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A PROOF OF THE BIEBERBACH CONJECTURE FOR THE

FOURTH COEFFICIENT

BY MITSURU OZAWA

1. Introduction. Let f(z) be a normalized regular function univalent in the
unit circle |z|<l

/(*)=*+ Σ*»*n

n=2

So far as the present author knows, up to the present time, there have appeared
five proofs of |041^4; [2], [3], [4], [5], [7]. In this paper we shall give another
proof of 1 04 1 ^=4.

THEOREM 1.

9l{04 - 2tf2#3 + a\ + 2tf(03 - 02

2) + (1 + α)202} ̂  2(1 + a + α2)

for α^O.

We shall give here two proofs of this theorem. One is due to Schiίfer's
variational method together with Bombieri's recent result [1] and the other is due
to Grunsky's inequality [6]. Then we shall prove

THEOREM 2. |04|^i4. Equality occurs only for zKl—e^z)2, ε: real.

It is well known that Grunsky's inequality gives a quite easy proof of |<z4|^4
[2]. Hence our proof should be considered as a non-elementary proof from a
methodological point of view. Our emphasis lies in the form of the corresponding
Schiffer differential equation, which does not have any perfect square form.

2. Proof of Theorem 1. Let us consider the problem

max 9l{# 4 - 20 2# 3 + a\ + 2a(a3 - aQ + (1 + a)2a2} .

Then the image of 1*1 =1 by any extremal functions satisfies

-
at
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for a suitable parameter t. Let Q(ζ)dζ2 be

Let a2 be xz+iy*. We may assume that #2>0. What we want to prove here is
#2=0. Let ζ be real. Then

Hence by Bombieri's Theorem 1 and Corollary [1] the critical trajectory of Q(ζ)dζz

intersects with the real axis at most once. Since ζ=0 is the simple pole of
Q(ζ)Jζ2, the critical trajectory does not intersect with the real axis except at
the origin which is an end point of the critical trajectory. Consider the tangent
vector at the origin. This has the argument — arg( — (l+α)2)=+τr. Next we
consider the tangent vector of the neighboring trajectories on the negative real
axis. By the equation, putting ζ=ζ+iη and then putting η=Q,

Here we have two solutions. However by dηldξ-*Q as ?->— 0

Here £7^0. Equality occurs only for x2=2 and £=—(!+«). Our interest lies in
the case that -<5<<?<0. Hence £/>0. Thus

dη_=

dζ VU^+y^+U
<0.

Thus all the neighboring trajectories of the critical trajectory cross the negative
real axis decreasingly. Hence the critical trajectory starts from the origin and
enters into the second quadrant. Hence the image of |z|=l by ζ lies in the
upper half-plane. This contradicts

Hence yz should be equal to zero.
If a2=Q, then

2
SR {a, - 2a2a, + a*2+ 2a(a, - a% + (1 + a)2a2} ̂  + 2a < 2(1 + α + α2),

since
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2
o-

and

108-011^1.

If 02^0 but real, then there is no zero of Q(ζ)dζ? on the real axis unless
02=2. Hence if 02^2 then the image of \z\=l by ζ should be a segment, which
is certainly a contradiction. Thus 02=2, which gives the desired result.

3. Proof of Theorem 2. It is sufficient to prove $04^4 for |arg02|^ττ/3 and
0^3102^2. Let

'=2— x+ix'=a2.

Then by Theorem 1

Here we put a=p. Then

jι04—4—x — Δpx — Δx y

By the area theorem

.. x* χn 3 ..

we have

~ - -
4 4

The last quadratic form is positive definite for 0^i#< 35/24. Thus

U104^4

for 0^x^1.45. Equality occurs only for x=Q. If 0^^0.55, then
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Then

Here |αa|^l.l and \a*-a\\^l. Hence

Thus we have the desired result.

4. Another proof of Theorem 1. The following Grunsky inequality is very
useful; [2], [6]:

_? 13 s / 3

 2\ 2 :

#2^3 + 12 a2+ a\a,--^aή + aa* g-.

We start from this inequality. Put az=Reίφ, O^R^2. Then

G = Ui {α4—2# 2#3 4- a\ -f 2α(βr3—al) + (1+«)α2}

cv^f 13 / 3 \
= ίRj ^4—2#2tf3+ ^Γό" al-\-2alas — -τ^\\ +a*a

F= (l+2α)J? cos ψ-^R* cos 2γ>- - - R* cos 89.
Z J-Z

We now consider the problem max F. Let (R, φ) be the maximum point of F.
Assume first that 0<#<2. Then at (R,φ)

dF 1
0= - - =(l+2α) cos ^-α7? cos 2φ--R2 cos 3p,

Hence

which leads to

dF 1
0= —- = -(l+2α)^ sin φ + aR2 sin 2^)+ --^2 sin

oφ 4

(1 + 2a)eiΨ=aRe2ίφ +
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l+2α= aR cos φ+ --R2 cos 2φ,

0= aR sin φ+ ~R2 sin2φ.

If smφ=Q, cosφ=—l, then

'-(-H'
This gives R=2+4a. Since α^O and R^2, we have R=2 and α=0, which was
excluded already. If cos^=l, sin^=0, then

which also gives R=2. This is a contradiction. If .Rcos^=— 2a, then

l+2α= -2α2+ - ^ 2 cos V~

implies

This is a contradiction. Therefore F does not attain its maximum in (0, 2).
Next we consider the boundary part. If R=Q, then F=0. If R=2, then

2
F=2(l+2α) cos φ-2a cos 2p— -ycos 3φ.

ό

At the maximum point

dF
0=

dφ

Then

(l+2α) sin ^=2<* sin 2^?+sin 3̂ >.

This holds for either sin^O or 2 cos γ+2αcos^ — 1 — a=Q. If sin^=0, then

F=A+2«
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If 2 cos zφ+2acosφ=l + a, then

o

F= — - COS 3φ — 4a COS Y + (4 + 4α) COS

4 8 ,Λ N 4 2
= - -g- α COS *φ+ y (1 + α) COS p- y + y α,

which is increasing for cos $0. Hence

4
F^ max F= F(cos φ = 1) = y + 2α.

However the solution of 2 cos 2^+2tι:cos^— 1 + α is less than 1, that is, cosφ<l.
Hence in this case

4
maxF<-τr+2α.

Thus summing up the results we have

4

and hence

Equality occurs only for a^—2.
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