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0. Introduction.

It is now well known that submanifolds of codimension 2 of an almost
Hermitian manifold and hypersurfaces of an almost contact metric manifold admit
an (/, g, u, v, ̂ -structure, that is, a set of a tensor field / of type (1, 1), a Rieman-
nian metric g, two 1-forms u and v and a function λ satisfying

= -X+u(X) U+v(X) Vy

g(fX, /Γ) = g(X, Y) - u(X)u( Y} - v(X}v( Γ),
(0.1)

u(fX) =λv(X), v(fX) = -λu(X),

u(U)=l-λz, u(V)=0, 0(Z7)=0, v(V)=l-λ*

for arbitrary vector fields X and Y, U and V being vector fields defined by
u(X)=g(U,X) and v(X)=g(V, X) respectively. If the tensor defined by

(0.2) S(X, Y)=N(X, Y) + (du)(X, Y)U+(dυ)(X, Y)V,

N(X, Y) being the Nijenhuis tensor formed with /, vanishes, the (/, g, u, v, λ)-
structure is said to be normal.

In the sequel we assume that the dimension of the manifold denoted by M is
greater than 2.

Okumura and one of the present authors [8] proved

THEOREM 0. 1. Let M be a complete differentiate manifold with normal
(/, g, u, v, X) -structure satisfying

ω being a 2-form defined by ω(X, Y) = g(fX, Y) and φ a function on M. If
λ(l—λ2) is almost everywhere non-zero, then M is isometric to an even-dimensional
sphere.
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The present authors [6] proved

THEOREM 0.2. Let M be a complete differentiable manifold with normal
(/, g, u, v, λ}-structure satisfying

XΌQ = — 2cλg or dv=2cω,

Xu denoting the Lie derivation with respect to the vector field U and c a non-zero
constant. If λ(l—λ2) is almost everywhere non-zero, then M is isometric to an even-
dimensional sphere.

Okumura and one of the present authors [9] proved

THEOREM 0.3. Let a complete differentiable submanifold M of codimension 2
of an even-dimensional Euclidean space E be such that the connection induced in
the normal bundle of M is trivial. If the (/, g, u, v, λ}-structure induced on M is
normal, λ(l—Λ2) being almost everywhere non-zero, then M is a sphere, a plane, or
a product of a sphere and a plane.

A typical example of an even-dimensional differentiable manifold with a
normal (/, g, u, v, ̂ -structure is an even-dimensional sphere S2n.

SnxSn is also a typical example of an even-dimensional differentiable mani-
fold which admits an (/, g, u, v, λ)-structure, but the structure is not normal. Blair,
Ludden and one of the present authors [1, 2] proved

THEOREM 0.4. If M is a complete orientable hypersurface of S2n+1 of con-
stant scalar curvature satisfying fK+Kf—Q, K being the Weingarten tensor and
Inconstant, λ(l—λ2) being almost everywhere non-zero, then M is a natural sphere
S2n or SnxSn.

The (/, g, u, v, ̂ -structure induced on an orientable hypersurface of S2rm(l)
with induced metric tensor ## and the second fundamental tensor kji satisfies

(0.3) Pjfih=

(0.4)

(0.5)

(0.6) Fjλ^kjiU^-Vj,

where fτ

h, Ui, Vi and λ are components of /, u, v and λ respectively, V3 being the
operator of covariant differentiation with respect to g^. Here and in the sequel,
the indices h,i,jtk,-~ run over the range {1,2, •••, 2n}.

One of the present authors [4] proved

THEOREM 0. 5. Suppose that a complete orientable 2n--dimensional differentiable
manifold M2n is immersed in S2rl+1(l) as a hypersurface. If (f, g, u, v, λ)-structure
induced on this hypersurface is such that λ^const, and Λ( l—λ 2 ) is almost every-
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where non-zero and if it satisfies Fiλ=cvt, c being a non-zero constant, then c must
be -1 or -2 and when c=-l, M2n is isometric to S2n(l) and when c=-2, M2n

is isometric to Sw(l/VT)xSn(l/V~2~).

THEOREM 0. 6. If M2n is a complete orientable hypersurface of S2w+1(l) satisfying
/W-f feVt^O and K(γ)= const., where f f is the tensor field of type (1,1) defining

the (/, g, u, v, ̂ -structure induced on M2n, λ(l-λ2) being almost everywhere non-zero,
kjί the second fundamental tensor of the hypersurface and K(γ} the sectional curva-
ture of M2n with respect to the section γ spanned by uh and vh, then M2n is
isometric to a natural sphere S2n(l) or to Sn(l/V~2~)χSw(l/VT).

THEOREM 0.7. Assume that a complete 2n-dimensional differentiate manifold
M2n admits an (f,g,u,v,λ}-structure such that λ(l—λ2) is almost everywhere non-
zero, and

PjUi - ΓiUj = 2fji, Vά =-Vi

or

PjUi - PiUj = 2fji, Viλ = - 2vi.

At a point at which Λ^O, we define a tensor field kji of type (0,2) by

and assume that Ui satisfies

VitfjUi = - gkjUi + giciUj - kkjVi + kkiVj + 2vkkji.

Then M2n is isometric to S2n(l) if P<J= -vt and isometric to Sw(l/V~2)xSw(l/V 2Γ)
if Pa=-2vt.

We note here that Theorems 0. 3-^0. 6 state properties of (/, g, u, v, ̂ -struc-
tures induced on submanifolds of codimension 2 of a Euclidean space E2n+z or on
hypersurfaces of a sphere S2/lfl(l), while Theorems 0.1,0.2 and 0.7 state intrinsic
properties of (/, g, u, v, Λ)-structures of manifolds themselves.

In the present paper we first of all show that for an (/, g, u, v, Λ) -structure
induced on a hypersurface of S2w+1(l) the conditions

(0.7)

and

(0. 8) Sji

h=2vj(Fiv
h-λdf)-2vί(Fjv

h-λd}}

are equivalent.
Since the commutativity of / and K and the condition S=0 are equivalent

for a hypersurface of S2n+1(l) and an (/, g, u, v, ̂ -structure satisfying S=0 is said
to be normal, we say that an (/, g, u, v, ̂ -structure satisfying (0.7) or (0.8) is
antinormaL (See [2], [3], [4], [5]).
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We study in the present paper properties of (/, g, u, v, X)-structures which are
antinormal in this sense.

1. A necessary and sufficient condition to be fK+Kf=Q.

We prove in this section

THEOREM 1.1. In an orient able hyper surf ace M with an (/, g, u, v, λ)- structure
of S2rι+1(l) (or of a Sasakian manifold) such that 2(1— λ2) is almost everywhere
non-zero, the conditions (0. 7) and (0. 8) are equivalent.

Proof. We know that the (/, g, u, v, ̂ -structure induced on an orientable
hypersurface of S2w+1(l) or of a Sasakian manifold satisfies (0. 3)~(0. 6).

We substitute these into

and find

Sjih = - v^kufh1 + khtffi + Vi(kjtfιί + kh

or, using (0.5),

(1. 2) Sjth

where Sjίh

Suppose now that (0.7) is satisfied. Then we have

(1.3) **/.'-*«//=<)

and consequently, we have, from (0. 5),

Thus (1. 2) gives (0. 8).
Conversely suppose that (0.8) is satisfied. Then substituting (0.3)^(0.6) into

(0. 8), we find

(1. 4)

Transvecting v3 to (1.4), we find

(l-^)(*«

where
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from which

and consequently «i=0. Thus we have

from which

and we have (0. 7). Thus the theorem is proved.

Combining Theorems 0. 6 and 1. 1, we have

THEOREM 1. 2. If M2n is a complete orientable hypersurface of S2n+1(T) with
antinormal (/, g, u, v, "^-structure and with K(γ)= const. λ(l—λ2) being almost every-
where non-zero , where K(γ) is the sectional curvature with respect to the section
γ spanned by uh and vh, then M2n is isometric to the unit sphere S2n(l) or to

2. Lemmas.

The present authors [6] proved following general formulas which an (/, g, u, vy λ)-
structure satisfies, that is,

Sjih — (ffftih —fiftjh)

(2.1)
= - (ffVhfa -f

and

(2. 2)

- (λf*

where

(2. 3)

We now prove a series of lemmas.

LEMMA 2. 1. Assume that a differentiable manifold admits an (/, g, u, v, λ)-
structure such that λ(l — λ2) is almost everywhere non-zero,

(2.4) VjUi-PiUj^Zfji

and
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(2. 5) Sji

h=2vj(Fiv
h-λdrί)-2vi(Fjv

h-λd^

At a point at which Λ=^0, we define a tensor field kji of type (0,2) by

(2.6)

Then we have

(2.7)

(2.8)

and

(2.9)

. Equation (2. 7) follows from (2. 4) and (2. 6). Transvecting u1 to (2. 7)
and using #i«*=l— Λ2, we find

from which (2.9) follows.
Differentiating (2. 4) covariantly, we find

from which

(2. 10)

Thus substituting (2. 5), (2. 7) and (2. 10) into (2. 2), we obtain

= - 2λkίh + 2λuikthu
t

- 2λ2fih - λfΐ(VtVh - Ph

from which

- 2λkih + 2λuikthu
t

+ Vi(uΨtVh) - VitfhUtW - 2λViUh = 0,

or

- 2λkih + 2λuikthu
t

(2. 11)
+ Vi(uΨtVh) + λVikthV1 - λViUh = 0,

by virtue of (2. 7).
Transvecting (2.11) with v\ we find
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t - 2λ3uh

λ*}kthυ
l - λ(l - λ*)uh = 0,

from which, using uΨhVt=-vt(VhUt}=-vt(fht-λkht}=λUh+λkthVt

(2.12) uΨtvh=λ(uh+kthv
t).

Substituting (2. 12) into (2. 11), we find

- 2λkih + 2λuikthu
t + 2λflΨhvt - 2λ%h + 2λviktnvt = 0,

or

fiΨhVt = kih + λfih -

from which, transvecting with /**,

— Okh + UkUh + VkVh) -

or, using (2. 7) and (2. 9),

- PhVk - Uk(fM - λkhtW - ΪV^khtU1 - V

= khtflf - tykh + λUkUh + ̂ fc^A - λVukthU1

from which,

which proves (2.8).

Substituting (2. 8) into (2. 12), we find

or

(2.13) kuu'fn,8 +&»!>' =0,

from which, transvecting t;Λ,

(2. 14) Ayi^M* + kjiV'V* = 0.

LEMMA 2. 2. Under the same assumptions as those in Lemma 2. 1, we have

(2.15) **/t'-*«Λ'=0

(2. 16)
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Proof. Substituting (2. 5) and (2. 10) into (2. 1), we find

vA J-ί;

We compute the first member of (2. 17) as follows.

= PΛ( -

= (PhUj

Thus (2.17) becomes

Substituting (2. 7) and (2. 8) into this, we find

ZfSPhfjt = Zu3fih + 2λUikjh - Vj( - ku f if -

+ Vi( - kjtfh1 + kntff -

from which, transvecting /Λ*, we obtain

(2. 18)

+ Vjiktsftfh + khi( -δi+ uku* + vkv
1}} - λu^khtf

We compute the first member of (2. 18) as follows:

^

λ(Γhvj)-fJ

t(Γhu^

or, using (2. 7), (2. 8) and (2. 9),

- 2vk{(khtu
t - Vh)Uj + λ(fhj - λkh

Λ- (khj - khtu'uj - khttfv
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= - 2Phfjk + 2ukvjkhtu
t - 2(1 -

+ 2vkUjVh - 2(1 -

Thus (2. 18) becomes

- 2Vhfjk + 2^ιkvjkht^ιt - 2(1 -

+ 2vkUjVh - 2(1 - λ

— 2uj( — gkh + ukuh

+ Vjiktsf^fh8 + kht( -δί

- λuάkhtfS - kjtfh - 2λgjΊl} ,

or

2Fhfjk = 2ujgkh - 2ukgjh - 2vkkhj

(2. 19)

Taking the skew-symmetric part of (2. 19) with respect to h and k and using
=-Vjfkh9 we find

- 2Pjfkh = - 2(ukgjh - UhQjk) - 2(vkkhj -
(2. 20)

Now, transvecting u3 to (2. 19) and taking account of (2. 13), we find

(2. 21)

On the other hand, transvecting uk to (2. 20) and taking account of (2. 13),
we find

- 2uΨjfth - - 2(1 - λ*}gjh + 2ujuh + 2vhkjtu
t

(2. 22)

Adding twice of (2. 21) and (2. 22), we find

(2. 23) vj{(l - λ^kutu* - UnktsuV - Vhkti

from which, taking the symmetric part,

λ^khtU1 — UhktsUW — Vhktstfv8}

+ Vh{(l - λ^kjtU* - UjktsUW - VjktsUW} = 0,
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Transvecting this with vj, we find

(2. 24) (1 - λ^khtu* = ktsu

Substituting (2. 24) into (2. 23), we find

(2.25)

which proves (2.15),
From (2. 13), we have

Substituting (2. 24) into this equation, we find

λkuuWvh - MtttuWuh +λ(l— λ^ktnv* = 0,

from which,

(2. 26) (l-λ*)kfitf=ktouWuj-kt>utv!lυ,.

Substituting (2.24), (2.25) and (2.26) into (2.20)x(l-^2), we find

^l-JPJF,/* !̂-^

which proves (2. 16).

LEMMA 2. 3. Under the same assumptions as those in Lemma 2. 1, we have,
at a point at which 1— Λ2^0,

(2.27) #=0,

(2.28)

(2.29)

(2.30)

where

Proof. Differentiating (2.9) covariantly and using (2.7) and (2.8), we find

from which,

(2.31)

From (2. 24) and (2. 26), we have
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(2.32) kjtU^aUj+βVj

and

(2.33) kjtv
t=βuj-avj

respectively, where

Differentiating (2. 32) covariantly and using (2. 7) and (2. 8), we find

-;*ιyH^

from which, taking the skew-symmetric part and using (2.31),

(2.34) (Ftα)«y-(F,α)«t + ̂

Transvecting ^ to (2. 34), we see that Pka is written in the form

and transvecting #•? to (2. 34), we see that Pkβ is written in the form

Substituting these into (2.34), we have

(b - c}(vkUj - UjcVj) + 2afic3 = 0,

from which, we have α=0. This proves (2.28) and (2.29).
Transvecting fk

h to (2. 25), we find

or using (2. 28) and (2. 29),

- fty* + β(UjVk + UkVj) - ktsftfk = 0,

from which, transvecting g3'k,

- kf - kts(gts - «e «' - » V) = 0,

that is, 4^=0 and (2.27) is proved.
Finally, from (2. 9) and (2. 28), we have

which proves (2.30).
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3. Theorems on (f, g, u, v, ^-structures.

In this section we first prove

THEOREM 3. 1. Suppose that a complete differ entiable manifold M admits an
(f9g,u,v,X)-structure such that Λ(l— λ2) is almost everywhere non-zero,

(3.1)

and

(3. 2) Sjth

At a point at which λ^Q, we define a tensor field kμ of type (0,2) by

(3.3)

If uh and kji satisfy

(3.4)

and

(3.5)

then the manifold is isometric to Sn(

Proof. Since the assumptions of Lemma 2. 1 are satisfied, the conclusions of
Lemmas 2. 1, 2. 2 and 2. 3 are all valid.

From (2. 7), (2. 28) and (3. 4), we have

0 = uΨjUi =-λvι- λβvi =—λ(l+ β)vt,

from which β=-l. Thus, (2.28), (2.29) and (2.30) become respectively

(3.6)

(3.7)

(3.8) Pjλ=-2vj.

Differentiating (3. 7) covariantly and substituting (2. 7) and (2. 8), we find

from which, taking the skew-symmetric part and using (3. 5),

*/**'/*.=/*,,

or, using (2.15),

(3.9) kj

tkt%s=fjcj.
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Transvecting (3. 9) with /,*, we find

k3

lktS( - Qis + UiUs + ViVs) = - gji + UjUi + VjVi,

or, using (3. 6) and (3. 7),

(3.10) kfk^gji.

Differentiating (3.10) covariantly, we have

(3.11) (F**Λ*«+W**«)=0.

Since Pkkji is symmetric in all indices, (3. 11) can be written as

(3.12)

which shows that kf(7kkti) is skew-symmetric in j and k.
Now, from (3. 11), we have, taking the skew-symmetric part with respect to

k and y,

or

(3.13)

from which, using (3.10),

(3.14) F*ft«=0.

On the other hand, differentiating (2.7) covariantly and using (2.15), (3.8)
and (3. 14), we obtain

(3. 15) V^VjUi = - gkjUi + gkiuj - fajVi + kkίVj + 2vkkji.

Thus the theorem follows from Theorem 0.7.

THEOREM 3. 2. Assume that a complete differ entiάble manifold M admits an
( f , g , u , v , λ } structure such that λ(1—λ2) is almost everywhere non-zero, and (3. 1),
(3.2) hold. At a point at which Λ^=0, we define kβ by (3.3).

If the sectional curvature K(γ} with respect to the section γ spanned by uh and
vh is constant and

(3.16)

then the manifold is isometric to a sphere S2w(l) or to Sw(l/V~2~)χSw(l/V"2~).

Proof. In this case also, the conclusions of Lemmas 2.1, 2.2 and 2-3 are
all valid.

Differentiating (2. 7) covariantly and using (2. 9), (2. 15) and (2. 28), we find
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(3. 17) FfcP^i= -gkjUi+gkiUj-kkjVi+kkiVj+Q-βϊVkkji-λΐkkji,

from which, using the Ricci identity,

- KkjihUh = gjaUj - QjiUk + kkiVj - kjiVk + (1 - βKVkkji - Vjkkί),

Kkjih being the curvature tensor and consequently

KkJihv
kuWuh i a

Since we have assumed that K(γ) is constant, /3 must be also constant.
From (2.29), we have

kjtvt=βuj.

Differentiating this covariantly and using (2.7) and (2.8), we find

from which, taking the skew-symmetric part and using (3. 16),

k/kksftS=-βfkj,

or, using (2.16),

(3.19) kj

tkt

sfks=-βfkj.

Transvecting u* to (3.19) and using (2.28) and (2.29), we find

from which, using β= const.

(3.20) /3=0 or 0=-l.

Transvecting /4* to (3. 19), we find

kjtkt\ - gis + UiUs + ViVs) =-β(-

or, using (2. 28) and (2. 29)

- kfkti + β\ujut + VjVi) = β(gjt - UjUi - VjVi\

that is,

(3. 21) k/kti = - βgji + β(β + V)(UjUi + vjvύ.

Thus, if /3=0, then ^=0 and in this case we have, from (2.30),

(3.22) Pjλ=-Όt

and (3.17) becomes
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(3.23) PkPjUi = — QkjUi+QkiUj.

If j9=-l, then

/Q 9ΛΛ ktkt — n\o. Lf±) KJ κtι—yjι>

and in this case we have, from (2.30)

(3.25) Pjλ=-2vj.

In the proof of Theorem 3.1, we found that (3.16) and (3.24) imply
Thus (3.17) gives

(3.26) PkPjut = - Qkjut+QkiUj - k^Vi+kkiVj+2#*£j{.

Equations (3.22), (3.23), (3.25), (3.26) and Theorem 0.7 prove the theorem.
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