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UNIVALENCY OF ANALYTIC MAPPINGS OF A RIEMANN
SURFACE INTO ITSELF

By MakoTO SAKAI

1. In the present paper we shall study a Riemann surface whose every non-
constant analytic mapping into itself is univalent.

Let S be the class of Riemann surfaces whose every non-constant analytic
mapping into itself is univalent, and let K be the class of Riemann surfaces whose
every non-constant analytic mapping into itself is univalent and onto. It is easy
to see that ¢=KF ScO4sNH where H is the class of Riemann surfaces whose
universal covering are conformally equivalent to the unit disk. Heins [5] showed
O¢NHcS and KgcK where Kg denotes the class of Riemann surfaces with a
finite positive genus or with a finite number of planar boundary elements belonging
to O¢nN H. Kubota [8] introduced a class of Riemann surfaces and showed that the
class is a subclass of K. In §2 we construct an example of Riemann surface of
class O4zNH on which there exists a non-univalent analytic mapping into itself.
Namely we show SEEO4sNH. In §3 we introduce a class Kyp of Riemann surfaces
and show KusSEKupC K, where Ky denotes the class of Riemann surfaces introduced
by Kubota. Heins [5] showed that if W is of class Ky and of finite genus, then
the number of non-constant analytic mappings of W into itself is finite. In §4 we
show the same result with respect to a Riemann surface of class Kxp.

2. We construct an example of a Riemann surface W of class OszNH on
which there exists a non-univalent analytic mapping into itself. It will be given
as a covering surface of the z-plane. We introduce £, F and D as follows:

E={0<z|<co)— U [4" 247,

F=E—{|]z+1|=1}—[—6, —4],
D={|z+5|<2}~[~-6, —4],

where [a,b]={z|e¢=Rez=b, Imz=0}. We joint copies of E and F along their
common slits identifying the upper edges of the slits of £ with the corresponding
lower edges of the slits of F' and vice versa. The edges of the remained free slit
of F are identified with the opposite edges of the corresponding slit of a copy of
D. Thereby a Riemann surface W is constructed as a covering surface (W, z) of
the z-plane (cf. Ahlfors-Sario [1], pp. 119-120).
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Let G be the covering of {|z+4|=4} lying in the joining of F and D. Then,
by using the same arguments in Myrberg’s paper [9], we see that W—G is of
class O4p. Hence W is of class OusNH. Let ¢ be a mapping of W into itself
which satisfies zo¢por1(z)=4z and carries the points of £, F'and D onto the points
of E, F and F respectively. Then ¢ is analytic and non-univalent.

3. In this section we introduce the class Kyp of Riemann surfaces such that
Kupc K. We show first the following lemma.

LEMMA 1. Let W be a Riemann surface whose fundamental group is non-
abelian, and let ¢ be an analytic mapping of W into itself whose valence function
v, is @ constant n, (=co) except a set of zero arvea. If there exists a non-constant
harmonic function u with finite Dirichlet integral which satisfies

(1) u o p=cu,

where c is a veal constant, then c is equal to +1 and ¢ has a finite peviod p (i.e.
the p-th iterate ¢, of ¢ is the identity mapping ¢ of W onto itself).

Remark 1. If the fundamental group of W is abelian then there is an
example such that ¢ has no period: W={r<|z|<1} (#>0), ¢(z)=e*"%-z (§ is an
irrational real number), #=log |z|, c=1.

REMARK 2. If ¢ does not satisfy the condition on the valence function, then
it is easy to construct an example such that ¢ is not univalent.

RemARK 3. If # is a harmonic function with infinite Dirichlet integral, then
there is an example such that the valence function is a constant #(=2) except one
point: W={0<|z|<1} — {r* """ "= | 0=k<oo, 0=/=n*—1} (0<r<l), ¢(2)=2"
u=log |z|, c=mn.

ReMARK 4. If #(=const) is a bounded harmonic function with finite Dirichlet
integral, then we are able to replace the condition on ¢ in lemma 1 by a weaker
condition that Wis covered by the image (W) of ¢ except a set of zero area. In
fact, we may assume without loss of generality that supy # is positive. For the
2nd iterate ¢, of ¢ we have

sup #=sup (# o gz)=sup (c*)=c* sup «,
92(W) w w w

Sup #=sup #.
92(W) w

Hence ¢2=<1. Therefore we have
D, w>(u)=Dw(u ° p)=Dw(cu)= c*Dy(u) = Dy (u),
where

DMW)(u):S v, it du*.
w
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On the other hand, by the above condition we have
D?,(W)(ZOéDw(u).
Hence the valence function v, is equal to 1 except a set of zero area.

Proof of lemma 1. We use the following result due to Heins [5]:

Let W denote a non-compact Riemann surface whose fundamental group is
non-abelian, and let ¢ denote an analytic mapping of W into itself. If ¢ neither

i) possesses a fixed point £, nor

ii) has a finite period p, then

iii) for every given compact subsets K;, K; of W there exists a natural
number N such that px(Kij)C W—K,.

We show first #,=c¢*<co. This follows from the following formulae.

DW(” ° @) =D¢(W) (u) = n«?DW(u)’
Dy (cu)=c?- Dw(u).

We show next that iii) leads to a contradiction. Let {W,};-, be a canonical
exhaustion of W. Since Dy(u) is finite, for any given positive number ¢ there is
a natural number # such that Dy_jz, (#)<e. Setting Ki=K,= W,, we find a natural
number N=N(#) such that ox(W,)c W—W,. Hence we have

Dy (#°on)=D,, cw, (@) =ng - Dy iz, (%).
By formula (1) we have
Dy, (c¥u)=c*¥ Dw,(u)=nY Dy, (u),
and hence
Dy ()= Dw () + Dy —iz,,(1)
=2Dy -7, (%)< 2.

Therefore # must reduce to a constant. This is a contradiction.

Finally we show that i) implies ii). Let ({|z|<1},z) be the universal covering
surface of W such that = is analytic and satisfies z(0)={. We consider z~! in the
neighborhood of ¢ satisfying z=*({)=0 and set f=zn"!ogpox around 0. We continue
analytically the function element of f onto {|z|<1}. Then f satisfies f(0)=0,
If@)|<1 and greor=nofi (=1,2,-). Setting v=uox, we have vof=cv. Let’ be
an analytic function on {|z|<1} having » as its real part and set g=/—#4(0). Then
we have

(2) gof=cg

and ¢g(0)=0. If f and ¢ have the expansions around the origin
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f@=az’+az7" -,  ax0, jz=1,
9(2)=02"+ b1 2"+, b0, kz=1,

then from (2) we have j=1, ¢*=c and |a*|=|c|=+/n,=1. Using Schwarz’s lemma
we have a*=c?=1, f(z)=az and ¢xon=rof=n. Hence we have ¢x;=c. There-
fore ¢ has a finite period p. It follows immediately that #=uo¢,=c"%, and hence
we have c¢==+1.

We consider next a problem whether there exists a harmonic function #(2const)
satisfying (1) for a given analytic mapping ¢ of W into itself. This is an eigen-
value problem in the following sense. For every harmonic function # on W the
composition #o¢ is also harmonic on W. We denote by H(W) the class of
harmonic functions on W and set ¢*(w)=wuo¢p. Then ¢* is a linear operator of
H(W) into itself and (1) is represented using ¢* as follows:

(1) o*Xu)=cu

where ¢ is an eigenvalue of ¢* and # is its eigenelement. From this point of
view we consider an eigenvalue problem of the restriction ¢*|X of ¢* to X, where
X is a linear subspace of H(W) such that ¢*(X)cX. If X is a finite dimensional
lattice-ordered linear space (vector lattice) with respect to the natural order, then
X has a base consisting of X-minimal functions (cf. Constantinescu-Cornea [3]).
From this fact we obtain a matricial representation of ¢*|X.

LEMMA 2. Let ¢ be an analytic mapping of a Riemann surface W into itself
such that W is covered by o(W) except a set of zero avea, and let XC H(W) be a
Jinite dimensional lattice-ordered linear space satisfying ¢*(X)cX. Choose a base
Uy, Us,y v, Uy 0f X consisting of X-minimal functions and set

©*(u1) U1
7w | g |

where @ is a square matrix of degree n. Then @ is vegular and equal to (i 0, j),
where ¢, (=1,2,---,m) are positive constants, 0;; is Kronecker's symbol and o is a
permutation of degree m. Consequently, if we denote by s the ovder of o, then @°
is @ diagonal matvix and all its diagonal elements are positive.

Proof. The regularity of @ follows from the fact that ¢* is injective and X

is of finite dimension. If we set
V1 U1
”.2 =1 u’z ,

Un Un
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then we have

@*(v1) @*(u) AN
0 | _ | ¢ | gag| e | | e |
and hence v;0p=u, (i=1,2,-,n). Since W is covered by (W) except a set of
zero area, the functions »; are positive. For any veX such that >0, v=v; it
follows that vope X, vo >0 and vop=v;0p=u;. Hence vop=cu;=c(v;op)=(cvi)¢.
This implies that »; are also X-minimal functions. Hence there exists a permuta-
tion r of degree » satisfying v;=kw.q, (1=1,2,---,n) with positive constants &.
Setting ¢=7"* and ¢,=1/k.~1», we have the desired result.

From lemma 1 and 2 we have the following lemma.

LEMMA 3. Let W be a Riemann surface whose fundamental group is non-
abelian, and let ¢ be a non-constant analytic mapping of W into itself whose valence
function is finite and constant except a set of zevo avea. If there exists a lattice-
ordered linear space XCH(W) which satisfies (1) o*(X)C X and that (ii) X0 HD(W)
is of finite dimension and contains at least one non-constant function, then ¢ has
a finite period.

Proof. Since HD=HD(W) is a lattice-ordered linear space, XN HD is a finite
dimensional lattice-ordered linear space. By the condition on the valence function
we have o*(HD)c HD and hence o*(XNHD)cXNHD. We apply now lemma 2 to
XNHD. Then there exists a natural number s such that every XN HD-minimal
function is an eigenelement of ¢¥|XNHD. We apply further lemma 1 to XN HD-
minimal functions. Then the matrix @° is equal to the unit one and ¢ has a finite
period.

We introduce now the class Kup.

DeriNiTION. We denote by Kgzp the class of Riemann surfaces W which satisfy
the following conditions:

i) Every non-constant analytic mapping of W into itself is a Dirichlet mapping
and of type B/, i.e. the valence function is finite and constant except a set of
capacity zero.

ii) Let My be the linear space generated by all Y (Y=HP, HB, HD)-minimal
functions. The space My N HD is of finite dimension and contains at least one non-
constant function.

The class Kyp is not empty. In fact, the class O%z—Opnp is a subclass of Kxp.
If W is of class O%z—Ounp, then we have Myz=HBDHD. This implies that the
condition ii) is fulfilled for Y=HB. Since W is of class O%p each non-constant
analytic mapping ¢ of W into itself is of type B/ and statisfies o*(HD)c HD.
Using the same argument in the proof of lemma 3 and remark 4 ¢ is univalent,
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and hence the condition i) is satisfied.

The class Kyp which is introduced by Kubota [8] is a proper subclass of Kzp.
If W is of class Kup. then the condition i) is fulfilled (cf. Kubota [8]). In the
following we use the notation in [8]. Let B; be a set of positive measure. Then
the harmonic measure w;=lim, ., »{’ of B; is non-constant and its Dirichlet integral
is finite since by the definition of Kyp there exists another set B, of positive
measure. We assume that B; consists of HB-indivisible sets and a set of measure
zero. Then w; belongs to Mpyp, and hence the condition ii) is satisfied. To see
Kup>xKyp, we consider a Riemann surface W which is of class O%5—Ogmp and has
one ideal boundary component (cf. Constantinescu-Cornea [2], pp. 230-231). Then
from the above argument W is of class Kgp, but by the definition of Kuzp W is
not of class Kup.

THEOREM 1. The class Kup is a subclass of K.

Proof. Suppose that W is of class Kyp. Then My is a lattice-ordered linear
space and satisfies ¢*(My)C My for every non-constant analytic mapping ¢ of W
into itself (cf. Constantinescu-Cornea [3], pp. 123-124). Applying lemma 3, we have
that W is of class K.

4. In this section we show the following theorem.

TueOREM 2. If W is of class Kup, then the number of mon-constant analytic
mappings of W into itself is finite.

Proof. Let {p®};., be a sequence of non-constant analytic mappings of W
into itself. From theorem 1 we know that each ¢® is univalent and onto. We
apply lemma 2 to MyN HD and denote by ¢; the permutation of p®™*. Then there
exists a permutation ¢, and a subsequence {p%?} of {p®} such that gz,=00 (/=1,2,-:).
For the sake of simplicity we write {p®} for {p®*»}. From lemma 1 all the
matrices T® of ¢®=¢p® 0% where ¢ is the inverse mapping of ¢®, are equal
to the unit one. Hence there exists at least one non-constant harmonic function #
with finite Dirichlet integral such that #o¢®=u (k=1,2,--). If {y®}r, is a
sequence of mutually distinct mappings, then for every two compact sets K,, K
there exists a natural number N such that ¢ (K;)c W—K, (cf. Heins [4], Komatu-
Mori [6] and Kubota [7]). Let {W.,}y-: be a canonical exhaustion of W. Since
Dw(u) is finite, for any given positive number there exists a natural number #»
such that Dw_,(u)<e. Setting K,=K,= Wn, we find a natural number N=N(x)
such that ¢ (W,)c W—W,. Hence we have

Dw ,(u)=Dw (1o )= Dyw>cw,>(#) = Dw iz, (),

and
Dyw(u)= Dy (4)+ Dw_i7,(u)

=2Dy 5, (1)< 2e.

Therefore # must reduce to a constant. This is a contradiction,
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