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NOTES ON HYPERSURFACES OF
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Dedicated to Professor Y. Muto on his sixtieth birthday

Blair [1, 2, 3, 4, 5], Ki [6], Ludden [1, 2, 3, 4, 5], Okumura [7, 8] and one of
the present authors [2, 3, 4, 5, 6, 7, 8] started the study of a structure induced on
a hypersurface of an almost contact manifold or a submanifold of codimension 2
of an almost complex manifold. When the ambient manifold admits a Riemannian
metric, the structure induced is called an (f, g, #, v, 2)-structure [7, 8], where f is
a tensor field of type (1, 1), ¢ the induced Riemannian metric, # and » two 1-forms
and 2 a function.

Since the odd-dimensional sphere S**+! has an almost contact structure naturally
induced from the Kihler structure of Euclidean space E?**2, a hypersurface im-
mersed in S***! admits a so-called (f, g, %, v, 2)-structure.

In [3], Blair, Ludden and one of the present authors proved

THEOREM. If M*™ is a complete ovientable hypersurface of S*™' of constant
scalar curvature satisfying Kf+fK=0 and 2> constant, where K is the Weingarien
map of the embedding, then M® is a natural spherve S*™ or M?*»=S"x S".

The purpose of the present notes is to show that if M?" is a real analytic
complete orientable hypersurface of a unit sphere S***(1) satisfying Kf+fK=0
and 2% constant and if

1
Kj= Z—n‘kgji

holds at a point of M?*® at which 1—-22x0, K;; and %, being the Ricci tensor and
the scalar curvature of M?®" respectively, then M?** is, provided »>1, either a great,
sphere S*(1) of S*+(1) or the product of two n-dimensional spheres S*(1/+/2) of

radius 1/+/ 2.

§1. Preliminaries.

We consider a 2x-dimensional submanifold M?* immersed differentiably in a
(2n+1)-dimensional unit sphere S***+1(1) embedded in a (2n+2)-dimensional Eucli-
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dean space E?"*? and denote by X: M?*»—E?*+? the immersion of M?®*® into E?"+2
where X is regarded as the position vector with its initial point at the origin of
E?+2 and its terminal point at a point of X(M?*). Submanifolds we consider are
assumed to be orientable, connected and differentiable and of class C*. Suppose
that M?** is covered by a system of coordinate neighborhoods {U; z"}, where here
and in the sequel the indices 4, 4,7, .-+ run over the range {1, 2, ---, 27}, and that
M?* is orientable. Then, denoting by C the unit normal —X to S*+! defined
globally along X(M?**), we can choose another unit normal D to X(M?*") globally
along X(M?®*) in such a way that C and D are mutually orthogonal along X (/™).
If we put

(L.1) X,=0:X, 0;=0/dx?,
then components ¢; of the induced metric tensor of M?** are given by
gji‘—‘Xj'Xn

where the dot denotes the inner product in E?%7+2,

We denote by {,*} the Christoffel symbols formed with ¢;; and by F, the operator
of covariant differentiation with respect to {,*;}. We then have the equations of
Gauss

1.2 7,X,=0,X, \ ].hz. }Xn=gjic+kﬁ1),

where kj; are components of the second fundamental tensor with respect to the
unit normal D, and the equations of Weingarten

(1. 3) VjC=—Xj, VjD=—kji)(,,,

where k,'=k;g" and (¢7%)=(g;;)~?, because the connection / induced in the normal
bundle of the submanifold M?** relative to E?*+2? is locally flat and C and D are
parallel with respect to 7. We also have the structure equations of the submanifold
M?", ie., the equations of Gauss

1.4 Kiji" =040 i — 0gui+ R0 ji— B, 0k,
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are components of the curvature tensor of M*", and the equations of Codazzi

where

(1 5) kaﬂ—ijm,:O.

Now, the (2#+2)-dimensional Euclidean space E?**? has a natural Kihler
structure F, ie., a tensor field F of type (1, 1) with constant components such that
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F?=-1, (FX)-X=0, (FX)-(FY)=X-Y

for any vector fields X and Y in E?**% where 1 denotes the unit tensor of type
(1, 1). Thus we can put

F. ){1, =f,,"’Xn, -+ u@C -+ U,;D,
1. 6) FC=—u*X;+2D,
FD=—v*X;—iC,

where f,* are components of a tensor field of type (1, 1), #; and »; components of
1-forms and 2 a function in M?®*, »* and v* being defined respectively by

wh=g"u,, V= ghty,,
From equations (1. 6), we find
fifih ==+ uu+v0",
uif =4, vifit=—Auy,
(1. 7) f;h%i =— lv", f;"vi = Zu",
ut =00t =1—22, uvt=0,
gtsfjt V= Qi — UjU;—Vj0;.

The set of a tensor field f,?, a Riemannian metric g¢;, two 1-forms %; and »; and
a function 2 is called a (f, g, %, v, A)-structure in M*" [6, 7, 8], if they satisfy the
equations (1. 7).

Differentiating (1. 6) covariantly and taking account of equations (1. 2) of Gauss
and equations (1. 3) of Weingarten, we find

V,ff,h= —gjiu"+5§ui—kj¢v"+kj"v,~,
V/ui=fﬁ——lkﬁ,
1.8
Vivi=—kjuft+ 29
Vj2= —?)j+kjtu¢,
where f;=f,'9,; are skew-symmetric [6, 7, 8].
Denoting by M, and M, the submanifold of M?** defined respectively by
My={peM*|2(p)x0}, M={peM*"|1-(p)’=0},

we assume that M,N M, is dense in M?", ie., that A(1—24%)=0 holds almost every-
where in M?",
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§2. Certain hypersufaces of an odd-dimensional unit sphere.

We assume in this section that the two tensor fields f,* and &;* of type (1, 1)
are anti-commutative, i.e.,

2.1 fik Ry f=0,
which is equivalent to
2. 2) kifit—kuf =0,

since f;; is skew-symmetric. Transvecting (2.2) with #*, we obtain
2.3) — Ak0") — (Ruue?) =0
and, transvecting (2. 2) with ¢,
2. 4) Ak jout)— (kuv®) f £ =0.
Transvecting (2. 3) with ¢/, we have
— k070t — 2k it =0,
from which,
2.5) k070" kil w =0.
Next, changing indices in (2. 3), we have
Abos) + (kutd®) £ =0
and, transvecting this with f,°,
A= 20)k j0* = (Rustt'® a5+ (Brstb™v®)0,.
Similarly, using (2. 4), we obtain
A =223)k 0t = (Rsttv®)u;+ (Bust'0®)0;.
Thus, in M;, we can put
2. 6) kitus=au;+ po;,
2.7 kitvy=Pu;—av;
because of (2.5), where « and B are functions defined in M.
Differentiating (2. 6) covariantly and using (1. 8), we have
(VikYutr+ kit (f 10— Mese)
=sa)us+o(fj— k) + (ViP)vs+ B(—kyf S +2950),
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from which, taking the skew-symmetric part with respect to j and i and taking
account of equations (1.5) of Codazzi and (2. 2),

2.8) (Vie)u;— Via)yu;+(ViBvs— (ViB)vj+2a f1:=0.
Transvecting this with #/»*, we find
A-2){—ovV,a+uV;—2a2} =0,
from which,
2.9 v Va—u'lV;B+2a2=0.
Transvecting (2. 8) with #?, we obtain
1=V a—(uVia)u;— (@iVip)vj+2a20,=0,
from which, using (2. 9),
(2. 10) A =22a=wV;a)u;+ (v*V;a)v,.
Similarly, tranvecting (2. 8) with »?, we have
(2.11) A—=227;8=(utV;B)u;+ (v*7;B)v;.
Thus, multiplying (2. 8) by (1—2%) and using (2. 10) and (2. 11), we have
201 —2%) f ji= 0"V — u'V, B) (w4 s0; — w0 5).
Since the rank of f;; is 2#—2 in M,, we find, if »>1,
2.12) a=0, u'V;f=0.
Thus equations (2. 6) and (2. 7) become respectively
(2.13) kitu,= pos, ki'vy=pu;
and equations (2. 11) become
(2. 14) (L= 2)7;8=(0'Tip)o,.
Now, transvecting (2. 2) with f’ and taking account of (2.13), we obtain
Ros [l S+ Ran— B(st:0n+ un0:) =0,
from which, transvecting with ¢,
97k;=0
in M,. Since M, is dense in M?", we have

ProrositiON 2.1. A hypersurface of a (2n+1)-dimensional unit spherve, for
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which f,* and k" anticommute, is minimal if n>1.

If we now differentiate the second equation of (2.13) covariantly and take
account of (1.8), we find

(VikY0e+ k(= Rysf o+ 29 50) = Vi B)us + B(f 4i — Ak 2),

from which, taking the skew-symmetric part with respect to j and ¢ and taking
account of (1.5) and (2. 2),

(2. 15) V;Byui— (ViByu;—2f 15k, ki +28f;:=0.
Transvecting this with #*, we obtain
A =220;8— (u'V;p)ou;+ 28w+ 2PAv, =0,
or, using (2. 12),
(2.16) 1=22;p=—-2p(B+1)v,.
Thus we see that, if g is constant in M, then =0 or g=—1 in Mon M.

We now suppose that g=0 or g=—1 at a point p belonging to M,NM:. Then
the equation (2.16) shows that all of successive covariant derivatives of g vanish
at the point p, i.e., that

Vip=0,  FiVip=0,  Vl;Vip=0, -

hold at the point p. Thus, if M?" is a real analytic submanifold, then =0 or
B=—1 at every point of M;. Then we have

LemmMma 2.2. If M®*™ is a veal analytic submanifold and B=0 (resp. p=—1) at
a point of MyNDM, then B=0 (vesp. f=—1) holds at every point of M,, provided
n>1.

From equations (1.4) of Gauss, we have
2.17) Kji=@2n—1)g;—kjki
by virtue of (2.15) and hence
(2.18) k=2n2n—1)—k;k",

where Kj; and k are respectively the Ricci tensor and the curvature scalar of M?".
On the other hand, multiplying (2.15) by (1—2%) and using (2. 16), we have

2688+ D)A(ujvi— uiws)—2(0 = 22) fosks ki +25(1 — 2°) f7=0,

from which, transvecting with f3f,
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(2.19) (A= 2kukn'=H(B+1) (sten+viwn)— B(L—2)gsn,
from which,
(2. 20) kjik7=2p(f—=n+1).
We now consider the following equation:
(2. 21) Kji= = kgji
2n
at a point p of MyNM, Then, from (2.17) and (2.18), we see that (2.21) is
equivalent to the condition
(2. 22) kuki=cgs,
¢ being a certain constant. Subsituting (2. 22) into (2. 19), we find
(L=2%) (B+C)gin=P(B+1) (wiun+vivn),

which implies =0 or f=—1 at the point p, provided »>1. Conversely, if we
suppose that f=0 or pf=-—1 at a point p, then we have (2. 21) at the point p, by
virtue of (2.17), (2.18), (2.19) and (2.20). Thus we have

LemMA 2. 3. The equation (2.21) holds at a point p of M., provided n>1, if
and only if B=0 or =—1 at the point p.

It has been proved in [3]

LemMa 2.4. Let M?™ (n>1) be complete, 2= constant and 2(1—212)=0 almost
everywhere in M*. If B=0 at every point of M, then M** is a great sphere S*™(1)
in the unit sphere S*™*'(1). If f=—1 at every point of M,, then M?*" is the product
of two n-dimensional spheres S"(1/~/2) of radius 1/+/ 2.

Therefore, from Lemmas 2.2, 2.3 and 2. 4, we have

THEOREM. Suppose that a complete orvientable 2n-dimensional manifold M?>" is
embedded in a (2n+1)-dimensional unit sphere S*+(1), 2(1—22)x0 almost everywhere
in M and the structure temsor f,* and the second fundamental tensor k* of M?**
anticommute. If M is a real analytic hypersurface in S**+'(1) and

1
Kj'l, = % kgji

holds at a point of M** at which 1—2i%=x0, then M?®" is, provided n>1, either a
great sphere S*™(1) of S*™\(1) or the product of two n-dimensional spheres S™(1]/2)
of radius 1/+/2.
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