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ON CANONICAL STRATIFICATIONS

BY AKIRA KORIYAMA

§ 0. Introduction.

It is well-known that every compact manifold can be imbedded into a Euclidean
m-space Rm for some m. Furthermore Nash [7] proved that for a closed connected
smooth manifold M, smoothly imbedded in Rm, there is a polynomial map /: Rm-*Rq

for some q such that M is a connected component of /~α(0). A polynomial map /
is an ordered set (glt g2, , gq) of polynomial functions.

On the other hand, by a simple calculation, we have the following

PROPOSITION A. Every polynomial can be expressed in a form of determinant
of a certain square matrix whose entries are monomials of degree 1 or 0. More
precisely, for any polynomial function g: Rm-+R, there is a positive integer n and
an afβne imbedding ψ of Rm into the space M(n, n) of all nxn real matrices such
that the following diagram is commutative:

M(n, n)

(This was communicated to the author by T. Ishikawa).

REMARK. For the given polynomial map f=(gi, —, gq): Rm->Rq, we take the
positive integer n common to all gt.

On account of the above facts every closed connected smooth manifold can be
imbedded into M(n, n) for some n and is expressed as the intersection of the q
aίϊine m-spaces ψi(Rm) and det-^O) in M(n, ή). Thus it is meaningful to study the
set of zeros of det: M(n, n)—>R, which is the same as the set of singular matrices,
or the set of matrices with rank r<n. More generally we consider, in this paper,
the set of nxm real matrices, n^m, with rank r<n.
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Let /: Rm-+Rq be a given polynomial map. We denote by F/ the set of all
zeros of /. F/ is called an aίϊine algebraic set. The topological structure of F/
has been investigated by Lefschetz [5], Milnor [6], Nash [7], Oleϊnik [8], Thorn [9],
Whitney [10] and others. Whitney defined the notion of stratifications of F/.
Roughly speaking the stratification is an expression of F/ as a disjoint union of
manifolds. However it is not easy to describe each component manifold, called a
stratum of the stratification, and to describe geometrical relations among the strata.
Let M(n, m) be the set of all nxm real matrices, n^m, and identify it with Rnm

in a natural manner. Let F be the subset of M(n, m) consisting of all matrices
of rank r<n. Then V is an algebraic set and by making use of ranks of matrices
we have a stratification of F, which Thorn called the canonical stratification. The
purpose of this paper is to study and discribe explicitly the canonical stratification
of F.

A simple example of the stratification defined by rank is the following

PROPOSITION B. Let M(2, 2; 1) be the set of all 2x2 matrices of rank 1. Let
D* be the unit closed ball with center at the origin in R4 and S3 be the boundary
sphere. Then S3 Π M(2, 2; 1) is a torus defined by

T
-τr-(cos2πf,

, cos 2 ^ ,

in S3. And D4n((0}UM(2, 2; 1)) is a cone over S3ΠM(2, 2; 1) from the origin.

'3nΛf(2,2;l)

M(2, 2; 2)-

-M(2, 2; 1)

M(2,2;0)={0}

We are going to show how this simple stratification seen in the above picture
comes into the stratifications of higher dimensional case. In this context we have
the following theorems.

THEOREM A, Let K and L be the manifolds M(n, m; r) and M(n, m; s), respec-
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tively, for s>r^l. Then there exists a tubular neighborhood Tκ of K in K[jL
(details are explained in §4) and (Tκ,p, K, F) becomes a fibre bundle. Here F is
the cone over the manifold scn-mm-o-iς\M(n—r, m—r .s—r) from the origin; that
is F={αA|A€SCrι-r>Cm-^-1ΠM(n-r,m-r, s-r), O^α^l}.

This theorem implies that the stratum L is attached to the stratum K through
the fibre bundle (Tκ,p, K, F) with the singular fibre F.

THEOREM B. Let NA be the normal space of M(n, m; 1) in Rnm at the point
AsM(n, m; 1).

( i ) Then U r*i M(ny m;r)=U A^MCn.m ,o {NA Π {U s^2 M(n, m\ s)}} U Λf(w, m; 1) as
sets. (Remark: The right hand side is not a fibre bundle, because there are points
A and B in M(n9 m; 1) such that NAnNB*φ.)

(ii) On the other hand NA Π {U s^2 M{n, m; s)} is isomorphic to U ^ i M ( » - l ,
m—1; s') as stratified sets for each AsM(n, m\ 1).

Let Vn,r=O(ή)IIrxO(n—r) be the real Stiefel manifold of orthonormal r-frames
in Rn, where O(n) is the orthogonal group, and Am,r the manifold made from cer-
tain matrices (the precise definition of Am,r is given in §6). Let G be the discrete
subgroup of 0{f) defined by G = {T\T=(tlJ)cO(r), tZj = ±dij}. Then we have the
following

THEOREM C. The manifold S71™-1 f)M(n, ni; r) is homeomorphic to
where Vn,rXGAm,r is the orbit space of G under the action defined by T (E,B)
={ET, TB) for (E} B) of Vn,rXAm,r

COROLLARY. (S7*™-1 Π M(n, m; 1), p, Pn~1

t S™-1) is a fibre bundle over the real pro-
jective space Pn~λ with fibre S™-1.

The author wishes to express his deep gratitude to Prof. H. Omori for his
valuable advice, and Professors M. Adachi and T. Fukuda for their several en-
lightening discussions.

§1. Proof of Proposition A.

Since every polynomial is a linear combination of some monomials, it suffices
to show that the product xy and the sum x+y of the monomials x and y can be
expressed by the determinant of matrices of the desired type.

( i ) Product.

Since the determinant of any triangular matrix is a product of the diagonal
elements, the matrices

Γl *
(xy) and

Lθ xy.

have the same determinant, where * is arbitrary. Furthermore one can add a
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scalar multiple of one row vector to another without changing the value of the
determinant. Hence, when we put *=—?/, for example, and multiply the 1st row
by x and add it to the 2nd row, we have the matrix

1 -V'

0

without changing the value of the determinant.

(ii) Sum.

The method is completely similar to that of (i). The matrices

1 -v 1

.0 x+y\
(x+y) and

have the same determinant. In the latter matrix we may add the 1st row to the
2nd without changing the determinant, namely the matrices

(x+y) and [: v
have the same determinant. To any polynomial, by appling the methods (i) or
(ii) repeatedly, we have a matrix of the desired type. q. e. d.

EXAMPLE. Let f(xyy)=ax2+by2. Through the processes stated below, deter-
minants are not changed.

Γ l 0 -by-\
"1 — ax 1 [ I — ccx

(ax2+by2)
0 ax2+by2

x by2

[-1 0 -by -]

0 1 -ax

-0 x by2

0 1 -ax

Ly x 0 J

COROLLARY. Every polynomial f can be expressed by the determinant of a
certain n(f)xn(f) matrix.

Proof. Obviously every polynomial / is written as uniquely / = / i + / 2 , where
/i consists of monomials of degree ^ 2 and f2 consists of that of degree <2. To
each polynomial / we assign the following integers:

d(iff1)=άegτee of the i-th term of /i (where we assumed all the terms of/i
are ordered in a certain way),

£(/2)=the number of terms of /2.
And we put n(f)=e(f2) + Σd(i,fi).
Note that when we apply the methods (i) and (ii) stated above to / we may

apply (i) and (ii) to fx at the same time if necessary. The proof of Corollary is
easy by induction with respect to n(f).

REMARK. The number n(f) is not the least degree of the matrices to /.
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EXAMPLE. Let C6 be the β-dimensional hermitian space, and g: C6-^C be the
polynomial function defined by

g(z0, zu •••, z5)=zl+zl + ~>+zz

5.

Σ9

We put V=g-\0) and S={z\zoZo+z1zi + '
It is well-known, due to Hirzebruch [4] and Brieskorn [1], that VΠS=

an exotic sphere. It is not difficult to show that the polynomial g stated above is
expressed by the determinant of the following matrix A.

A=

0

0

— Zs — Z 4 —Z% —

1 z1

1 zo 0

- 1 zo

- Z i - Z o 0 0

§ 2. Expression of M(n, m; r).

By M(n, m) we denote the smooth manifold of all nxm real matrices and by
M{n,m\r) the manifold of all nxm real matrices with rank exactly r. Gn-^r
denotes the Grassmann manifold of r-dimensional subspaces through the origin in
Rn. By GL(m) we denote the general linear group and we set

[ΓIr\ * -\\XsGL{m-r) 1
'(m-r)=—-G L ' ( m - r ) =

0 | * is arbitrary J
and

where tA denotes the transposed matrix of A. Vf

m,r=GL{m)IGLf(m—r) denotes
the real Stiefel manifold of r-frames in Rm. We naturally identify Vr

m,r with
M(m, r; r) or Mir, m; r) under the expression Vf

m,r=GL{m)IGLf{m—r) or V'm,r

=GL(m)jGL"{m-r).

THEOREM 2.1. For each r, n—l^r^l, (M(n, m; r),p, Gn-r,r, Vm,r) is a smooth
fibre bundle over Gn-r,r with fibre V'm,r

REMARK. When we consider the singularities of a differentiate map, these
singularities are expressed and classified by the rank of the Jacobian matrices of
the map at the points, (see Fukuda [3] for example). In this sense, the manifolds
M(n, m; f) are the most fundamental one in the study of singularities.
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The proof of Theorem is devided into three steps.

151

LEMMA 2.1. Let M=M(n,m;r) and G=GL{n)xGL{m). Then G acts on M,
and M turns out to be a homogeneous space of G.

Proof. For any (P, Q) of G and for any A of M, we define the action of
(P, Q) on A by (P, Q) A=PAQ-\ Then G acts transitively on M. Let H be the
isotropy subgroup of G at the point Eo of M, where Eo is the matrix of the form

By simple calculation we find that H has the form:

H=\\\ —
P i

Therefore the manifold M

LEMMA 2. 2. G\H is

manifold.

Proof. We put

01\ \P^GL(r\

©4 _]/ I P2 and Q3 are arbitrary

, m\ r) is diffeomorphic to G/H. q. e. d.

space of a fibre bundle over a Grassmann

D

1, DεGL(n-r)

BGM(T, n-f)

which is a closed subgroup of GL(ή). Therefore HιXGL(m) is a closed subgroup
of G, and the subgroup i J i n Lemma 2.1 is closed in i7iXGL(m). Since HxXGLim)
admits a local cross-section in G, (GJH, p, GL{ri)IHu (HιXGL(m))jH) is a locally
trivial fibre bundle. Obviously, GL{ή)IHittGn-r,r, where X « F means that X is
diffeomorphic to Y. q. e. d.

LEMMA 2.3. The fibre of the above fibre bundle (G/H, py GL(n)IHlf (Hx

χGL(m))/H) is diffeomorphic to the real Stiefel manifold Vr

m,r

Proof. For simplicity we denote by In the one point space {/„}. Let K-In

χGL(m). Then from KH=HK=H1xGL(m), where H is the group mentioned in
Lemma 2.1, it follows that KH is a closed subgroup of G. Let H2 be the follow-
ing subgroup of GL{m);

0 Ή/r is the rxr unit matrix,

D']\C'eM(m-r,r), D'sGL{m-r)

Since K is a Lie group, the map of K/KnH to iffl/iJ defined by k{KnH)\—>&tf
is a diffeomorphism. On the other hand KΓ\H=InxH2. Hence (HιXGL(m))jH

Vr

m,r. This completes the proof of Lemma 2. 3.
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Combining the above lemmas, the proof of Theorem 2.1 is complete.

§ 3. Normal bundle of M(n, m; r).

In this section we study the normal bundle of M(n, m; r) in M(n, m), which
is naturally identified with Rnm. For any two points A and B of M(n, m) the
inner product <Λ, B} is expressed in the form {A, B}=trace (AιB).

THEOREM 3.1. Let N(M) be the normal bundle of M(n, m; r) in M(n, m).
Then there are maps φ\ GL(ti)xGL(tri)-^M(n9 m; r) and ψ: GL(n)xGL(m)xR^n-r^m-r:>
-*N(M) satisfying the following

(a) GL(n) x GL(m) x i ? ( 7 l " r ) C m " r ) -
I

Ί
GL(n)xGL(m) >

Ψ

diagram

Ψ
— >

(1)

N{M)
I

*
[n, m; I

The commutativity holds in the diagram.
(b) φ is fibre preserving and is a linear isomorphism at each fibre, where

GL(ή)xGL(m)xRin~rHm"r:> is regarded as a trivial vector bundle with the natural
projection p.

(c) More precisely, we have the following bundle isomorphism

φo
{GL{n)xGL{m) X #<»-'><TO-'>}/4 > N{M)

> M(n, m; r),

diagram (2)

where Kι X K2 and Δ are the following:

A^GL{n-r\

A2 is arbitrary

[\Ir

κt=\\ —
Uo

ill]

ZJ

BΛ\
and

B±\\B2 is arbitrary

ί = {{GuG2)\G1=G2sGL{r)}.
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The proof of this theorem consists of several lemmas mentioned below. First
of all, one has to imbed the trivial bundle GL{n)xGL{m)xR^-r^m-r^ into
GL{n)xGL{m)xRnm.

LEMMA 3.1. For any point {A, B) of GL{n)xGL(m) we define the liner space
Eu,m a s follows:

We define the

ί ΓO
) t Λ 1

I LO

map ξ

GL(n)xGL(m)xR<n-r>

1
1

GL(n)xGL(m)

n-r{[

ξ

id.

r

0

0

m—r

o" 1 . . ]
U /o ill UlίίClry r

* J J

+ GL(n)xGL(m)xRnm

1
I

GL(n)xGL{m)

diagram (3)

by ξ(A, B, Z) = (A, B, -1), where

ZGM(n—r,m—r) and Z =
0

m).

Then ξ is an imbedding of GL(n)xGL(m)xR^n-r^m-^ into GL(n)xGL(m)xRnm.

Proof It is trivial from the definition of ξ.

LEMMA 3. 2. Let

En = — €M (w, r; r) and Em=\ — \ eM(m, r; r).

L o J L o J
We define the map φ: GL(n)xGL(m)->M(n,tn;r) by φ(A, B)=(AEn)

t(BEm) men-
tioned in (a) of Theorem 3.1. Then E^χtB) is the normal space to M(n, m; r) in
Rnm at φ(A, B).

Proof, The map ψ is smooth and onto. Let u and v be tangent vectors
to GLin) at A and to GL(m) at B, respectively. Since GL(ri) is an open sub-
manifold of M(n, n), we may regard M(», n) as the tangent space of GL(n) at
each point. M(m, m) can be thought of as the tangent space of GL{m). More-
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over, A and B are linear isomorphisms of M(n, ή) and M(m, m) respectively.
u and I? may be written as the form u=AX and v=BYy where XςM(n, ή) and
YsM(m,m). Let Tu,B)(GL(n)xGL(m)) and T9U.B>M be the tangent spaces to
GL(n)xGL(m) at (A, B) and to M=M(n,m;r) at φ(A, B), respectively. And let
dφu,B> Tu,B>(GL(n)xGL(m))-+Tφu,B)M be the linear map induced by φ. For any
tangent vector (u, υ) = (AX, BY) we see that

dφu. « (α, v)=(uEn)\BEm
0

n—r

Hence for each fixed pair (A, J5), the tangent space to M(n, m\ r) at φ(A, B) has
the following form:

— IB * are arbitrary matrices Lί Γ *
EU.B>=\A\ —

\ L*
* It

And E'i.s) defined in Lemma 3.1 becomes the orthogonal complement of
In fact, for any element

B

of and for any element

— B-

of Ef-A,B)> we see that

trace] A\ —
I L * — =o. q. e. d.

LEMMA 3. 3. (Proof of (a) of Theorem 3.1).

Proof We define the map ψ: GL(ή) x GL(m) x R ( r i" r ) Cm"r> -* iV(M) by
= (φXlR)°ζ(A, By Z) = ((AEn)

t(BEm), ^A^ZB'1), where 1R is the identity map of Rnm.
From the definition of the maps, the commutativity holds. q. e. d.

Next we will consider the construction of the normal bundle N(M) from the
trivial bundle (GL(ή)xGL(m)xR^n-r^m-r\p, GL(ή)xGL(m)). We consider the fol-
lowing commutative diagram.
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GL(ή) X GL{m) X R{n~r){m-r)

GL(n)xGL(m)-

iGL(ή) X GL{m) X R(»-r)(m-r
K1XK2

GL(n)xGL(m)IKixK2

(GL(n)xGL(m)IKiXK2)!J

V'n,rXV'm,r

N(M)

y m\ r)

Definitions of maps in the diagram are given in the lemmas mentioned below.
We recall the following well-known

THEOREM (cf. H. Cartan [2]). Let X be a principal G-bundle and Y any G-
space. Then (XxGY,P, X/G, Y) is a fibre bundle with fibre Y} where we write
XXGY for (XxY)IG and p is the projection induced by the canonical projection
πϊ.

Applying this theorem we have

LEMMA 3.4. Let KiXKz be the closed subgroup of GL{n)xGL{m) defined in
(c) of Theorem 3.1. Then KχXKz acts on GL(n)xGL(m)xRCn-rHm-r\ and its orbit
space

GL{n)xGL(m) ) X R
KiXK2

becomes a total space of a fibre bundle.

Proof. For any {PyQ) of GL(ή)xGL(m) we define the action of (ku k2)
of K,xK2 by (k1,k2)°(P,Q) = (Pkr1,Qk;1). Then (GL(n)xGL{m), q, GL(n)xGL(m)l
Kλ x K2, Kλ x K2) becomes a principal fibre bundle, where q: GL(ή) X GL{m) —•
GL(ή)xGL(m)IKiXK2 is the canonical projection. To each element Z of M(n—r,
m—r) we assign
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0 I 0

o \z

of M(n,m) and by this correspondence we identify Rin-rHm-r:>=M(n—r,m—r)
with the subset p o-o cm-o χ Q of Rnm=M(nym). For any point Z of ^cn-ocm-n
we define the action of (ku k2) by (ki, k2)-Z=tk^1Zk2

1. Then i£iXiΓ2 acts on
gcn-mm-r^ Applying the theorem stated above,

~r\ p, GL(n) X GL(m)

becomes a fibre bundle. The projection p is defined by p([P, Q, Z])=^(P, Q), where
[P, Q, Z] is the coset containing (P, ζ), Z). q. e. d.

LEMMA 3.5. Let Δ be the closed subgroup of GL(r) X GL(r) defined by Δ
= {(Gi, G2) I G 1 =G 2 eGL(r)} . 7%β« Δ acts on

GL(n)xGL(m)

<̂5 <2 topological transformation group.

Proof. For any two elements (Gί, GO and (Gi, G2) of J we define the product
, , in Δ by (Gί, G0 (Gi, G2) = (GίG1, G'2G2). We identify each element (Gi, G2) of J
with the element (Gi, G2) of GL(n) X GL(m)> where

Gi =
0

0
and G 2 = | —

0

Im-r\
-\sGL(m).

By the above identification we define the action of Δ on

GL(n)xGL(m)

by (Gi,Ga) [P,O,Z] = ίPGr1,QtG2,
tGΓZG2-

1J. We will show that the definition
stated above does not depend on the choice of representatives and this action is
well-defined. For this, it suffices to show that

(Pkx ιGι 1

t Qk2

 U G 2 , tG 1

 nkι xZk2 G2

 :) = (PGi1, QtG2,
 tG 1

1ZG 2

 x) (mod iΓi

holds for any element (Pkϊ\ Qk2\
 ιkϊιZk2

ι) of [P, Q, Zj. We assume that

K2Λ „ ΓGJO

- J and c > = H τ '
Then

and GrH
0
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We put

Then

Γol K? J L T 0 0

0 1Γ /

0

Hence kϊ1Gϊ1=Gτ1k{~1

f and Pkΐ1Gι1=PGϊ1kί~1=PGτ1 (mod Kλ). In the same way,
for

Lo
we put

0

Then k2

nG2=
ιG2k

f

2-
1 and Q*r l tGa=Q tGa*ί-1=Q tG2 (mod K2). Therefore the defini-

tion does not depend on representatives. Since (G{, Gί) ((Gi, G2) [P, 0, 2'J) = (Gj[G1,
GίG2) [P, Q, Z], the action of Δ is well-defined. q.e.d.

By

(GL(ή)xGL(m)

we denote the orbit space of J; that is

(GL(n)xGL(m)

LEMMA 3. 6. 2%^ action of Δ on the fibre

(GL(n)xGL(m)

^ Γ 1 ^ " 1 ] I (Gi, G2)€/ί}}.

-n j s trivial. Hence

, Z] \ (Glf G 2 ) G J } } .

Moreover commutativity holds in the following diagram

GL{n)xGL{m) X R^-mm-n > (GL(ή)xGL(m)
KK

-> (GL(n)xGL(m)IK1xK2)IΔ.

diagram (4)

Proof. For all (Gi, G2) of J,
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Ί
z 1 o/ 0

Hence the action of Δ is trivial.
For any [P, Q] = {(P*Γ1, GA^Kfe, fa)sKiXK2} of GL{n)xGL{m)IK1xK2 we de-

fine the action of (Gi, Ga) of Δ by (Gi, Ga) [P, Q] = [PG:\ Q ^ J ; and denote its orbit
space by (GLM X GL(m)/i£i x iΓ2)/Λ; that is

Let π', ψ% and ψz be the following canonical projections:

π': (GL(n) x GL(m) > < 2?Cw~r) (w-^)/z/ > (GL(») X GL(κ

and

GL{ή

GL(n

• (GL(n)xGL(m)

xK2 > (GL(n) X GL(

Then from the definitions of these maps we see that the commutativity holds in
the diagram (4). q. e.d.

LEMMA 3.7. GL{n)xGL{m)lKιxK2 is diffeornorphic to V'n,rXV'm,r.

Proof. First of all we identify Vn,rXV'm,r with M(r, n; r)xM(r, m\ r). We
define the action of (P, Q) of GL{n)xGL(m) on (X, Y) of Vn,rXVf

m,r by
(P,Q) (X,Y) = (XtP,YtQ). Then GL{n)xGL(m) acts on V'n,rxV'm,r transitively.
Let En = (Ir\0)€M(r, n; r) and Em=(Ir\0)eM(r, m; r). Then the isotropy subgroup
of GL(n)xGL(m) at EnxEm is KiXK2. Hence there is a diffeomorphism aΐ.
GL(ή)xGL(m)/K1xK2-^ Vn,rxVm,r. Explicitly, cci has the following form. Let

- I . 0 -
©2

and Q= — .

We naturally identify M(r,n;r)xM(r,nι;r) with M(n,r;r)xM(?n,r;r). Then
«i(LP> Q]) = (Λ 0), where [P, Q] is the coset containing (P, Q). q.e.d.

LEMMA 3. 8. Vf

n,rX Vf

m,rIΔ is diffeomorphic to M{n, m\ r).

Proof. For any (P, Q) of V'n^xV'Tn^^-Min.n^xMim.r^r) we define the
action of (Gi, G2) of i by (Gi, G2) (P, Q) = {PG?, Q%Gύ, and denote its orbit space
by V'n.rXVUA

Next, for any [P, Q] = {{PGτ\ 0 ^ ) 1 (ft, G_2)€_zί} of V'n,rXVL,r[A, we define
the action of (A, B) of GL{ή)xGL{m) on [P, Q] by (Λ £) [P, Q] = [AP, IB"1©]
= {(i4PGr1, t5-1Q tGa)|(Gi, G2)€J}. Since every element of V'n,r=M(n, r; r) (resp.
Vm,r=M(?n, r; r)) has maximal rank, it can be transformed into the canonical form
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SHTj \r^.E,=\±

by multiplying some element of GL(ή) (resp. GL(m)). Hence the action is
transitive. Let M be the isotropy subgroup of GL(n) x GL(m) at [En, Em]
= {{EnG:\Em*G2)\(GuG2)QΔ} of V'n,rXV'm,rlΔ. Then for each (A, B) of JC,
(A, B) [En, Em] = [A&, I B " 1 ^ ] = [£„, £ m ] . Since

Λl—\\— 1 = 1 — I and

where

the necessary and sufficient condition for (AZŝ , IB~]

is that the following three conditions be satisfied:

( i ) Λ = 0 , (ii) *5£=0 and (iii) Λ " 1 = 5 ί .

to be contained in [En, Em]

Obviously B'xBγ=Ir and B{B2=0. Hence ^ ί = ^ Γ 1 and ^ 2 = 0 . Moreover, by (iii),
Ai=Bi. Hence the group Si has the following form:

0 A J IBs B4]/ A2 and Z?3 are arbitrary

Therefore M agrees with the group H stated in Lemma 3.1, and

V'n,r X V'm,rlΔπJC\GL(n) x GL(m)«H\GL(n) x GL{m)

πGL(ri)xGL(m)IHπM(n, m; r).

Explicitly, the diffeomorphism Φ: V'n,rXVmtrlΔ-+M(n,m;r) is given by Φ([P, Q])
=PtQ. q. e. d.

LEMMA 3. 9. The group Δ acts on GL(n) X GL{m)\Kχ X K2 and the orbit space
(GL(ri) x GL(ni)IKi X K2)IΔ has a structure of smooth manifolds. Moreover there
exists a diffeomorphism a2: (GL{n)XGL{m)\KλXK2)\Δ -* V'n,rXV'm,rlΔ.

REMARK. First, for the proof of Lemma 3. 9, we recall the following well-
known theorem of G-spaces. (cf. H. Cartan [2]).

Let G be a Lie group, X and Y be G-spaces. A map /: X-+ Y is equivariant
if f(gx)=gf(x) for all (g,x)eGxX. An equivariant homeomorphism of X onto Y
is called an equivalence of X with Y. If X and Y are G-spaces and /: X^ Y
is equivariant, then there is a unique map /: XjG—^YjG such that f°πx=πγ°f,
where πx and πγ are canonical projections, This map g is called the map induced
by f.
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THEOREM. Let X and Y be G-spaces. If f: X—> Y is an equivalence of X
with Y then the induced map f is a homeomorphism of XjG onto Y/G.

Proof of Lemma 3. 9.

We recalRhat the action of Δ on F£, rx V'm.r=M(n9 r; r)xM(m, r; r) was denned
by (G1,G2) (P,Q) = (PGr\QtG2) for (Gi, Ga) of Δ, and on GL{n)xGL{m)IK1xK2

by (Gi,Ga) [P,O] = [ P G r 1 , Q t % _The map ai: GL(n)xGL(m)IK1xK2->V'«,rxV'm.r
was defined by cci([P, Q]) = (P, Q). Hence, by simple calculation we see that
«i[(Gi, Ga) (P, Q)] = (Gi, G2) «i([P, <?]). Thus ^ is an equivalence. By the above
theorem of G-spaces, there is a homeomorphism a2: (GL(ή) X GL(m)/Ki x K2)\Δ —>
Fί,,rX V'm,r\Δ induced by aλ. Explicitly, α2 is defined by

a2{[PG:\ Q*G2]\(Gu G.)€J} = {(R?r1, OΌOKGi, G2)€Z/}.

By Lemmas 3.7 and 3.8, (GL(n)xGL(m)IK1xK2)M has a structure of smooth
manifold and a2 becomes a diffeomorphism under this structure. q. e. d.

LEMMA 3.10. (Proof of (b) and (c) of Theorem 3.1.) Let ψ0 be the map of

(GL(ή)xGL(m)

to N(M) defined by φo{[PG^\ Q'G^ Z]\(Gίf G2)£Δ} = (PEn

tEm

tQ, ψ-'ZQ-1) and <p0 be
the map of (GL(^) x GL(ra)/i£i x iQ/J to M(n,m;r) defined by ψ0=φoa2. Then
(φo, ψo) is a bundle isomorphism.

Proof. From the definition of φ, defined in Lemma 3.3, Theorem (b) is
obvious. Since Φ and a2 are diffeomorphisms, so does <p0. By Lemma 3. 9, φ0 is
well-defined. Obviously φ0 is one-to-one and onto. Since % and πf are locally
trivial and <p0 is a diffeomorphism, φ0 turns out to be a diffeomorphism. q. e. d.

§ 4. Attaching of M(n, m; s) to M(n, m; r); Proof of Theorem A.

For any manifold Y the cone CY over Y is defined to be the following
quotient space:

CY=YxI/Yxly where / denotes the closed unit interval [0,1].
Let ξ=(E, π, B, F) be any fibre bundle. For ξ we define the fibre bundle

CYL(ξ) as follows:
Its total space is the mapping cylinder M(π) of the projection π, the base

space is B and the projection p is the natural projection p: M(π)-+B of the
mapping cylinder. That is, CΓL(f) = (Λf(τr), p, B, CY).

LEMMA 4.1. The structural group Kx x K2 of the bundle

(GL(n) X GL(m) X #<»-»•> ^m~r\ p, GL(ή) x GL(m)IKi X K2)
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For any fixed pair (r, 5), l^r<s^n, we define a subset Dr

(£B) of E^)B) as
follows:
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can be reduced to O(n—r)xO(m—r).

Proof Since GL(n-r)=O(n-r)xR^1/2^n-r^n-r+1\ Lemma 4.1 is clear.

0 ZeM(n—r, m—r; s—r),

trace (Z tZ) = (l/2) trace (AEJ

Let KΛ 5) be the function {(1/2) trace {AE^E^B^AE^E^B)}1'2 of (A, B). Then we
see that Dras,B) = SCn-r^m-r>-\ρ(A, B))f]M(n-r, m-r; s-r), where Sin-rHm-^-\ρ(A, B))
is the sphere in Rfr-rnm-n of r a ( ϋ u s p^ β^ about the origin. Since for any s^O
of R and A of M(n—r, m—r; s—r) sA is contained again in M(n—r, m—r; s—r),
Dru,B) is diffeomorphic to S^-^^-^^nMin-r, m-r; s-r) for each (A, B) of
GL(n)xGL(m). We identify Tλ^O{n-r) with

and T2 € 0(m - r) with T2 = \ —
0

Since

0

0 1"T 0

0 0

0 Ί -

^&s,£) is preserved invariantly under the action of O(n—r)xO(m—r). Let D be the
fibre bundle made from

(GL(ή) X GL{m) 2? Cw"r) ( m" r ), A X GL{ni)\Kχ X K2)

m-n w i t h the fibre in the form of Dr

(£B). q. e. d.by replacing the fibre R°

LEMMA 4. 2. (Proof of Theorem A.) The image of the bundle CYL(D) by the
map (ψi, ψί) is a tubular neighborhood of M(n, m; r) in M(n, m; r) U M(n, m; s).

Proof It is easy to see that

0

1—\B~

is contained in Efctmn(M(n, m; r){jM(n, m; s)) if and only if Z is in {0}{jM(n—r,
m—r; s—r). This completes the proof of Lemma 4.2. Obviously Lemma 4.2
implies Theorem A. q. e. d.

§ 5. Proof of Theorem B.

Proof of (i). Since {0}\jM(n, m; 1) is closed in Rnm, for any X of Min, m r)
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(r>l), there is a matrix A of {0}\jM(n,m;T) such that V(X, A} gives the dis-
tance between X and {0}\jM(n, m; 1). It is easy to show that ^4^0. Hence A is
in M(n, m\ 1). And X is in NA.

Proof of (ii). It is the same as that of Lemma 3. 2. Since rank A=l, there
are matrices PGGL(H) and QeGL(m) such that A=(PEny(QEm)f where

, 1) and , 1).

Let E=En

tEm. Then

Hence

JS

Since

is a rank-preserving

is in U 5̂ 2 M(n, m; s)

Γ o

o
 

l

ίΓ °

o

...

Γ °

o

I . O 1u
linear map of

if and

\
only if

°1
xJ

•0 '

X.

I

NE

o
l

o

X

\XeM(

1-X

Γ

to NΛ,

μθ_ l

xl
is in

n

G M

0 1

ύ

(»-
- 0

X

NA

v

]β

.,(.

L Ur*iM(n-l, m-l r). q.e. d.

§ 6. Proof of Theorem C.

Let Vn,rz=zO{ή)IIrXθ{n—r) be the real Stiefel manifold of orthonormal r-frames
in Rn. Vn,r is canonically identified with the set {A\AζM(n, r; r), ιAA=Ir}. We
naturally identify M(n, r) with Rnr. Then the inner product <A A) is expressed
by (A, A)=trace (tAA)=trace (A*A).

We call a matrix A of M(r, w) an upper triangular matrix if A has the
following form:

'ii #12 a\i

0
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We consider the following sets:

ζΓr,m={A\AGM(r, m; r), A is upper triangular},

163

Obviously Λm,r is a submanifold of M(r,m;r) of dimension rm—r(r—1)/2—1. We
put K(n, m\ r)=Snm-1Γ)M(n, m; r), where S^- 1 is the unit sphere in Rnm centered
at the origin.

LEMMA 6.1. Any element of K(n, m; r) can be expressed in a product of some
elements of Vn,r and Λm,r>

Proof For any P=(piJ) of K(nt m\ r), let Sli be the first non-zero column
vector and 5ί2 be the first column vector that is linearly independent of 2li.
Let 2ϊ3 be the first column vector that is linearly independent of 2ίi and 2l2.
By induction we have r linearly independent column vectors 93d, %, •••, 2ίr. By
these vectors P is represented in the following form:

Cn C12

C22

0

Let [βu β2, •••, er} be the orthonormal r-frame obtained from {93d, 2Γ2»
P is represented in the following form:

ϊr}. Then

"by. b l m l

We set

0

E=(eie2 -•- er) and B—

• br

0 brr

Then EeVn,r and BGM(r,m;r). Moreover, since PeK(n,m;r), (EB, EB}=trace
(tBtEEB)=tmce (tBB)=h

Hence BGΛm,r. q.e.d.

We define a map φ: Vn,rXΛm,r-*K(n,m;r) by φ(E,B)=EB. Since, at each
point, φ is a polynomial with respect to the local coordinates, ψ is continuous.
Obviously φ is onto. Next we assume P=EB=E'B' for E, Ef of Vn,τ and B, Br

of Λm,r. Let EB^eijbjic) and E'B'= &£'#). Then eijbjk=eίfiίjk holds for all i,/
and &.

Assume bjk^O. Then
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e =3L.e' (/ = 1 ...

Since

for e,= ! ,
L enj J

1
ι = l t = i \ Ujk / \ Ujk / i = i

Hence bjk=±bJk and

e'ij=±e%j (z=l, '-',n; double signs in the same order). (*)

Also, s ince e%sbjk—e'%5b
t

5k (k=l> ~-,nι), b'jk=±bjk (k=l, •••, m) (double s i g n s in t h e
same order as (*)). If bjk=O, then bjk=O because

b'Sk——γ-bjk for some eij^O.
e%j

Since (bjly •••, bjm)*0, there is fyΛ#0 so that b'jh=±bjh. Since eιjbjh=e[jb
f

jhy e[ά

= ±eτj (i=l, -,ή) (double signs in the same order as (*)). Let G be a discrete
subgroup of 0{r) defined by

G = {T=(t%J)\t,j=±δiJ, Γ€θ(r)}.

We define an action of TGG on (E, B)€ Vn. r XΛm, r by T-(E, B) = (ET, TB). Then
G acts freely on Vn,rXΛm,r. And for a given PGK(n,nι;r) the expression of P
in P=EB is unique up to the action of G. Since G is a finite group, its action
is totally discontinuous and Vn,r—*Vn,rlG becomes a principal G-bundle. And
Vn,rXGΛm,r-*Vn,rlG turns out to be an associated fibre bundle with fibre Λm,r.
Here Vn,rXGΛm,r denotes the orbit space (Vn, r X Λm, r)/G. Hence for the given
EB€K(n,m;r) we have φ~1(EB) = {(ET, TB)\TeG}. Therefore the map ψ\ Vn,r
XGΛm,r-^K(n,tn;r) defined by ψ{[Ey B])=φ(E, B)—EB is a continuous map, one-
to-one and onto.

LEMMA 6. 2. The map ψ\ Fw,rX<?Λm,r—• K(n> m; r) is a homeomorphism.

Proof. Since φ is an onto map, for any PGK(Π, m; r) there is (E, B)z Vn,rxΛm,r

such that φ(Ef B)=P. To each PςK(n, m; r) we assign the class [E, B]GVn,rXGΛm,r
which containing (E, B). Then this correspondence ψ becomes a map ψ: K(n, m\ r)
-+Vn,rXGΛm.r- At each point the component functions of φ have the form of
rational functions with respect to the local coordinates. Hence ψ is a continuous
function. Since ^o^=id. and y>°̂ z=id., ψ is a homeomorphism. q. e. d.

Let Dnm be the unit closed ball {x\xeRnm, Σι fe)2^l} If A is in M(n, m\ r),
$A is also in M(n, m\ r) for any s^O. Hence we have the following
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COROLLARY. Dnm Π ({0} U M(n, m; r)) is equal to the cone Cone (S71™-1 Π M(n, m; r))
over S^^ΠMin, m; r). Moreover the pair {Dnm, Dnm Π ({0} u M(n, m\ r))) is equal to
the pair (Cone (S™-1), Cone ( S ^ ^ n M ^ , m\ r))).

§7. Proof of Proposition B.

By the corollary to Theorem C, S3 Π M(2, 2; 1) is diffeomorphic to a 2-dimen-
sional torus. Hence it suffices to parametrize S3 Π M(2,2; 1) by /x/, where
/=[0,1]. Let L)7 be the following closed subset of Ixl denned by four in-
equalities:

We identify the boundary of Dr by the following relations: (t, ί+l/2)~(l/2+/,
and (ί, - f+l/2Ml/2+f , - ί + 1 ) for 0 ^ ^ 1 / 2 .

Let D be the quotient space D'/~. Obviously D is diffeomorphic to a 2-dimen-
sional torus. We define a map h of D to S8Π'M(2, 2; 1) as follows:

h(t, t') = (co$2πtco$2πt', cos2ττ£sin2τrf, , sin2ττίsin2πf

This definition is compatible with the relation "—" and h is well-defined. Clearly
h(D)aS3f)M(2,2; 1). By the two lemmas stated below, we see that h is a
diffeomorphism.

LEMMA 7.1. h: D->S 3 nM(2, 2; 1) is an onto map.

Proof. Lemma 7.1 is equivalent to the following condition. For any 4-tuple
(#1, #2, a3, a±) of real numbers satisfing the following relations:
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(1)

there is a solution (t0, t'o), in Z), of the following system of equations with two
unknowns t and f

COS 2πί COS 2πf = # i ,

cos 27rί sin 2πf =a2,
(2)

sin 2πί cos 2τrf—a%,

sin 2π^ sin 2πtf—a^

Substituting a=2πt and β=2πf into (2) we have the following equations:

(A)
sin

sin (a—β)=as—a2,
(B)

cos(α— i8)=αi+#4.

Making use of (1) we see that (A) and (B) have solutions. If we solve the above
system under the conditions π^a+β<Sπ and —π^a—β<π, we obtain its unique
solution. By a^—2πU and βo=2πt'o we denote the unique solution. Clearly t0 and
t'o satisfy the following inequalities: l/2^fo+#<3/2 and -l/2^f o -*ί<l/2. Hence
this solution (ί0, ££) is in D. Therefore h is an onto map and also it is proved
in the above arguments that A is a one-to-one map. q. e. d.

LEMMA 7. 2. h is a diffeornorphisrn.

Proof. We regard the map h as a map of D into i?4 and consider the
Jacobian matrix Jh of A with respect to the coordinates (t, t') and (xlf x2, x8, #4).
It is sufficient to show that h has maximal rank on D. Jh has the following
form:

[—sin 2πt cos 2πf — sin 2πt sin 2πf cos 2πί cos 2πf cos 2πί sin 2πt'Λ

—cos 2π£ sin 2πf cos 2π£ cos 2πf — sin 27rί sin 2πf sin 2τrί cos 2π '̂J

It is easy to see that Jh has maximal rank on D. q. e. d.

Let Φ be the map of Ixl to S3ΠM(2, 2; 1) defined by
φ(t , f) = ( - —• (cos 2τrί+cos arfO, - -75- (sin 2τrί+sin 2πf),

— y(sin2πt—sin2π^), -o-



ON CANONICAL STRATIFICATIONS 167

By Lemmas 7.1 and 7. 2 Φ is a parametrization of S3 Π M(2, 2; 1) with two para-

meters t and f. Let 4̂ be the following matrix

^

0

- 1

0

0

- 1

0

- 1

0

- 1

0

1

1 N

0

- 1

CT2=\ΛJ^-(COS2πt, sin2τrί, cos2πf, sm2πtf)\Q^t, t'^

Let

Then it is easy to show that A is in SO(4) and A maps CT2 on S 3nM(2, 2; 1) by

the right operation. q. e. d.

REFERENCES

[ 1 ] BRIESKORN, E., Beispiele zur Differentialtopologie von Singularitaten. Inv. Math.
2 (1966), 1-14.

[ 2 ] CARTAN, H., et al., Seminar Henri-Cartan, 1949-50, Multilith, Paris (1950).
[ 3 ] FUKUDA, T., Local topological structureof singularity subsets. Quart. J. Math. 22

(1971), 41-45.
[ 4 ] HIRZEBRUCH, F., Singularities and exotic spheres. Seminaire Bourbaki, 314

(November 1966).
[ 5 ] LEFSCHETZ, S., L'analysis situs et la geometrie algebrique. Paris (1924 and 1950).
[ 6 ] MILNOR, J., Singular points of complex hypersurfaces. Ann. Math. Studies, No.

61 (1969).

[ 7 ] NASH, J., Real algebraic manifolds. Ann. of Math. 56 (1952), 405-421.

[ 8 ] OLEINIK, O. A., Estimates of the Betti numbers of real algebraic hypersurfaces.
Rec. Math. (Mat. Sbornik) N. S., 28 (70) (1951), 635-640.

[ 9 ] THOM, R., Ensmble et morphismes stratifies. Bull. Amer. Math. Soc. 75 (1969),
240-284.

[10] WHITNEY, H., Elementary structure of real algebraic varieties. Ann. of Math. 66
(1957), 545-556.

TOKYO METROPOLITAN UNIVERSITY.




