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ON CANONICAL STRATIFICATIONS
By AxirA KorivyAMA

§0. Introduction.

It is well-known that every compact manifold can be imbedded into a Euclidean
m-space R™ for some m. Furthermore Nash [7] proved that for a closed connected
smooth manifold M, smoothly imbedded in R™, there is a polynomial map f: R™—R?
for some ¢ such that M is a connected component of f-%(0). A polynomial map f
is an ordered set (g1, g2, -+, g¢) Of polynomial functions.

On the other hand, by a simple calculation, we have the following

ProposiTiON A. FEvery polynomial can be expressed in a form of determinant
of a certain square matrix whose entries are monomials of degree 1 or 0. More
precisely, for any polynomial function g. R™ R, there is a positive integer n and
an affine imbedding ¢ of R™ into the space Mn, n) of all nXxn real matrices such
that the following diagram is commutative:

M(n, n)

Rm

(This was communicated to the author by T. Ishikawa).

Remark. For the given polynomial map f=(gi, -+, go): R™R?, we take the
positive integer » common to all g;.

On account of the above facts every closed connected smooth manifold can be
imbedded into M(n, ) for some #z and is expressed as the intersection of the ¢
affine m-spaces ¢;(R™) and det-'(0) in M(n, ). Thus it is meaningful to study the
set of zeros of det: M(n, n)—R, which is the same as the set of singular matrices,
or the set of matrices with rank »<#u. More generally we consider, in this paper,
the set of #xm real matrices, #=m, with rank r<s.
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Let f: R™—R? be a given polynomial map. We denote by V¥, the set of all
zeros of f. V; is called an affine algebraic set. The topological structure of V;
has been investigated by Lefschetz [5], Milnor [6], Nash [7], Oleinik [8], Thom [9],
Whitney [10] and others. Whitney defined the notion of stratifications of V7.
Roughly speaking the stratification is an expression of V; as a disjoint union of
manifolds. However it is not easy to describe each component manifold, called a
stratum of the stratification, and to describe geometrical relations among the strata.
Let M(n, m) be the set of all #xm real matrices, n=m, and identify it with R"™
in a natural manner. Let V be the subset of M(xn, m) consisting of all matrices
of rank ¥<zn. Then V is an algebraic set and by making use of ranks of matrices
we have a stratification of ¥/, which Thom called the canonical stratification. The
purpose of this paper is to study and discribe explicitly the canonical stratification
of V.

A simple example of the stratification defined by rank is the following

ProrosiTioN B. Let M(2, 2; 1) be the set of all 2X2 matrices of rank 1. Let
D* be the unit closed ball with center at the origin in R* and S® be the boundary
sphere. Then S*NM(2,2;1) is a torus defined by

{ \/ % (cos 2rt, sin 2rxt, cos2xt’, sin2xt’)

o=sg v §1}
in S And D*N{0}UM(2, 2; 1)) is a cone over S*NM(2, 2; 1) from the origin.

SINM(2, 2 1)

M, 2; 0)= {0}

M@, 2 2)

We are going to show how this simple stratification seen in the above picture
comes into the stratifications of higher dimensional case. In this context we have
the following theorems.

THEOREM A, Let K and L be the manifolds M(n, m; r) and M(n, m; s), respec-
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tively, for s>r=1. Then there exists a tubular neighborhood Tx of K in KUL
(details are explained in §4) and (Tk, p, K, F) becomes a fibve bundle. Here F is
the cone over the manifold S ™11 Mmn—r, m—r;, s—v) from the origin; that
is F={aA|AcS@nm-n-1nMun—r, m—r; s—r), 0=a=1}.

This theorem implies that the stratum L is attached to the stratum K through
the fibre bundle (7%, p, K, F') with the singular fibre F.

THEOREM B. Let Ny be the normal space of M(n, m;1) in R™ at the point
AeM(n, m; 1).

(1) Then U,z M(n, m; 7) = U sercnm ) {INaN {Usz2 M(n, m; $)}} U M(n, m; 1) as
sets. (Remark: The right hand side is not a fibre bundle, because there are points
A and B in M(n, m; 1) such that NyN Np=xg¢.)

(ii) Omn the other hand N4N{Usz: M(n, m; s)} is isomorphic to Ugz M(n—1,
m—1; s") as stratified sets for each AeM(n, m;1).

Let Vi,.r=0®)|I,xO(n—7r) be the real Stiefel manifold of orthonormal r-frames
in R™, where O(n) is the orthogonal group, and A,,, the manifold made from cer-
tain matrices (the precise definition of A, is given in §6). Let G be the discrete
subgroup of O(r) defined by G={T|T=(%;)e0®), t.,==+d;;}. Then we have the
following

THEOREM C. The manifold S™™*NMn, m; r) is homeomorphic to VX g Am.»
wheve Vi rXgAm.» is the orbit space of G wunder the action defined by T-(E, B)
=(ET,TB) for (E, B) of VnrXAn.r.

COROLLARY. (S™1NM(n, m; 1), p, P, S™ 1) is a fibre bundle over the real pro-
jective space P™* with fibve S™.

The author wishes to express his deep gratitude to Prof. H. Omori for his
valuable advice, and Professors M. Adachi and T. Fukuda for their several en-
lightening discussions.

§1. Proof of Proposition A.

Since every polynomial is a linear combination of some monomials, it suffices
to show that the product xy and the sum x+y of the monomials x and y can be
expressed by the determinant of matrices of the desired type.

(i) Product.
Since the determinant of any triangular matrix is a product of the diagonal

elements, the matrices
]_ *
(xy) and [ :|
0

xy

have the same determinant, where * is arbitrary. Furthermore one can add 1
’
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scalar multiple of one row vector to another without changing the value of the
determinant. Hence, when we put *=—y, for example, and multiply the 1st row
by z and add it to the 2nd row, we have the matrix

x 0
without changing the value of the determinant.

(ii) Sum.

The method is completely similar to that of (i). The matrices
1 -y
(x+y) and
0 x+vw

have the same determinant. In the latter matrix we may add the lst row to the
2nd without changing the determinant, namely the matrices

1 -y
(z+y) and [ ]
1 x

have the same determinant. To any polynomial, by appling the methods (i) or
(ii) repeatedly, we have a matrix of the desired type. q.e.d.

ExampLeE. Let f(x, y)=ax?+by?. Through the processes stated below, deter-
minants are not changed.

1 0 —by 1 0 —by
1 —azx 1 —ax
(ax?+by?) — —_— —s |0 1 —gz |—> |0 1 —azx|.
0 ax?+by? x  by?
x by? y z 0

COROLLARY. FEvery polynomial f can be expressed by the determinant of a
certain n(f)Xn(f) matrix.

Proof. Obviously every polynomial f is written as uniquely f=f1+/f Where
f1 consists of monomials of degree =2 and f, consists of that of degree <2. To
each polynomial f we assign the following integers:

d(, fi)=degree of the i-th term of f; (where we assumed all the terms of f;
are ordered in a certain way),

e(fs)=the number of terms of f,.

And we put n(f)=e(f2)+ X dG, f1).

Note that when we apply the methods (i) and (ii) stated above to f we may
apply (i) and (ii) to f; at the same time if necessary. The proof of Corollary is
easy by induction with respect to #n(f).

ReMARK. The number #(f) is not the least degree of the matrices to f.
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ExampLE. Let C® be the 6-dimensional hermitian space, and ¢: C°*—C be the
polynomial function defined by

9(20, 21, *++, 25) =23+ 204+ 2L
We put V=¢7'(0) and S={z2Z+2:Z1+ " +2:Z=1}.
It is well-known, due to Hirzebruch [4] and Brieskorn [1], that YnS=>}° is

an exotic sphere. It is not difficult to show that the polynomial ¢g stated above is
expressed by the determinant of the following matrix A.

-1 43

1 O 24

-1 2o

—25 —24 —23 —2 —21 —20 0 0

§2. Expression of M(n, m;r).

By M(n, m) we denote the smooth manifold of all #X real matrices and by
M(n, m; r) the manifold of all #Xm real matrices with rank exactly . Gp-..r
denotes the Grassmann manifold of r-dimensional subspaces through the origin in
R". By GL(m) we denote the general linear group and we set

I | %
GL’(m—r)={[———]
0|X
where *A denotes the transposed matrix of A. Vh.=GL(m)/GL'(m—r) denotes
the real Stiefel manifold of 7-frames in R™. We naturally identify V7, with
M(m, r;7v) or M(r, m;») under the expression V,,.,.=GL(m)/GL (m—r) or Vi,.,
=GL(m)|GL" (m—7).

XeGL(m—r)

} and GL"(m—1r)={"A|AeGL (m—7)},

* is arbitrary

THEOREM 2.1. For each v, n—1=r=1, (M, m; v), p, Gur,r» Vir) is a smooth
fibre bundle over Gu—r,r with fibre Vi,

ReEMARK. When we consider the singularities of a differentiable map, these
singularities are expressed and classified by the rank of the Jacobian matrices of
the map at the points. (see Fukuda [3] for example). In this sense, the manifolds
M(n, m; r) are the most fundamental one in the study of singularities.
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The proof of Theorem is devided into three steps.

LemMA 2.1. Let M=M(n, m;r) and G=GL(#n)XGL(m). Then G acts on M,
and M turns out to be a homogeneous space of G.

Proof. For any (P, Q) of G and for any A of M, we define the action of
(P,Q) on A by (P,Q)-A=PAQ-'. Then G acts transitively on M. Let H be the
isotropy subgroup of G at the point E, of M, where E, is the matrix of the form

ot

By simple calculation we find that H has the form:

I {(I:Pl Pz] {Pl 0 D PieGL(r), PieGL(n—7), QieGL(m~—7r),
WN\olal Lede }

P; and @, are arbitrary
Therefore the manifold M(n, m; ) is diffeomorphic to G/H. q.e.d.

LemMA 2.2. GJH is the total space of a fibve bundle over a Grassmann
manifold.

Proof. We put

A|B

Hi=|—|—

0|D
which is a closed subgroup of GL(x). Therefore H;XGL(m) is a closed subgroup
of G, and the subgroup H in Lemma 2.1 is closed in H; X GL(m). Since H;x GL(m)
admits a local cross-section in G, (G/H, p, GL(n)|H,, (HiXGL(m))|H) is a locally

trivial fibre bundle. Obviously, GL(n)/Hi~Gy-r,r», Where X=~Y means that X is
diffeomorphic to Y.  q.e.d.

LEMMA 2.3. The fibve of the above fibre bundle (G|H, p, GL(n)|H,, (H,
X GL(m))[H) is diffeomorphic to the real Stiefel manifold Vi

AeGL(r), DeGL(n— r)}
BeM(r, n—7) ’

Proof. For simplicity we denote by I, the one point space {I,}. Let K=I,
XGL(m). Then from KH=HK=H;XGL(m), where H is the group mentioned in
Lemma 2.1, it follows that KH is a closed subgroup of G. Let H; be the follow-
ing subgroup of GL(m);

0
D

L
H2={ _—
Cl

Since K is a Lie group, the map of K/KNH to KH/H defined by k(KN H)—kH
is a diffeomorphism. On the other hand KNH=I,xH, Hence (HixXGL(m))/|H
=L, X GL(m)|I, X Hy~GL(m)|Hy~ V', This completes the proof of Lemma 2. 3.

I, is the rxr unit matrix, }

C'eM(m—r,r), D'eGL(m—7r)
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Combining the above lemmas, the proof of Theorem 2.1 is complete.

§3. Normal bundle of M(n, m;r).

In this section we study the normal bundle of M(n, m; v) in M(n, m), which
is naturally identified with R". For any two points A and B of M(n, m) the
inner product <A, B) is expressed in the form <A, B)=trace (A*B).

THEOREM 3.1. Let N(M) be the normal bundle of Mm, m;r) in Mn, m).
Then there arve maps ¢. GL(n) X GL(m)—M(n, m; v) and ¢: GL(n) X GL(m) X R @ m=r
—N(M) satisfying the following

(a) GL)X GL(m) X R -1 5 Ny
b T

GL(n) X GL(m)——> M(n, m; r)
¢

diagram (1)

The commutativity holds in the diagram.

(b) ¢ is fibve preserving and is a linear isomorphism at each fibre, where
GL(n)X GL(m)xX R®™-" =" 4s yegarded as a trivial vector bundle with the natural
projection p.

(¢c) More precisely, we have the following bundle isomorphism

{GL(n) X GL(m) —><_ R ™"}/4 >, N(M)

KixX K,
b T
(GL(n)X GL(m)| Ky X K3)|4 ——— M(n, m; r),

®Do
diagram (2)

where KixX K, and 4 are the following:
I | A,
K1= 1
014,
5t
K2= _—
0 |B.

A={(G1, Gz) I G1=G2€GL(7’)}.

AseGL(n—r), }

A, is arbitrary

BieGL(m—r), }
and

B, is arbitrary
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The proof of this theorem consists of several lemmas mentioned below. First
of all, one has to imbed the trivial bundle GL(%)XGL(m)X R™ ™" into
GL(n)X GL(m)x R™™.

LemMma 3.1. For amy point (A, B) of GL(n)XGL(m) we define the liner space
Ed. 5 as follows:

r m—r
r{{O 0
n—r{L 0

&
GL(n)X GL(m)x R@m -1 — GL(n) X GL(m)x R*™

| |

GL(n)X GL(m) ————d———> GL(n) X GL(m)
id.

0
Blip=1{'47|—
0

-
—|B?

*

]; * is arbitmry}.
%

We define the map &

diagram (3)
by &(A, B, Z)=(A, B, *A*ZB"Y), where

- 0
ZeMn—r, m—r) and Z=l:—0—

0
—] eM(n, m).
Z

Then £ is an imbedding of GL(n)XGL(m)X R™" ™= into GL(n)X GL(m)X R™™,
Proof. 1t is trivial from the definition of &.

LemMma 3.2. Let
I, Iy
E,= F eMm,r;v) and E,= T eM(m, ;7).

We define the map ¢: GL(n)X GL(m)—M(n, m; r) by o(A, By=(AE,)(BEn,) men-
tioned in (@) of Theorem 3.1. Then Eti g is the normal space to M(n, m;r) in
R™ at ¢(A, B).

Proof. The map ¢ is smooth and onto. Let u and v be tangent vectors
to GL(n) at A and to GL(m) at B, respectively. Since GL(xn) is an open sub-
manifold of M(n, n), we may regard M(n, n) as the tangent space of GL(n) at
each point. M(m, m) can be thought of as the tangent space of GL(m). More-
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over, A and B are linear isomorphisms of M(n, n) and M(m, m) respectively.
u and v may be written as the form u=AX and v=BY, where XeM(n, n) and
YeM@m, m). Let Tcu5(GL(n)XGL(m)) and T,u, ;M be the tangent spaces to
GL(n)xGL(m) at (A, B) and to M=M(n, m;r) at ¢(A, B), respectively. And let
do. 3t Tca, 5(GL(m) X GL(m))—Tyca, ;M be the linear map induced by ¢. For any
tangent vector (u, v)=(AX, BY) we see that

*
doca, 5 (U, V)=UER)(BER)+(AE) (WER)=A [—

*
——
r

* ]

‘B .
0 tn—r
m—r

Hence for each fixed pair (4, B), the tangent space to M(n, m;¥) at ¢(A, B) has
the following form:

* }

- tB

0

*
E(A.B)-:{A[—
And E}, 5 defined in Lemma 3.1 becomes the orthogonal complement of E4, 5.

* are arbitrary matrices }
*
In fact, for any element

[ x| %
A —————]ﬁB
L %0
of E¢4, 3 and for any element
o]0
tA——l — B—l
L O] = }

of Ed, 5, We see that

* | % 0
trace{A [—— —} tBtB-1 [—

0 0
—]A-‘} =trace{AA‘l [—
[0 0

* 0

*
—“=0. q.e.d.
0

Proof. We define the map ¢: GL(») XGL(m)x R ™1 — N(M) by ¢(A, B, Z)
=(pX1r)ot(A, B, Z)=((AE)YBER), tA-*ZB"), where 1 is the identity map of R»™,
From the definition of the maps, the commutativity holds. q.e.d.

Lemma 3.3. (Proof of (a) of Theorem 3.1).

Next we will consider the construction of the normal bundle N(M) from the
trivial bundle (GL(#)X GL(m)X R®-" -1 p GL(n)X GL(m)). We consider the fol-
lowing commutative diagram.
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GL(n) x GL(m) x Rn=r)m—7) 4 = N(M)

P—

| GL(n)X GL(m)=><< Ro=7)m=1) 7
Kix K>

GL(1)x GL(m) L4 M(n, m; 7)

\ P (GL(n)x GL(m) >< Ro=r)m—=r)} /A/
Kix K:
GL(n)x GL(m)|K1 ><Kz\
bk
(GL(n) % GL(m)| K1 x K2)/4

VarX Ve

(Vir X V)4

Definitions of maps in the diagram are given in the lemmas mentioned below.
We recall the following well-known

TueoreM (cf. H. Cartan [2]). Let X be a principal G-bundle and Y any G-
space. Then (XXgY,p, X|G,Y) is a fibve bundle with fibre Y, wherve we write
XXgY for (XXY)|G and p is the projection induced by the canonical projection
T XXY—X.

Applying this theorem we have

LemMA 3.4. Let KiX K, be the closed subgroup of GL(n)X GL(m) defined in
©) of Theovem 3.1. Then KiX K, acis on GL#)XGL(m)X R ™= and its orbit
Space

GL(n) X GL(m) —><_ R®-m m-n
Kix K,

becomes a total space of a fibre bundle.

Proof. For any (P,Q) of GL(n)XGL(m) we define the action of (ki, &)
of KixK; by (ki, k2)o(P, Q)=(Pk, Qk;*). Then (GL(n)XGL(m), g, GL(n) X GL(mn)/
KX K;, Kix K;) becomes a principal fibre bundle, where ¢ GL(%)XxGL{(m)—
GL(n)XGL(m)]K1 X K, is the canonical projection. To each element Z of M(n—rv,
m—r) We assign
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- 0]o0

Z=|—l—

0|Z
of M(n,m) and by this correspondence we identify R® ™1 =M(n—r, m—r)
with the subset R®-n™-nx() of R"™=M(n, m). For any point Z of R®-mm-n

we define the action of (ki k) by (ki ko)-Z=‘k*Zk;'. Then K,xK, acts on
R@-mm-n_ Applying the theorem stated above,

(GLOYXGL(m) 2 RO, p, GLO)X GL(m| K Ky RO ")
1 X £

becomes a fibre bundle. The projection p is defined by p([P, @, Z]1)=q(P, ), where
[P, Q, Z] is the coset containing (P, @, Z). q.e.d.

LeMMA 3.5. Let 4 be the closed subgroup of GL()XGL(r) defined by 4
={(G1, G2) | G1=G:€GL()}. Then 4 acts on

GL(n) X GL(m) —><_ R®=nwm-n
KiXK;

as a topological transformation group.

Proof. For any two elements (G, G;) and (Gi, Gz) of 4 we define the product
,+, in 4 by (G, GY)+(G1, G2)=(G!G,, GiG,). We identify each element (G, G,) of 4
with the element (Gi, Gz) of GL(n)X GL(m), where

~ [G: ~ |G
Gi=|— €GL(n) and G.= ?

} €GL(m).

n=r m—7r

By the above identification we define the action of 4 on

GL(n)xX GL(m) —><_ R®-nwm=n
Kl X Kz

by (G, Go)-[P, Q, Z1=[PG:*, QGs, G*ZG5].  We will show that the definition
stated above does not depend on the choice of representatives and this action is
well-defined. For this, it suffices to show that

(PEGTY, QG 'Grikr Z kG = (PG, QGs, 162Gy (mod Ky X Ka)
holds for any element (P&, Q&;%, k7' Zk;) of [P, Q, Z]. We assume that

I Kz ~ Gl 0
ki=|—|— and Gi=|—1—|.
0 0

K, I
I | —KK;* o (Gt 0
kil=|—]————| and Gi'= —.
0 Kt | 0 |1

Then
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We put

I -GLK
Rri=|——— |,
0

K
BB R s R me SR o e
ol kK Jlolrl Lol & | Lolrllo|l &+ |

Hence k;‘§;1=5;‘k{“, and Pk;‘@l":PCN?{‘k{"EP(N};l (mod K;). In the same way,
for
I|K;
k2= e ’
K

0

I |-G KK

k;"=[ ]
ol K

Then k%G,='Gk" and Qk"G,=Q'Ck'=Q'G;, (mod K;). Therefore the defini-
tion does not depend on representatives. Since (G}, G3)-((G1, G2)-[P, Q, Z|)=(GiG,,
GiGy)- [P, Q, Z], the action of 4 is well-defined. q.e.d.

By

Then

we put

(GL(n) X GL(m)K’>< R@-n =)/

1X Ko

we denote the orbit space of 4; that is

(GL(#)x GL(m) K>< Ra=n = A=({[PGT*, Q'G,, G 2G5 | (G, Go)ed)).

1 X K2
LeMmMA 3.6. The action of 4 on the fibre R™ ™7 is trivial. Hence

(GL(n) X GL(m) ~><— R®-nm=)[A=({[PG7%, QG Z] | (Gy, Go)ed)).
Kix K,

Moreover commutativity holds in the following diagram

GL(#n)X GL(m) —>< R "™ —— (GL(n)X GL(m) —><_ R®"™m-"1)/4
K; KX K;

1 X Kz 1 X Lg

GL(n) X GL(m)| K: X K

(GL(n) X GL(m)| K1 X K,)/4.
diagram (4)
Proof. For all (G, Gz) of 4,
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o tG;1|0 O|O ;‘IO O|0 N
‘G 26yt = = =Z.
o lrjlolz]lolr] lolz
Hence the action of 4 is trivial.
For any [P, QI={(PkrY, Qk:")|(k1, k2)e KiX Ky} of GL(n)XGL(m)|Ki X K, we de-

fine the action of (G, Gy) of 4 by (G, Go)-[P, Q1=[PG:*, Q'G,]; and denote its orbit
space by (GL(n)XGL(m)/KiX Kz)/d; that is

(GL(n) X GL(m)| K1 X K)|d={[PGi*, Q'G:]|(G1, Go)ed}}.

Let o/, ¢s and ¢; be the following canonical projections:

7't (GL(n)X GL(m) —><_ R" " ™=1)[4 — (GL(n) X GL(m)[ K1 X K>)/4,

KixK,
¢t GL(n)X GL(m) —>< R™ ™" — (GL(n) X GL(m) —><_ R™ " m-)/4
Kix K, Kix K

and
st GL(n)X GL(m)| K1 X K» — (GL(n) X GL(m)| K1 X Ky)/ 4.

Then from the definitions of these maps we see that the commutativity holds in
the diagram (4). g.e.d.

LemMA 3.7. GL(n)X GL(m)|KiX K; is diffeomorphic to Vi X Vi,

Proof. First of all we identify V5, ,.X Vi, with M(r, n; ¥) X M(r, m; 7). We
define the action of (P, Q) of GL#)XGL(m) on (X,Y) of Vi, XVh, by
(P, Q) (X, Y)=(XtP, Y*Q). Then GL(n)XGL(m) acts on V,,.X Vn., transitively.
Let E,=,|0)eM(r, n;v) and E,=(I.|0)eM(r, m; ). Then the isotropy subgroup
of GL(n)XGL(m) at E,XFE, is KixXK, Hence there is a diffeomorphism a;:
GLn#)XGLm)[ Ky X Ks — Vipo X Vi Explicitly, a; has the following form. Let

Py | P, Q| - [B - [@
P=|—|—|, Q=|—|—|, P=|—]| and @Q=|—1|.
P. 3 P, 4 Qa Q4 P 3 Q3
We naturally identify M(r, % r)xXM(r, m;r) with M(n, 7; 7)XM(m, r;7). Then
ay([P, Q)=(P, @), where [P, Q] is the coset containing (P, Q). gq.e.d.

LEMMA 3.8. Vi, X Vhold is diffeomorphic to M(n, m; 7).

Proof. For any (P, Q) of V%, X Vh.=Mm, ;)X M(m,r;r) we define the
action of (Gi, Gz) of 4 by (Gi, Go)-(P, @) =(PG7", @'G,), and denote its orbit space
by VieX Vil

Next, for any [P, Q1={(PGi", @'Go)|(Gy, Go)ed} of Vi5,XVi./4, we define
the action of (4, B) of GL(#)XGL(m) on [P, Q] by (A, B)-[P, Q1=[AP, *B~'q]
={(APG7!, tB~'Q'G,)|(G1, Gs)ed}. Since every element of V},,=M(n,r;7) (resp.
Vi.»=M(m, r; 7)) has maximal rank, it can be transformed into the canonical form
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KAL)

by multiplying some element of GL(z) (resp. GL(m)). Hence the action is
transitive. Let 4 be the isotropy subgroup of GL(#)XGL(m) at [E., En)
={(E.GTY, En'G,)|(Gy, G2)ed} of V4, XVh,/4. Then for each (A4,B) of 4,
(A, B):[Ey, En]=[AE,, *BEy]=[E,, En]. Since

A AT I, A AR A tB)
AE,=|—I—||—|=|— and ‘'BTlE,= —|=[—]
As|Ad]L O As tBi1tB 1L 0 tB;
where
el
BB, | B, ’

B,
the necessary and sufficient condition for (AE,, tB-'E,) to be contained in [E}, Enx]
is that the following three conditions be satisfied:

(i) As=0, (ii) *B;=0 and (iii) A7'=B

Obviously B{B,=I, and B/B,=0. Hence B!=B;i! and B,=0. Moreover, by (iii),
A:=B;. Hence the group 4 has the following form:

{([Al A7 [Ai| 0 J A1eGL(r); AwGL(n—7); BieGL(m~7)
gJ=\—=—=b |=1= :
0 AAJ [Bs B ) }

A, and B; are arbitrary
Therefore 9/ agrees with the group H stated in Lemma 3.1, and

na X Vneld= H\GL(1) X GL(m)=H\GL(n) X GL(m)
=GL(n) X GL(m)[H=M (n, m; r).

Explicitly, the diffeomorphism @: V7, X Vi,./d— M(n, m; r) is given by o([P, Q1)
=PQ. q.e.d

LeMMA 3.9. The group 4 acts on GL(n)XGL(m)|KiX K, and the orbit space
(GL(n)X GL(m)|Ki X Ky)|4 has a structure of smooth manifolds. Moreover there
exists a diffeomorphism az: (GL(n)X GL(m)|KiX Kz)[4 — Ve X Vinl4.

Remark. First, for the proof of Lemma 3.9, we recall the following well-
known theorem of G-spaces. (cf. H. Cartan [2]).

Let G be a Lie group, X and Y be G-spaces. A map f: X— Y is equivariant
if flgx)=gf(x) for all (g, r)eGXX. An equivariant homeomorphism of X onto Y
is called an equivalence of X with Y. If X and Y are G-spaces and f: X—Y
is equivariant, then there is a unique map f: X/G— Y/G such that fory=rnyof,
where ny and 7y are canonical projections, This map ¢ is called the map induced
by 1.
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THEOREM. Let X and Y be G-spaces. If f: X—Y is an equivalence of X
with Y then the induced map f is a homeomorphism of X|G onto Y|G.

Proof of Lemma 3. 9.

We recall that the action of 4 on V5, X Vh,=M(n, r; ¥) X M(m, r; v) was defined
by (G, Go)-(P, @)=(PG*, @Gs) for (G, G) of 4, and on GL(n)XGL(m)/Kix K,
by (Gi, Go)-[P, Q]=[PG{% Q'G:]. The map ai: GLn)XGLm)|KiX Kz— VX Ve
was defined by ([P, Q)=(P, Q). Hence, by simple calculation we see that
ai[(Gy, Go)- (P, Q)]=(G1, Go)-ax([P, Q). Thus a; is an equivalence. By the above
theorem of G-spaces, there is a homeomorphism as: (GL(#)X GL(m)|K:X Ky)|4—
VieX Vo4 induced by a;. Explicitly, a, is defined by

{[PG7, QG)|(Gi, Go)edy={(PGiY, O'G)|(G1, Go)ed).

By Lemmas 3.7 and 3.8, (GL(n) X GL(m)/K,x K;)/4 has a structure of smooth
manifold and a, becomes a diffeomorphism under this structure. gq.e.d.

LemMA 3.10. (Proof of (b) and (c) of Theovem 3.1.) Let ¢y be the map of

(GL(n) % GL(m) < R®»" (m—r))/A
KixXK,

to N(M) defined by $o{[PG7*, QCsy Z1|(G1, Go)ed}=(PE,En'Q, 'P-2Q) and ¢, be
the map of (GLn)XGL(m)|KixX Kp)[d to M, m;r) defined by @o=0oas. Then
(o, o) is @ bundle isomorphism.

Proof. From the definition of ¢, defined in Lemma 3.3, Theorem (b) is
obvious. Since @ and . are diffeomorphisms, so does ¢,. By Lemma 3.9, ¢ is
well-defined. Obviously ¢, is one-to-one and onto. Since z and =’ are locally
trivial and ¢, is a diffeomorphism, ¢, turns out to be a diffeomorphism. q.e.d.

§4. Attaching of M(n, m; s) to M(n, m; r); Proof of Theorem A.

For any manifold Y the cone CY over Y is defined to be the following
quotient space:

CY=Yx1]Yx1, where I denotes the closed unit interval [0, 1].

Let é=(F, r, B, F) be any fibre bundle. For £ we define the fibre bundle
CYL(¢) as follows:

Its total space is the mapping cylinder M(x) of the projection =, the base
space is B and the projection p is the natural projection p: M(z)— B of the
mapping cylinder. That is, CYL(&)=(M(x), p, B, CY).

LeMMA 4. 1. The structural group KiX K, of the bundle

(GL(n)X GL(m) —><_ R®nm-n_ p GL(n)X GL(m)|K: X K;)
KixXK;
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can be reduced to O(n—r)XO(m—r).
Proof. Since GL(n—r)=0n—r)x R¥»@-nw-ri> Temma 4.1 is clear.

For any fixed pair (r,s), 1=r<s=un, we define a subset D}{p of Edp as
follows:

010
Dt py=1tA™ ——:lB"l
0|2

Let p(A, B) be the function {(1/2) trace (AE,'E,'B)Y(AE'E,tB)}? of (A, B). Then we
see that D% 5, =S®-"=-n-1(o(A, B))N M(n—r, m—r; s—v), Where S®@-nm-n-1(o(A  B))
is the sphere in R®" =" of radius p(A, B) about the origin. Since for any s=0
of R and A of M(n—v, m—r;s—v) sA is contained again in M(n—r, m—r; s—7),
Dif g is diffeomorphic to S®-n@n-10NM(n—r, m—r; s—r) for each (A, B) of
GL(n)xGL(m). We identify T1€O(n—r) with

ZeMn—r, m—rv; s—r), }
trace (Z°2)=(1/2) trace (AEy Ent B AE EniB))

~R

|0 N~ | I
1= [— —} eO(n) and TyeO(m—r) with T,= [—
0|7 0

[l sl -5
olz] Lolzllolnl Lo
D7 g is preserved invariantly under the action of O(n—7)xO(m—7r). Let D be the
fibre bundle made from

(GL(n) X GL(m) —><_ R®™nm-n_ p GL(#n) X GL(m)| K, X K;)
KixX K,

0
—] €O(m).
T,

2

Since

=
T.ZT5 |

by replacing the fibre R™-"™-" with the fibre in the form of D%g z,. q.e.d.

LEMMA 4. 2. (Proof of Theorem A.) The image of the bundle CYL(D) by the
map (1, ¢1) is @ tubular neighborhood of Mn, m;r) in M(n, m; v)UM(n, m; s).

Proof. 1t is easy to see that
7]
tA-1 | — | B!
o1z

is contained in Ed 5 N (M(n, m; v)UM(n, m; s)) if and only if Z is in {0}UMm—r7,
m—7v; s—r). This completes the proof of Lemma 4.2. Obviously Lemma 4.2
implies Theorem A. g.e.d.

§5. Proof of Theorem B.
Proof of (i). Since {0}UM(n, m; 1) is closed in R™™, for any X of M(n, m;r)
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(r>1), there is a matrix A of {0}UM(n, m; 1) such that +/{X, A) gives the dis-
tance between X and {0} UM (n, m; 1). It is easy to show that A=0. Hence A is
in M(n,m;1). And X is in Ny

Proof of (ii). It is the same as that of Lemma 3. 2. Since rank A=1, there
are matrices PeGL(n) and QeGL(m) such that A=(PE,)"QFEy), where

1 1
En=[ 0 :'GM(n, 1) and Em=|i 0 }eM(m, 1.

0 0

3

010
Ny=1 tP_l[T—}Q—I
0] X

Let E=E,'E,. Then

XeM(n—1, m—l)}.

Hence

XeM(n—1, m—l)}.

Since

r o0 [ 0 ,() ]
N e o B R (e
0| X

Lo| x|

is a rank-preserving linear map of Nz to Ny,
0l--0
tP-—l T_' Q—IGNA
0] X
is in Usz2 M(n, m; s) if and only if X is in U,z M(n—1, m—1; 7). q.e.d.

§6. Proof of Theorem C.

Let V,.»=0m)[I, XxO(n—r) be the real Stiefel manifold of orthonormal r-frames
in R". V,,r is canonically identified with the set {A|AeM(n, r;r), ‘AA=I}. We
naturally identify M(n, r) with R™. Then the inner product <4, A) is expressed
by <A, Ay=trace (*tAA)=trace (4*A).

We call a matrix A of M(r,m) an upper triangular matrix if A has the
following form:
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We consider the following sets:

T rom={A|AeM(r, m; r), A is upper triangular},
Am,rz{AlAegr.m, <Ar A>=1}

Obviously A, is a submanifold of M(r, m; ») of dimension rm—r(r—1)2—1. We
put K(n, m; r)=S"""NM(n, m; ), where S™* is the unit sphere in R*" centered
at the origin.

LEmMMA 6.1. Any element of K(n, m; 1) can be expressed in a product of some
elements of Va.r and An, .

Proof. For any P=(p;;) of K(n,m;r), let A, be the first non-zero column
vector and W, be the first column vector that is linearly independent of %;.
Let %A; be the first column vector that is linearly independent of % and .
By induction we have r linearly independent column vectors Ui, s, ---, %.. By
these vectors P is represented in the following form:

cun Cig  weeveenee Cim
P=,2; - N,) Con v Com
Crp *oveee Crm

Let {ey, e, :--, e,;} be the orthonormal r-frame obtained from {%U;, Az, ---, A,}. Then
P is represented in the following form:

bDin big  eeeeeeens bim
P=(e1eg “ee e') bzz R b?m
0 D by e Brm
We set
Bra  eeeeeeene Bim
E=(ee: - e,) and B= . :
0 " by oo bom

Then EeV,,, and BeM(r, m;¥). Moreover, since PeK(n, m;r), {EB, EB)=trace
(*B*EEB)=trace (*BB)=1.
Hence Bey, . q.e.d.

We define a map @: Vir XAm.r— K(n, m; v) by @&, B)=EB. Since, at each
point, ¢ is a polynomial with respect to the local coordinates, ¢ is continuous.
Obviously @ is onto. Next we assume P=EB=E'B’ for E, E’ of V,., and B, B’
of Am,r. Let EB=(e;bj) and E'B'=(e;by). Then e;bju=e; b} holds for all i,j
and k.

Assume b;x>0. Then
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Since

Hence bj,=+by and
ei;=*e, (i=1, ---, n; double signs in the same order). ------ *)

Also, since e by=e.b) (=1, ---, m), bip==%by (k=1 ---, m) (double signs in the
same order as (*)). If b;=0, then b}=0 because

e
b= eﬁj by, for some e];30.

vf

Since (bj1, -+, bjm)=0, there is b;,%0 so that bj,=4by. Since e,bj=e; b, e:;
=de,; (i=1, ---, n) (double signs in the same order as (*)). Let G be a discrete
subgroup of O(r) defined by

G={T=(t)ltj= i), TeO0r)}.

We define an action of 7€G on (E, B)€ Vi, rXAn,» by T-(E, B)Y=(ET, TB). Then
G acts freely on V, ,XAn.,» And for a given PeK(n, m;r) the expression of P
in P=FEB is unique up to the action of G. Since G is a finite group, its action
is totally discontinuous and V, ,— Va.,/G becomes a principal G-bundle. And
VarXadm,»— Vp.-J/G turns out to be an associated fibre bundle with fibre A, .
Here V., ,Xgdn,» denotes the orbit space (Vi ,XAm.)|G. Hence for the given
EBeK(n,m;r) we have @Y EB)={(ET, TB)|TeG}. Therefore the map ¢: V,.,
X gAm,r— K(n, m; v) defined by ¢([E, B])=@(E, B)=EB is a continuous map, one-
to-one and onto.

LEMMA 6.2. The map ¢: Vi, rXeAm.r— K, m; ) 1s a homeomorphism.

Proof. Since @ is an onto map, for any PeK(n, m; r) there is (E, B)e V. r X A, »
such that @(E, B)=P. To each PeK(n, m;r) we assign the class [E, Bl€ Va rXgdn,r
which containing (E, B). Then this correspondence ¢ becomes a map ¢: K(n, m; r)
— VaprXadn.». At each point the component functions of ¢ have the form of
rational functions with respect to the local coordinates. Hence ¢ is a continuous
function. Since ¢op=id. and ¢e¢=id., ¢ is a homeomorphism.  q.e.d.

Let D™ be the unit closed ball {z|zeR™™, X}, (x;)?=<1}. If A is in M (n, m; r),
sA is also in M(n, m; r) for any sx0. Hence we have the following
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CoroLLARY. D" N ({0} U M(n, m; v)) is equal to the cone Cone (SN M(n, m;r))
over S"™ N\ M(n, m; r). Moreover the pair (D™, D" N({0}U M(n, m; r))) is equal to
the pair (Cone (S*™-*), Cone (S*™1N M(n, m; r))).

§7. Proof of Proposition B.

By the corollary to Theorem C, S*NM(2, 2;1) is diffeomorphic to a 2-dimen-
sional torus. Hence it suffices to parametrize S*NM(2,2;1) by IxI, where
I=[0,1]. Let D’ be the following closed subset of IxI defined by four in-
equalities:

D'={(t, )|(¢, ¢")eIXI; Ior=d, st—t==

3. 1 1
2SR =2/

We identify the boundary of D’ by the following relations: (¢, £4+1/2)~(1/2+¢, ©)
and (¢, —¢+1/2)~1/2+¢t, —t+1) for 0=¢=1/2.

1r ,

1 t

Let D be the quotient space D’/~. Obviously D is diffeomorphic to a 2-dimen-
sional torus. We define a map %~ of D to S*NM (2, 2; 1) as follows:

h(t, t')=(cos 2rt cos 2xt’, cos 2xtsin 2xt’, sin 2at cos 2xt’, sin 2xt sin 2at’).

This definition is compatible with the relation “~” and % is well-defined. Clearly
D)cS*NM(2,2;1). By the two lemmas stated below, we see that % is a
diffeomorphism.

Lemma 7.1. 2 D—>S*NM(2, 2;1) is an onto map.

Proof. Lemma 7.1 is equivalent to the following condition. For any 4-tuple
(@1, as, as, a,) of real numbers satisfing the following relations:
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Q184 — Q203 =0,

(1)

a+aitaitai=1,

there is a solution (%, #}), in D, of the following system of equations with two
unknowns # and #;

cos 2rt cos 2xt’ =ay,

cos 2xt sin 2t =as,

(2)

sin 2zt cos 2nt’ =as,
sin 2zt sin 2xt =a,.
Substituting a=2x¢ and p=2x¢" into (2) we have the following equations:

cos (a+p)=a1—a,
(A) .
sin (a+p)=az+as;

sin (e@— p)=as—a.,
(B)

cos (a—p)=a1+a..
Making use of (1) we see that (A) and (B) have solutions. If we solve the above
system under the conditions r=a+pf<3r and —r=a—p<=z, We obtain its unique
solution. By ay=2z#, and B,=2x#; we denote the unique solution. Clearly # and
t; satisfy the following inequalities: 1/2=<¢#,+#<3/2 and —1/2=<¢—¢#;<1/2. Hence
this solution (%, #}) is in D. Therefore % is an onto map and also it is proved
in the above arguments that % is a one-to-one map. q.e.d.

LEMMA 7.2. & is a diffeomorphism.

Proof. We regard the map # as a map of D into R* and consider the
Jacobian matrix J& of % with respect to the coordinates (7, #) and (i, s, 25, Z4).
It is sufficient to show that % has maximal rank on D. JZ has the following
form:

[—sin 2nt cos 2xt!  —sin 2zt sin 2z’ cos 2zt cos 2zt cos 2zt sin 2nt’]

—co0S 2nt sin 2z’ cos 2zt cos 2z’  —sin 2zt sin 2zt sin 2z cos 2xt’
It is easy to see that /% has maximal rank on D. q.e.d.

Let @ be the map of IXI to S*NM(2, 2; 1) defined by

o, )= <— %(cos 2xt +cos 2xt’), — %(Sin 2nt+sin 2xt’),

— ~%(sin 2nt —sin 2xt’), —;—(cos 2rt—cos 2zt )).
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By Lemmas 7.1 and 7.2 @ is a parametrization of S*NM(2, 2;1) with two para-
meters ¢ and #. Let A be the following matrix

Let

-1 0 0 1

A=«/I 0 -1 -1 0
2l -1 0o o0 -1

0 -1 1 0

CT:= [\/ % (cos 2rt, sin 2xt, cos 2xt’, sin 2zt’) | 0=¢, ¢/ <1}.

Then it is easy to show that A is in SO(4) and A maps CT? on S*NM(2, 2;1) by
the right operation. q.e.d.
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