NOTES ON HYPERSURFACES OF AN ODD-DIMENSIONAL SPHERE

By Kentaro Yano and Shigeru Ishihara
Dedicated to Professor Y. Muto on his sixtieth birthday

Blair [1, 2, 3, 4, 5], Ki [6], Ludden [1, 2, 3, 4, 5], Okumura [7, 8] and one of the present authors $[2,3,4,5,6,7,8]$ started the study of a structure induced on a hypersurface of an almost contact manifold or a submanifold of codimension 2 of an almost complex manifold. When the ambient manifold admits a Riemannian metric, the structure induced is called an (f, g, u, v, λ)-structure [7, 8], where f is a tensor field of type (1,1), g the induced Riemannian metric, u and v two 1 -forms and λ a function.

Since the odd-dimensional sphere $S^{2 n+1}$ has an almost contact structure naturally induced from the Kähler structure of Euclidean space $E^{2 n+2}$, a hypersurface immersed in $S^{2 n+1}$ admits a so-called (f, g, u, v, λ)-structure.

In [3], Blair, Ludden and one of the present authors proved
Theorem. If $M^{2 n}$ is a complete orientable hypersurface of $S^{2 n+1}$ of constant scalar curvature satisfying $K f+f K=0$ and $\lambda \neq$ constant, where K is the Weingarten map of the embedding, then $M^{2 n}$ is a natural sphere $S^{2 n}$ or $M^{2 n}=S^{n} \times S^{n}$.

The purpose of the present notes is to show that if $M^{2 n}$ is a real analytic complete orientable hypersurface of a unit sphere $S^{2 n+1}(1)$ satisfying $K f+f K=0$ and $\lambda \neq$ constant and if

$$
K_{j i}=\frac{1}{2 n} k g_{j i}
$$

holds at a point of $M^{2 n}$ at which $1-\lambda^{2} \neq 0, K_{j i}$ and k being the Ricci tensor and the scalar curvature of $M^{2 n}$ respectively, then $M^{2 n}$ is, provided $n>1$, either a great sphere $S^{2 n}(1)$ of $S^{2 n+1}(1)$ or the product of two n-dimensional spheres $S^{n}(1 / \sqrt{2})$ of radius $1 / \sqrt{2}$.

§ 1. Preliminaries.

We consider a $2 n$-dimensional submanifold $M^{2 n}$ immersed differentiably in a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$ embedded in a ($2 n+2$)-dimensional Eucli-
dean space $E^{2 n+2}$ and denote by $X: M^{2 n} \rightarrow E^{2 n+2}$ the immersion of $M^{2 n}$ into $E^{2 n+2}$, where X is regarded as the position vector with its initial point at the origin of $E^{2 n+2}$ and its terminal point at a point of $X\left(M^{2 n}\right)$. Submanifolds we consider are assumed to be orientable, connected and differentiable and of class C^{∞}. Suppose that $M^{2 n}$ is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1,2, \cdots, 2 n\}$, and that $M^{2 n}$ is orientable. Then, denoting by C the unit normal $-X$ to $S^{2 n+1}$ defined globally along $X\left(M^{2 n}\right)$, we can choose another unit normal D to $X\left(M^{2 n}\right)$ globally along $X\left(M^{2 n}\right)$ in such a way that C and D are mutually orthogonal along $X\left(M^{2 n}\right)$. If we put

$$
\begin{equation*}
X_{\imath}=\partial_{i} X, \quad \partial_{i}=\partial / \partial x^{2}, \tag{1.1}
\end{equation*}
$$

then components $g_{j i}$ of the induced metric tensor of $M^{2 n}$ are given by

$$
g_{j i}=X_{j} \cdot X_{v},
$$

where the dot denotes the inner product in $E^{2 n+2}$.
We denote by $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$ the Christoffel symbols formed with $g_{j i}$ and by ∇_{j} the operator of covariant differentiation with respect to $\left\{{ }_{0}{ }_{i}{ }_{i}\right\}$. We then have the equations of Gauss

$$
\nabla_{\jmath} X_{\imath}=\partial_{j} X_{\imath}-\left\{\begin{array}{c}
h \tag{1.2}\\
j
\end{array}\right\}
$$

where $k_{j i}$ are components of the second fundamental tensor with respect to the unit normal D, and the equations of Weingarten

$$
\begin{equation*}
\nabla_{j} C=-X_{j}, \quad \nabla_{j} D=-k_{j}{ }^{i} X_{i} \tag{1.3}
\end{equation*}
$$

where $k_{j}{ }^{2}=k_{j t} g^{t i}$ and $\left(g^{j i}\right)=\left(g_{j i}\right)^{-1}$, because the connection \tilde{V} induced in the normal bundle of the submanifold $M^{2 n}$ relative to $E^{2 n+2}$ is locally flat and C and D are parallel with respect to \tilde{V}. We also have the structure equations of the submanifold $M^{2 n}$, i.e., the equations of Gauss

$$
\begin{equation*}
K_{k j i}{ }^{h}=\partial_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+k_{k}{ }^{h} g_{j i}-k_{j}{ }^{h} g_{k i}, \tag{1.4}
\end{equation*}
$$

where

$$
K_{k j i}{ }^{h}=\partial_{k}\left\{\begin{array}{c}
h \\
j
\end{array}\right\}-\partial_{j}\left\{\begin{array}{c}
h \\
k
\end{array}\right\}+\left\{\begin{array}{c}
h \\
k
\end{array}\right\}
$$

are components of the curvature tensor of $M^{2 n}$, and the equations of Codazzi

$$
\begin{equation*}
\nabla_{k} k_{j i}-\nabla_{j} k_{k \imath}=0 . \tag{1.5}
\end{equation*}
$$

Now, the ($2 n+2$)-dimensional Euclidean space $E^{2 n+2}$ has a natural Kähler structure F, i.e., a tensor field F of type $(1,1)$ with constant components such that

$$
F^{2}=-1, \quad(F X) \cdot X=0, \quad(F X) \cdot(F Y)=X \cdot Y
$$

for any vector fields X and Y in $E^{2 n+2}$, where 1 denotes the unit tensor of type $(1,1)$. Thus we can put

$$
\begin{align*}
& F X_{\imath}=f_{\imath}^{h} X_{h}+u_{i} C+v_{i} D, \\
& F C=-u^{i} X_{i}+\lambda D, \tag{1.6}\\
& F D=-v^{i} X_{i}-\lambda C,
\end{align*}
$$

where $f_{v}{ }^{h}$ are components of a tensor field of type (1, 1), u_{i} and v_{i} components of 1 -forms and λ a function in $M^{2 n}, u^{h}$ and v^{h} being defined respectively by

$$
u^{h}=g^{h t} u_{t}, \quad v^{h}=g^{h t} v_{t} .
$$

From equations (1.6), we find

$$
\begin{align*}
& f_{i}^{t} f_{t}^{h}=-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h}, \\
& u_{i} f_{j}^{i}=\lambda v_{j}, \\
& f_{i}^{h} u^{i}=-\lambda v^{h}, \tag{1.7}\\
& u_{i} f_{j}^{i}=-\lambda u_{j}, \\
& v_{i} v^{i}=1-\lambda^{2}, \\
& g_{t s} f_{j}{ }^{t} f_{i}^{s}=\lambda u^{h}, \\
& u_{i} v^{i}=0, u_{j} u_{i}-v_{j} v_{i} .
\end{align*}
$$

The set of a tensor field $f_{2}{ }^{h}$, a Riemannian metric $g_{j i}$, two 1 -forms u_{i} and v_{i} and a function λ is called a (f, g, u, v, λ)-structure in $M^{2 n}[6,7,8]$, if they satisfy the equations (1.7).

Differentiating (1.6) covariantly and taking account of equations (1.2) of Gauss and equations (1.3) of Weingarten, we find

$$
\begin{align*}
\nabla_{j} f_{i}^{h} & =-g_{j i} u^{h}+\delta_{j}^{h} u_{i}-k_{j i} v^{h}+k_{j}{ }^{h} v_{i}, \\
\nabla_{j} u_{i} & =f_{j i}-\lambda k_{j i}, \tag{1.8}\\
\nabla_{j} v_{i} & =-k_{j t} f_{i}^{t}+\lambda g_{j i}, \\
\nabla_{j} \lambda & =-v_{j}+k_{j}{ }^{t} u_{t},
\end{align*}
$$

where $f_{j i}=f_{j}{ }^{t} g_{t i}$ are skew-symmetric $[6,7,8]$.
Denoting by M_{0} and M_{1} the submanifold of $M^{2 n}$ defined respectively by

$$
M_{0}=\left\{p \in M^{2 n} \mid \lambda(p) \neq 0\right\}, \quad M_{1}=\left\{p \in M^{2 n} \mid 1-\lambda(p)^{2} \neq 0\right\},
$$

we assume that $M_{0} \cap M_{1}$ is dense in $M^{2 n}$, i.e., that $\lambda\left(1-\lambda^{2}\right) \neq 0$ holds almost everywhere in $M^{2 n}$.
§ 2. Certain hypersufaces of an odd-dimensional unit sphere.
We assume in this section that the two tensor fields $f_{i}{ }^{h}$ and $k_{i}{ }^{h}$ of type (1, 1) are anti-commutative, i.e.,

$$
\begin{equation*}
f_{J}{ }^{t} k_{t}{ }^{h}+k_{J}{ }^{t} f_{t}^{h}=0, \tag{2.1}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
k_{j t} f_{\imath}^{t}-k_{i t} f_{j}^{t}=0, \tag{2.2}
\end{equation*}
$$

since $f_{j i}$ is skew-symmetric. Transvecting (2.2) with u^{2}, we obtain

$$
\begin{equation*}
-\lambda\left(k_{j i v} v^{t}\right)-\left(k_{i t} u^{i}\right) f_{j}^{t}=0 \tag{2.3}
\end{equation*}
$$

and, transvecting (2.2) with v^{2},

$$
\begin{equation*}
\lambda\left(k_{j t} u^{t}\right)-\left(k_{i t} v^{i}\right) f_{j}{ }^{t}=0 . \tag{2.4}
\end{equation*}
$$

Transvecting (2.3) with v^{j}, we have

$$
-\lambda k_{j i} v^{j} v^{i}-\lambda k_{i \imath} u^{j} u^{i}=0,
$$

from which,

$$
\begin{equation*}
k_{j i} v^{j} v^{2}+k_{j i} u^{j} u^{2}=0 . \tag{2.5}
\end{equation*}
$$

Next, changing indices in (2.3), we have

$$
\lambda\left(k_{s t} t^{t}\right)+\left(k_{i t} u^{i}\right) f_{s}^{t}=0
$$

and, transvecting this with $f_{j}{ }^{s}$,

$$
\left(1-\lambda^{2}\right) k_{j i} u^{2}=\left(k_{t s} u^{t} u^{s}\right) u_{j}+\left(k_{t s} u^{t} v^{s}\right) v_{j} .
$$

Similarly, using (2.4), we obtain

$$
\left(1-\lambda^{2}\right) k_{j i} v^{i}=\left(k_{t s} u^{t} v^{s}\right) u_{j}+\left(k_{t s} v^{t} v^{s}\right) v_{j}
$$

Thus, in M_{1}, we can put

$$
\begin{align*}
k_{i}^{t} u_{t} & =\alpha u_{i}+\beta v_{i}, \tag{2.6}\\
k_{i}{ }^{t} v_{t} & =\beta u_{i}-\alpha v_{i} \tag{2.7}
\end{align*}
$$

because of (2.5), where α and β are functions defined in M_{1}.
Differentiating (2.6) covariantly and using (1.8), we have

$$
\begin{aligned}
& \left(\nabla_{j} k_{i}^{t}\right) u_{t}+k_{i}{ }^{t}\left(f_{j t}-\lambda k_{j t}\right) \\
= & \left(\nabla_{j} \alpha\right) u_{i}+\alpha\left(f_{j i}-\lambda k_{j i}\right)+\left(\nabla_{j} \beta\right) v_{i}+\beta\left(-k_{j t} f_{\imath}^{t}+\lambda g_{j i}\right),
\end{aligned}
$$

from which, taking the skew-symmetric part with respect to j and i and taking account of equations (1.5) of Codazzi and (2.2),

$$
\begin{equation*}
\left(\nabla_{j} \alpha\right) u_{i}-\left(\nabla_{i} \alpha\right) u_{j}+\left(\nabla_{j} \beta\right) v_{i}-\left(\nabla_{i} \beta\right) v_{j}+2 \alpha f_{j i}=0 \tag{2.8}
\end{equation*}
$$

Transvecting this with $u^{j} v^{2}$, we find

$$
\left(1-\lambda^{2}\right)\left\{-v^{i} \nabla_{i} \alpha+u^{i} \nabla_{i} \beta-2 \alpha \lambda\right\}=0,
$$

from which,

$$
\begin{equation*}
v^{i} \nabla_{i} \alpha-u^{i} \nabla_{i} \beta+2 \alpha \lambda=0 . \tag{2.9}
\end{equation*}
$$

Transvecting (2.8) with u^{i}, we obtain

$$
\left(1-\lambda^{2}\right) \nabla_{j} \alpha-\left(u^{i} \nabla_{i} \alpha\right) u_{j}-\left(u^{i} \nabla_{i} \beta\right) v_{j}+2 \alpha \lambda v_{j}=0,
$$

from which, using (2.9),

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \alpha=\left(u^{i} \nabla_{i} \alpha\right) u_{j}+\left(v^{i} \nabla_{i} \alpha\right) v_{j} . \tag{2.10}
\end{equation*}
$$

Similarly, tranvecting (2.8) with v^{3}, we have

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \beta=\left(u^{i} \nabla_{i} \beta\right) u_{j}+\left(v^{i} \nabla_{i} \beta\right) v_{j} . \tag{2.11}
\end{equation*}
$$

Thus, multiplying (2.8) by ($1-\lambda^{2}$) and using (2.10) and (2.11), we have

$$
2 \alpha\left(1-\lambda^{2}\right) f_{j i}=\left(v^{t} \nabla_{t} \alpha-u^{t} \nabla_{t} \beta\right)\left(u_{j} v_{i}-u_{i} v_{j}\right) .
$$

Since the rank of $f_{j i}$ is $2 n-2$ in M_{1}, we find, if $n>1$,

$$
\begin{equation*}
\alpha=0, \quad u^{t} \nabla_{t} \beta=0 \tag{2.12}
\end{equation*}
$$

Thus equations (2.6) and (2.7) become respectively

$$
\begin{equation*}
k_{i}{ }^{t} u_{t}=\beta v_{i}, \quad k_{i}{ }^{t} v_{t}=\beta u_{i} \tag{2.13}
\end{equation*}
$$

and equations (2.11) become

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \beta=\left(v^{i} \nabla_{i} \beta\right) v_{j} . \tag{2.14}
\end{equation*}
$$

Now, transvecting (2.2) with $f_{h}{ }^{i}$ and taking account of (2.13), we obtain

$$
k_{t s} f_{\imath}^{t} f_{n^{s}}+k_{i h}-\beta\left(u_{i} v_{h}+u_{h} v_{i}\right)=0
$$

from which, transvecting with $g^{i n}$,

$$
g^{j i} k_{j i}=0
$$

in M_{1}. Since M_{1} is dense in $M^{2 n}$, we have
Proposition 2.1. A hypersurface of a ($2 n+1$)-dimensional unit sphere, for
which $f_{2}{ }^{h}$ and $k_{i}{ }^{h}$ anticommute, is minimal if $n>1$.
If we now differentiate the second equation of (2.13) covariantly and take account of (1.8), we find

$$
\left(\nabla_{j} k_{i}^{t}\right) v_{t}+k_{i}^{t}\left(-k_{j s} f_{t}^{s}+\lambda g_{j t}\right)=\left(\nabla_{j} \beta\right) u_{i}+\beta\left(f_{j i}-\lambda k_{j i}\right),
$$

from which, taking the skew-symmetric part with respect to j and i and taking account of (1.5) and (2.2),

$$
\begin{equation*}
\left(\nabla_{j} \beta\right) u_{i}-\left(\nabla_{i} \beta\right) u_{j}-2 f_{t s} k_{j}^{t} k_{i}{ }^{s}+2 \beta f_{j i}=0 . \tag{2.15}
\end{equation*}
$$

Transvecting this with u^{2}, we obtain

$$
\left(1-\lambda^{2}\right) \nabla_{j} \beta-\left(u^{i} \nabla_{i} \beta\right) u_{j}+2 \beta^{2} \lambda v_{j}+2 \beta \lambda v_{j}=0,
$$

or, using (2.12),

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \beta=-2 \beta(\beta+1) \lambda v_{j} . \tag{2.16}
\end{equation*}
$$

Thus we see that, if β is constant in M_{1}, then $\beta=0$ or $\beta=-1$ in $M_{0} \cap M_{1}$.
We now suppose that $\beta=0$ or $\beta=-1$ at a point p belonging to $M_{0} \cap M_{1}$. Then the equation (2.16) shows that all of successive covariant derivatives of β vanish at the point p, i.e., that

$$
\nabla_{i} \beta=0, \quad \nabla_{j} \nabla_{i} \beta=0, \quad \nabla_{k} \nabla_{j} \nabla_{i} \beta=0, \cdots
$$

hold at the point p. Thus, if $M^{2 n}$ is a real analytic submanifold, then $\beta=0$ or $\beta=-1$ at every point of M_{1}. Then we have

Lemma 2.2. If $M^{2 n}$ is a real analytic submanifold and $\beta=0$ (resp. $\beta=-1$) at a point of $M_{0} \cap M_{1}$, then $\beta=0$ (resp. $\beta=-1$) holds at every point of M_{1}, provided $n>1$.

From equations (1.4) of Gauss, we have

$$
\begin{equation*}
K_{j i}=(2 n-1) g_{j i}-k_{j t} k_{i}^{t} \tag{2.17}
\end{equation*}
$$

by virtue of (2.15) and hence

$$
\begin{equation*}
k=2 n(2 n-1)-k_{j i} k^{j i}, \tag{2.18}
\end{equation*}
$$

where $K_{j i}$ and k are respectively the Ricci tensor and the curvature scalar of $M^{2 n}$. On the other hand, multiplying (2.15) by ($1-\lambda^{2}$) and using (2.16), we have

$$
2 \beta(\beta+1) \lambda\left(u_{j} v_{i}-u_{i} v_{j}\right)-2\left(1-\lambda^{2}\right) f_{i s} k_{j}{ }^{i} k_{i}{ }^{s}+2 \beta\left(1-\lambda^{2}\right) f_{j i}=0,
$$

from which, transvecting with $f_{h}{ }^{i}$,

$$
\begin{equation*}
\left(1-\lambda^{2}\right) k_{i t} k_{h}{ }^{t}=\beta(\beta+1)\left(u_{i} u_{h}+v_{i} v_{h}\right)-\beta\left(1-\lambda^{2}\right) g_{i h}, \tag{2.19}
\end{equation*}
$$

from which,

$$
\begin{equation*}
k_{j i} k^{j i}=2 \beta(\beta-n+1) \tag{2.20}
\end{equation*}
$$

We now consider the following equation:

$$
\begin{equation*}
K_{j i}=\frac{1}{2 n} k g_{j i} \tag{2.21}
\end{equation*}
$$

at a point p of $M_{0} \cap M_{1}$. Then, from (2.17) and (2.18), we see that (2.21) is equivalent to the condition

$$
\begin{equation*}
k_{j t} k_{i}^{t}=c g_{j i}, \tag{2.22}
\end{equation*}
$$

c being a certain constant. Subsituting (2.22) into (2.19), we find

$$
\left(1-\lambda^{2}\right)(\beta+c) g_{i n}=\beta(\beta+1)\left(u_{i} u_{h}+v_{i} v_{h}\right),
$$

which implies $\beta=0$ or $\beta=-1$ at the point p, provided $n>1$. Conversely, if we suppose that $\beta=0$ or $\beta=-1$ at a point p, then we have (2.21) at the point p, by virtue of (2.17), (2.18), (2.19) and (2.20). Thus we have

Lemma 2.3. The equation (2.21) holds at a point p of M_{1}, provided $n>1$, if and only if $\beta=0$ or $\beta=-1$ at the point p.

It has been proved in [3]
Lemma 2.4. Let $M^{2 n}(n>1)$ be complete, $\lambda \neq$ constant and $\lambda\left(1-\lambda^{2}\right) \neq 0$ almost everywhere in $M^{2 n}$. If $\beta=0$ at every point of M_{1}, then $M^{2 n}$ is a great sphere $S^{2 n}(1)$ in the unit sphere $S^{2 n+1}(1)$. If $\beta=-1$ at every point of M_{1}, then $M^{2 n}$ is the product of two n-dimensional spheres $S^{n}(1 / \sqrt{2})$ of radius $1 / \sqrt{2}$.

Therefore, from Lemmas 2.2, 2.3 and 2.4, we have
Theorem. Suppose that a complete orientable $2 n$-dimensional manifold $M^{2 n}$ is embedded in a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1), \lambda\left(1-\lambda^{2}\right) \neq 0$ almost everywhere in $M^{2 n}$ and the structure tensor $f_{i}{ }^{h}$ and the second fundamental tensor $k_{i}{ }^{h}$ of $M^{2 n}$ anticommute. If $M^{2 n}$ is a real analytic hypersurface in $S^{2 n+1}(1)$ and

$$
K_{j i}=\frac{1}{2 n} k g_{j i}
$$

holds at a point of $M^{2 n}$ at which $1-\lambda^{2} \neq 0$, then $M^{2 n}$ is, provided $n>1$, either a great sphere $S^{2 n}(1)$ of $S^{2 n+1}(1)$ or the product of two n-dimensional spheres $S^{n}(1 / \sqrt{2})$ of radius $1 / \sqrt{2}$.

Bibliography

[1] Blair, D. E., and G. D. Ludden, On intrinsic structures similar to those induced on $S^{2 n}$. Kōdai Math. Sem. Rep. 23 (1971), 262-266.
[2] Blair, D. E., G. D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdai Math. Sem. Rep., 22 (1970), 188-198.
[3] Blair, D. E., G. D. Ludden, and K. Yano, Hypersurfaces of an odd-dimensional sphere. J. of Differential Geometry 5 (1971), 479-486.
[4] Blair, D. E., G. D. Ludden, and K. Yano, On the intrinsic geometry of $S^{n} \times S^{n}$. Math. Ann. 194 (1971), 68-77.
[5] Blair, D. E., G. D. Ludden, and K. Yano, Hypersurfaces with a parallel vector field in an odd-dimensional sphere. Differential Geometry, in honor of Kentaro Yano, Kinokuniya, Tokyo, (1972), 33-39.
[6] Yano, K., and U-Hang Kı, On quasi-normal (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 24 (1972), 106-120.
[7] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.
[8] Yano, K., and M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in a Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172-197.

Department of Mathematics, Tokyo Institute of Technology.

