} \lambda=\left(\nabla_{k} k_{j i}\right) u^{i}+k_{\jmath}\left(f_{k t}-\lambda k_{k t}\right)+k_{k t} f_{j}^{t}-\lambda g_{k \jmath}
$$

from which,

$$
\begin{equation*}
\left(\nabla_{k} k_{j i}-\nabla_{j} k_{k i}\right) u^{i}=0 \tag{2.31}
\end{equation*}
$$

From (2.24) and (2.26), we have

$$
\begin{equation*}
k_{j t} u^{t}=\alpha u_{j}+\beta v_{j} \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{j t} v^{t}=\beta u_{j}-\alpha v_{j} \tag{2.33}
\end{equation*}
$$

respectively, where

$$
\alpha=\frac{1}{1-\lambda^{2}} k_{t s} u^{t} u^{s} .
$$

Differentiating (2.32) covariantly and using (2.7) and (2.8), we find

$$
\begin{aligned}
& \left(\nabla_{k} k_{j t}\right) u^{t}+k_{j}^{t}\left(f_{k t}-\lambda k_{k t}\right) \\
= & \left(\nabla_{k} \alpha\right) u_{j}+\alpha\left(f_{k j}-\lambda k_{k j}\right)+\left(\nabla_{k} \beta\right) v_{j}+\beta\left(-k_{k t} f_{j}^{t}+\lambda g_{k j}\right),
\end{aligned}
$$

from which, taking the skew-symmetric part and using (2.31),

$$
\begin{equation*}
\left(\nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right) u_{k}+\left(\nabla_{k} \beta\right) v_{j}-\left(\nabla_{j} \beta\right) v_{k}+2 \alpha f_{k_{j}}=0 . \tag{2.34}
\end{equation*}
$$

Transvecting u^{j} to (2.34), we see that $\nabla_{k} \alpha$ is written in the form

$$
\nabla_{k} \alpha=a u_{k}+b v_{k},
$$

and transvecting v^{j} to (2.34), we see that $\nabla_{k} \beta$ is written in the form

$$
\nabla_{k} \beta=c u_{k}+d v_{k} .
$$

Substituting these into (2.34), we have

$$
(b-c)\left(v_{k} u_{j}-u_{k} v_{j}\right)+2 \alpha f_{k j}=0,
$$

from which, we have $\alpha=0$. This proves (2.28) and (2.29).
Transvecting $f_{k}{ }^{h}$ to (2.25), we find

$$
k_{j t}\left(-\delta_{k}^{t}+u_{k} u^{t}+v_{k} v^{t}\right)-k_{t s} f_{j}^{t} f_{k}^{s}=0,
$$

or using (2.28) and (2.29),

$$
-k_{j k}+\beta\left(u_{j} v_{k}+u_{k} v_{j}\right)-k_{t s} f_{j}^{t} f_{k}^{s}=0
$$

from which, transvecting $g^{j k}$,

$$
-k_{t}^{t}-k_{t s}\left(g^{t_{s}^{s}}-u^{t} u^{s}-v^{t} v^{s}\right)=0,
$$

that is, $k_{t}{ }^{t}=0$ and (2.27) is proved.
Finally, from (2.9) and (2.28), we have

$$
\nabla_{j} \lambda=k_{j t} u^{t}-v_{j}=(\beta-1) v_{j}
$$

which proves (2.30).

3. Theorems on ($f, g, u, v, \lambda)$-structures.

In this section we first prove
Theorem 3.1. Suppose that a complete differentiable manifold M admits an (f, g, u, v, λ)-structure such that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero,

$$
\begin{equation*}
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 f_{j i} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{j i}^{h}=2 v_{j}\left(\nabla_{i} v^{h}-\lambda \delta_{i}^{h}\right)-2 v_{i}\left(\nabla_{j} v^{h}-\lambda \delta_{j}^{h}\right) \tag{3.2}
\end{equation*}
$$

At a point at which $\lambda \neq 0$, we define a tensor field $k_{j i}$ of type $(0,2)$ by

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda k_{j i} . \tag{3.3}
\end{equation*}
$$

If u^{h} and $k_{j i}$ satisfy

$$
\begin{equation*}
u^{j} \nabla_{j} u_{i}=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{k} k_{j i}-\nabla_{j} k_{k \imath}=0 \tag{3.5}
\end{equation*}
$$

then the manifold is isometric to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.
Proof. Since the assumptions of Lemma 2.1 are satisfied, the conclusions of Lemmas 2.1, 2.2 and 2.3 are all valid.

From (2.7), (2.28) and (3.4), we have

$$
0=u^{j} \nabla_{j} u_{i}=-\lambda v_{i}-\lambda \beta v_{i}=-\lambda(1+\beta) v_{i}
$$

from which $\beta=-1$. Thus, (2.28), (2.29) and (2.30) become respectively

$$
\begin{gather*}
k_{j t} u^{t}=-v_{j}, \tag{3.6}\\
k_{j t} v^{t}=-u_{j}, \tag{3.7}\\
\nabla_{j} \lambda=-2 v_{j} . \tag{3.8}
\end{gather*}
$$

Differentiating (3.7) covariantly and substituting (2.7) and (2.8), we find

$$
\left(\nabla_{k} k_{j}^{t}\right) v_{t}+k_{\jmath}^{t}\left(-k_{k s} f_{t}^{s}+\lambda g_{k t}\right)=\lambda k_{k j}-f_{k j}
$$

from which, taking the skew-symmetric part and using (3.5),

$$
k_{\jmath}{ }^{t} k_{k}{ }^{s} f_{t s}=f_{k j}
$$

or, using (2.15),

$$
\begin{equation*}
k_{\jmath}{ }^{t} k_{t}{ }^{s} f_{k s}=f_{k_{j}} . \tag{3.9}
\end{equation*}
$$

Transvecting (3.9) with $f_{2}{ }^{k}$, we find

$$
k_{j}{ }^{t} k_{t}{ }^{s}\left(-g_{i s}+u_{i} u_{s}+v_{i} v_{s}\right)=-g_{j i}+u_{j} u_{i}+v_{j} v_{i},
$$

or, using (3.6) and (3.7),
(3.10)

$$
k_{j}{ }^{t} k_{t i}=g_{j i} .
$$

Differentiating (3.10) covariantly, we have

$$
\begin{equation*}
\left(\nabla_{k} k_{j}{ }^{t}\right) k_{t i}+k_{j}^{t}\left(\nabla_{k} k_{t i}\right)=0 . \tag{3.11}
\end{equation*}
$$

Since $\nabla_{k} k_{j i}$ is symmetric in all indices, (3.11) can be written as

$$
\begin{equation*}
k_{j}{ }^{t}\left(\nabla_{i} k_{t k}\right)+k_{i}{ }^{t}\left(\nabla_{j} k_{t k}\right)=0, \tag{3.12}
\end{equation*}
$$

which shows that $k_{j}{ }^{t}\left(\nabla_{k} k_{t i}\right)$ is skew-symmetric in j and k.
Now, from (3.11), we have, taking the skew-symmetric part with respect to k and j,

$$
k_{j}{ }^{t}\left(\nabla_{k} k_{t i}\right)-k_{k}{ }^{t}\left(\nabla_{j} k_{t i}\right)=0,
$$

or

$$
\begin{equation*}
k_{j}{ }^{t}\left(\nabla_{k} k_{t i}\right)=0, \tag{3.13}
\end{equation*}
$$

from which, using (3.10),

$$
\begin{equation*}
\nabla_{k} k_{t i}=0 . \tag{3.14}
\end{equation*}
$$

On the other hand, differentiating (2.7) covariantly and using (2.15), (3.8) and (3.14), we obtain

$$
\begin{equation*}
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}+2 v_{k} k_{j i} . \tag{3.15}
\end{equation*}
$$

Thus the theorem follows from Theorem 0.7.
Theorem 3.2. Assume that a complete differentiable manifold M admits an (f, g, u, v, λ)-structure such that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, and (3.1), (3.2) hold. At a point at which $\lambda \neq 0$, we define $k_{j i}$ by (3.3).

If the sectional curvature $K(\gamma)$ with respect to the section γ spanned by u^{h} and v^{h} is constant and

$$
\begin{equation*}
\nabla_{k} k_{j i}-\nabla_{j} k_{k i}=0, \tag{3.16}
\end{equation*}
$$

then the manifold is isometric to a sphere $S^{2 n}(1)$ or to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.
Proof. In this case also, the conclusions of Lemmas 2.1,2.2 and 2.3 are all valid.

Differentiating (2.7) covariantly and using (2.9), (2.15) and (2.28), we find

$$
\begin{equation*}
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}+(1-\beta) v_{k} k_{j i}-\lambda \nabla_{k} k_{j i}, \tag{3.17}
\end{equation*}
$$

from which, using the Ricci identity,

$$
-K_{k j i}{ }^{h} u_{h}=g_{k i} u_{j}-g_{j i} u_{k}+k_{k i} v_{j}-k_{j i} v_{k}+(1-\beta)\left(v_{k} k_{j i}-v_{j} k_{k i}\right),
$$

$K_{k j i}{ }^{h}$ being the curvature tensor and consequently

$$
\begin{equation*}
K(\gamma)=-\frac{K_{k j i i} v^{k} u^{j} v^{i} u^{h}}{\left(1-\lambda^{2}\right)^{2}}=1-\beta^{2} . \tag{3.18}
\end{equation*}
$$

Since we have assumed that $K(\gamma)$ is constant, β must be also constant. From (2.29), we have

$$
k_{j}{ }^{t} v_{t}=\beta u_{j} .
$$

Differentiating this covariantly and using (2.7) and (2.8), we find

$$
\left(\nabla_{k} k_{j}{ }^{t}\right) v_{t}+k_{j}^{t}\left(-k_{k s} f_{t}^{s}+\lambda g_{k t}\right)=\beta\left(f_{k j}-\lambda k_{k j}\right),
$$

from which, taking the skew-symmetric part and using (3.16),

$$
k_{j} k_{k s} f_{t}^{s}=-\beta f_{k j}
$$

or, using (2.16),

$$
\begin{equation*}
k_{j}{ }^{t} k_{t}{ }^{s} f_{k s}=-\beta f_{k j} . \tag{3.19}
\end{equation*}
$$

Transvecting u^{j} to (3.19) and using (2.28) and (2.29), we find

$$
\lambda \beta^{2} v_{k}=-\lambda \beta v_{k},
$$

from which, using $\beta=$ const.

$$
\begin{equation*}
\beta=0 \quad \text { or } \quad \beta=-1 \tag{3.20}
\end{equation*}
$$

Transvecting f_{i}^{k} to (3.19), we find

$$
k_{j}{ }^{t} k_{t}^{s}\left(-g_{i s}+u_{i} u_{s}+v_{i} v_{s}\right)=-\beta\left(-g_{j i}+u_{j} u_{i}+v_{j} v_{i}\right),
$$

or, using (2.28) and (2.29)

$$
-k_{j}{ }^{t} k_{t i}+\beta^{2}\left(u_{j} u_{i}+v_{j} v_{i}\right)=\beta\left(g_{j i}-u_{j} u_{i}-v_{j} v_{i}\right),
$$

that is,

$$
\begin{equation*}
k_{j}{ }^{t} k_{t i}=-\beta g_{j i}+\beta(\beta+1)\left(u_{j} u_{i}+v_{j} v_{i}\right) . \tag{3.21}
\end{equation*}
$$

Thus, if $\beta=0$, then $k_{j i}=0$ and in this case we have, from (2.30),

$$
\begin{equation*}
\nabla_{j} \lambda=-v_{i} \tag{3.22}
\end{equation*}
$$

and (3.17) becomes

$$
\begin{equation*}
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j} . \tag{3.23}
\end{equation*}
$$

If $\beta=-1$, then

$$
\begin{equation*}
k_{j}{ }^{t} k_{l i}=g_{j i}, \tag{3.24}
\end{equation*}
$$

and in this case we have, from (2.30)

$$
\begin{equation*}
\nabla_{j} \lambda=-2 v_{j} . \tag{3.25}
\end{equation*}
$$

In the proof of Theorem 3.1, we found that (3.16) and (3.24) imply $\nabla_{k} k_{j i}=0$. Thus (3.17) gives

$$
\begin{equation*}
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}+2 v_{k} k_{j i} . \tag{3.26}
\end{equation*}
$$

Equations (3.22), (3.23), (3.25), (3.26) and Theorem 0.7 prove the theorem.

Bibliography

[1] Blair, D. E., G.D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdai Math. Sem. Rep. 22 (1970), 188-198.
[2] Blair, D.E., G.D. Ludden, and K. Yano, Hypersurfaces of an odd-dimensional sphere. J. Diff. Geom. 5 (1971), 479-486.
[3] Blair, D.E., G.D. Ludden, and K. Yano, On the intrinsic geometry of $S^{n} \times S^{n}$. Math. Ann. 194 (1971), 68-77.
[4] Yano, K., Differential geometry of $S^{n} \times S^{n}$. To appear in J. Diff. Geom.
[5] Yano, K., and S. Ishihara, Note on hypersurfaces of an odd-dimensional sphere. Kōdai Math. Sem. Rep. 24 (1972), 422-429.
[6] Yano, K., and U-Hang Ki, On quasi-normal (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 24 (1972), 106-120.
[7] Yano, K., and U-Hang Ki, Submanifolds of codimension 2 in an even-dimensional Euclidean space. Kōdai Math. Sem. Rep. 24 (1972), 315-330.
[8] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.
[9] Yano, K., and M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an even-dimensional Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172-197.

Tokyo Institute of Technology, and Kyungpook University.

