SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A EUCLIDEAN SPACE OR A SPHERE

By Kentaro Yano

§ 0. Introduction.

Liebmann [11] and Süss [19] proved that the only convex hypersurface with constant mean curvature in a Euclidean space is a sphere. To prove this theorem, we need integral formulas of Minkowski in which the so-called position vector plays a very important rôle.

Recently various attempts have been done to generalize this theorem of Liebmann and Süss to the case of hypersurfaces in a Riemannian manifold. See, for example, Hsiung [3], Katsurada [4, 5], Koyanagi [10], Ōtsuki [17], Tani [20, 26], Yano [21, 22, 26]. In these papers, authors assume the existence of a vector field in the Riemannian manifold or that of a vector field along the hypersurface which plays the rôle of the position vector in the case of hypersurfaces in a Euclidean space and prove that, under certain conditions, the hypersurface under consideration is umbilical.

When the ambient Riemannian manifold is a general one, it is almost impossible to give conditions under which the hypersurface is isometric to a sphere, but when the ambient Riemannian manifold admits a scalar function v such that $\nabla \nabla v=f(v) g$, where g is the Riemannian metric and ∇ the Riemannian connection, we can give conditions under which the hypersurface under consideration is isometric to a sphere. (See Yano [22]).

The attempts have recently been started to generalize the above results to the cases of general submanifolds in a Riemannian manifold by Katsurada [6, 7, 8], Kôjyô [7] and Nagai [8, 12]. They assume that the ambient Riemannian manifold admits a conformal Killing vector field and that this vector field is contained in the linear space spanned by the mean curvature vector of the submanifold and the tangent space of the submanifold.

The present author [24] studied similar problems under conditions a little bit weaker than those of Katsurada, Kôjyô and Nagai.

The main purpose of the present paper is to determine all the submanifolds in a Euclidean space or in a sphere which satisfy the conditions imposed by the present author in [24].

Recerved June 18, 1970.

§ 1. Preliminaries [9].

Let E^{m} be an m-dimensional Euclidean space in which an orthogonal coordinate system is introduced. A point P of E^{m} is represented by the so-called position vector X from the origin O to the point P .

Let $M^{n}(1<n<m)$ be an n-dimensional differentiable submanifold covered by a system of coordinate neighborhoods $\left\{U ; u^{a}\right\}$ and imbedded differentiably in E^{m} by a vector equation

$$
\begin{equation*}
X=X\left(u^{a}\right), \tag{1.1}
\end{equation*}
$$

where here and in the sequel the indices a, b, c, d, e run over the range $\{1,2, \cdots, n\}$. We put

$$
\begin{equation*}
X_{b}=\partial_{b} X, \quad \partial_{b}=\partial / \partial u^{b} . \tag{1.2}
\end{equation*}
$$

The X_{b} are n linearly independent vectors tangent to the submanifold M^{n}. Assuming M^{n} to be orientable, we choose $m-n$ mutually orthogonal local unit vectors C_{x} normal to M^{n} in such a way that $X_{1}, \cdots, X_{n}, C_{n+1}, \cdots, C_{m}$ form a positive orientation of E^{m}, where here and in the sequel the indices x, y, z run over the range $\{n+1, \cdots, m\}$.

We put

$$
\begin{equation*}
g_{c b}=X_{c} \cdot X_{b}, \tag{1.3}
\end{equation*}
$$

where the dot denotes the inner product of vectors in E^{m} and denote by $\left\{c_{c}{ }^{\circ}\right\}, \nabla_{c}$, and $K_{d c b}{ }^{a}$ the Christoffel symbols formed with $g_{c b}$, the operator of covariant differentiation with respect to $\left\{c^{a}{ }_{b}\right\}$, and the curvature tensor of the submanifold M^{n} respectively.

Then the equations of Gauss of M^{n} in E^{m} are

$$
\left.\nabla_{c} X_{b}=\partial_{c} X_{b}-\left\{\begin{array}{c}
a \tag{1.4}\\
c
\end{array}\right\}\right\}_{a}=H_{c b}^{x} C_{x}
$$

where $H_{c b}{ }^{x}=H_{b c}{ }^{x}$ are components of the second fundamental tensors with respect to the normals C_{x} and those of Weingarten of M^{n} in E^{m} are

$$
\begin{equation*}
\nabla_{c} C_{y}=\partial_{c} C_{y}=-H_{c}{ }^{a}{ }_{y} X_{a}+L_{c y}{ }^{x} C_{x}, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{c}^{a}{ }_{y}=H_{c}^{a y}=H_{c b}{ }^{y} g^{b a}, \tag{1.6}
\end{equation*}
$$

$g^{b a}$ being contravariant components of the metric tensor and

$$
\begin{equation*}
L_{c y}{ }^{x}=-L_{c x^{\prime}}{ }^{y} \tag{1.7}
\end{equation*}
$$

are components of the third fundamental tensor.

Now, equations of Gauss, Codazzi and Ricci of M^{n} in E^{m} are respectively

$$
\begin{equation*}
K_{d c b}{ }^{a}=H_{d}{ }^{a}{ }_{x} H_{c b}{ }^{x}-H_{c}{ }^{a}{ }_{x} H_{d b}{ }^{x}, \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{d} H_{c}{ }^{a}{ }_{y}-\nabla_{c} H_{d}{ }^{a}{ }_{y}+H_{d}{ }^{a}{ }_{x} L_{c y}{ }^{x}-H_{c}{ }^{a}{ }_{x} L_{d y}{ }^{x}=0, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{d} L_{c y}{ }^{x}-\nabla_{c} L_{d y}{ }^{x}+L_{d z}{ }^{x} L_{c y}{ }^{z}-L_{c z}{ }^{x} L_{d y}{ }^{z}+H_{d}{ }^{a}{ }_{y} H_{c a}{ }^{x}-H_{c}{ }^{a}{ }_{y} H_{d a}{ }^{x}=0 . \tag{1.10}
\end{equation*}
$$

Let S^{m-1} be a sphere in E^{m} with centre at the origin and with radius r and we denote the parametric representation of S^{m-1} by

$$
\begin{equation*}
X=X\left(x^{h}\right), \tag{1.11}
\end{equation*}
$$

where here and in the sequel, h, i, j, k run over the range $\{1,2, \cdots, m-1\}$.
We put

$$
\begin{equation*}
X_{i}=\partial_{i} X, \quad G_{j i}=X_{j} \cdot X_{i}, \quad \partial_{i}=\partial / \partial x^{2}, \tag{1.12}
\end{equation*}
$$

and denote by ∇_{\imath} the operator of covariant differentiation with respect to Christoffel symbols $\left\{j_{i}{ }_{i}\right\}$ formed with $G_{j i}$. Then equations of Gauss and Weingarten of S^{m-1} in E^{m} are respectively

$$
\nabla_{\jmath} X_{i}=\partial_{j} X_{i}-\left\{\begin{array}{c}
h \tag{1.13}\\
j
\end{array} \quad i\right\} X_{h}=-c G_{j i} C
$$

and

$$
\begin{equation*}
\nabla_{j} C=\partial_{j} C=c X_{j}, \tag{1.14}
\end{equation*}
$$

where $c=1 / r$ and

$$
\begin{equation*}
C=c X \tag{1.15}
\end{equation*}
$$

is the unit normal to the sphere S^{m-1}.
We take an arbitrary fixed unit vector V in E^{m} and put

$$
\begin{equation*}
v=V \cdot X, \tag{1.16}
\end{equation*}
$$

then we have

$$
\begin{aligned}
\nabla_{i} v & =V \cdot X_{\imath}, \\
\nabla_{j} \nabla_{\imath} v & =V \cdot \nabla_{J} X_{\imath}=V \cdot\left(-c G_{j i} C\right),
\end{aligned}
$$

that is,
(1.17)

$$
\nabla_{j} \nabla_{\imath} v=-c^{2} v G_{j i}
$$

by virtue of $C=c X$, [14]. In the sequel, we put

$$
\begin{equation*}
v_{i}=\nabla_{i} v, \quad v^{h}=v_{i} G^{i h}, \tag{1.18}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\nabla_{j} v^{h}=-c^{2} v \delta_{j}^{h} . \tag{1.19}
\end{equation*}
$$

We consider an n-dimensional differentiable submanifold M^{n} of S^{m-1} covered by a system of coordinate neighborhoods $\left\{U ; u^{a}\right\}$ and imbedded differentiably in S^{m-1}. We represent it by

$$
\begin{equation*}
x^{h}=x^{h}\left(u^{a}\right) . \tag{1.20}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{b}{ }^{h}=\partial_{b} x^{h} \tag{1.21}
\end{equation*}
$$

and denote by $C_{u^{h}}{ }^{m}-1-n$ mutually orthogonal local unit vectors normal to M^{n} in S^{m-1}, where here and in the sequel u, v, w run over the range $\{n+1, \cdots, m-1\}$.

Then the metric $g_{c b}$ of M^{n} induced from that of S^{m-1} is given by

$$
\begin{equation*}
g_{c b}=G_{j i} B_{c}{ }^{j} B_{b}{ }^{i} . \tag{1.22}
\end{equation*}
$$

The equations of Gauss and Weingarten of M^{n} in S^{m-1} are respectively

$$
\left.\left.\left.\begin{array}{rl}
\nabla_{c} B_{b}{ }^{h} & =\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}
h \\
j
\end{array} \quad i\right.
\end{array}\right\} B_{c}{ }^{j} B_{b}{ }^{i}-B_{a}{ }^{h}\left\{\begin{array}{c}
a \\
c \tag{1.23}
\end{array}\right\}\right\}\right\}
$$

$h_{c b}{ }^{u}$ being components of the second fundamental tensor of M^{n} with respect to the normals $C_{u}{ }^{h}$ and

$$
\begin{align*}
& \nabla_{c} C_{u}{ }^{h}=\partial_{c} C_{u}{ }^{h}+\left\{\begin{array}{c}
h \\
j
\end{array} \quad i\right\} B_{c}{ }^{{ }^{2} C_{u}{ }^{2}} \\
& =-h_{c}{ }^{a}{ }_{u} B_{a}{ }^{h}+l_{c u}{ }^{v} C_{v}{ }^{h} \text {, } \tag{1.24}
\end{align*}
$$

$l_{c u}{ }^{v}$ being components of the third fundamental tensors of M^{n} with respect to the normals $C_{u}{ }^{h}$.

The equations of Gauss, Codazzi, and Ricci of M^{n} in S^{m-1} are respectively

$$
\begin{equation*}
K_{d c b}{ }^{a}=c^{2}\left(\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}\right)+h_{d}{ }^{a}{ }_{u} h_{c b}{ }^{u}-h_{c}{ }^{a}{ }_{u} h_{d b}{ }^{u}, \tag{1.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{d} l_{c v}{ }^{u}-\nabla_{c} l_{d v}{ }^{u}+l_{d w}{ }^{u} l_{c v}{ }^{w}-l_{c w}{ }^{u} l_{d v}{ }^{w}+h_{d}{ }^{a}{ }_{v} h_{c a}{ }^{u}-h_{c}{ }^{a}{ }_{v} h_{d a}{ }^{u}=0 . \tag{1.27}
\end{equation*}
$$

Now we regard the submanifold M^{n} of S^{m-1} as a submanifold of the Euclidean space E^{m}, then we have

$$
\begin{equation*}
X=X\left(x^{h}\left(u^{a}\right)\right), \tag{1.28}
\end{equation*}
$$

(1.29)

$$
X_{b}=B_{b}{ }^{h} X_{h},
$$

and consequently

$$
\nabla_{c} X_{b}=\left(\nabla_{c} B_{b}{ }^{h}\right) X_{h}+B_{c}{ }^{j} B_{b}{ }^{i} \nabla_{j} X_{\imath},
$$

or
(1. 30)

$$
\nabla_{c} X_{b}=h_{c b}{ }^{u} C_{u^{2}}{ }^{2} X_{i}-c g_{c b} C
$$

by virtue of (1.13), (1.22) and (1.23).
If we regard

$$
\begin{equation*}
C_{u}=C_{u}{ }^{i} X_{u}, \quad \text { and } \quad C_{m}=C=c X \tag{1.31}
\end{equation*}
$$

as normals to M^{n} in E^{m}, we have, comparing (1.4) with (1.30),

$$
\begin{equation*}
H_{c b}{ }^{u}=h_{c b}{ }^{u}, \quad H_{c b}{ }^{m}=-c g_{c b} . \tag{1.32}
\end{equation*}
$$

From the first equation of (1.31), we have

$$
\nabla_{c} C_{u}=\left(\nabla_{c} C_{u}{ }^{i}\right) X_{i}+B_{c}{ }^{2} C_{u}{ }^{i} \nabla_{J} X_{\imath},
$$

or

$$
\nabla_{c} C_{u}=\left(-h_{c}{ }_{c}{ }_{u} B_{a}{ }^{2}+l_{c u}{ }^{\nu} C_{v}{ }^{i}\right) X_{v},
$$

that is,

$$
\begin{equation*}
\nabla_{c} C_{u}=-h_{c}{ }^{a}{ }_{u} X_{a}+l_{c u}{ }^{v} C_{v} . \tag{1.33}
\end{equation*}
$$

Comparing (1.5) in which $y=u$ with (1.33), we find

$$
\begin{equation*}
H_{c}{ }^{a}{ }_{u}=h_{c}{ }^{a}{ }_{u}, \quad L_{c u}{ }^{v}=l_{c u}{ }^{v}, \quad L_{c y}{ }^{m}=0 . \tag{1.34}
\end{equation*}
$$

From the second equation of (1.31), we have

$$
\begin{equation*}
\nabla_{c} C_{m}=c X_{c} \tag{1.35}
\end{equation*}
$$

Comparing (1.5) in which $y=m$, that is,

$$
\nabla_{c} C_{m}=-H_{c}{ }^{a}{ }_{m} X_{a}+L_{c m}{ }^{x} C_{x}
$$

with (1.35), we find

$$
\begin{equation*}
H_{c}{ }_{c}^{a}=-c \delta_{c}^{a}, \quad L_{c m}{ }^{x}=0 . \tag{1.36}
\end{equation*}
$$

Thus, equations of Gauss and Weingarten of M^{n} in S^{m-1} in E^{m} are respectively

$$
\begin{equation*}
\nabla_{c} X_{b}=h_{c b}{ }^{u} C_{u}-c g_{c b} C, \tag{1.37}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} C_{u}=-h_{c}{ }^{a}{ }_{u} X_{a}+l_{c u}{ }^{v} C_{v}, \tag{1.38}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} C=c X_{c}, \tag{1.39}
\end{equation*}
$$

$g_{c b}, h_{c b}{ }^{u}$ and $l_{c u}{ }^{v}$ being respectively the first, second and third fundamental tensors of M^{n} in S^{m-1}.
§2. Mean curvature vectors of M^{n} with respect to \boldsymbol{E}^{m} and \boldsymbol{S}^{m-1}.
The mean curvature vector of M^{n} with respect to E^{m} is defined to be

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} X_{b}=\frac{1}{n} H_{a}^{a x} C_{x} . \tag{2.1}
\end{equation*}
$$

Thus the mean curvature vector of M^{n} with respect to E^{m} is an intrinsic normal to M^{n}. If this mean curvature vector vanishes identically M^{n} is said to be minimal in E^{m}.

Suppose that M^{n} is a submanifold of a sphere S^{m-1} in E^{m}, then the mean curvature vector of M^{n} with respect to S^{m-1} is defined to be

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h}=\frac{1}{n} h_{a}^{a u} C_{u}{ }^{h} . \tag{2.2}
\end{equation*}
$$

Thus the mean curvature vector of M^{n} with respect to S^{m-1} is an intrinsic normal to M^{n}. If this mean curvature vector vanishes identically M^{n} is said to be minimal in S^{m-1}.

Now, for a submanifold M^{n} of S^{m-1} in E^{m}, we have

$$
X_{b}=B_{b}{ }^{h} X_{h}
$$

and consequently

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} X_{b}=\left(\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h}\right) X_{h}-c^{2} X . \tag{2.3}
\end{equation*}
$$

Thus we have
Lemma 2.1. Let M^{n} be a submanifold of a sphere S^{m-1} in E^{m}. Then the difference of the mean curvature vector of M^{n} with respect to E^{m} and that with respect to S^{m-1} is in the direction of the radius vector of S^{m-1}.

Lemma 2.2. Let M^{n} be a submanifold of a sphere S^{m-1} in E^{m}. A necessary and sufficient condition for M^{n} to be minimal in S^{m-1} is that the mean curvature vector of M^{n} with respect to E^{m} lies in the direction of the radius vector of S^{m-1} [1, 2, 13, 18].

We now assume that the mean curvature vector of M^{n} with respect to E^{m} never vanishes and choose the last normal C_{m} in the direction of the mean curvature vector. We then put
(2. 4)

$$
C_{m}=C,
$$

$$
H_{c b m}=H_{c b}, \quad L_{c m}{ }^{x}=L_{c}^{x}
$$

Then from

$$
\begin{aligned}
\frac{1}{n} g^{c b} V_{c} X_{b} & =\frac{1}{n} H_{a}^{a x} C_{x} \\
& =\frac{1}{n} H_{a}^{a u} C_{u}+\frac{1}{n} H_{a}^{a} C,
\end{aligned}
$$

we find

$$
\begin{equation*}
H_{a}{ }^{a u}=0, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} X_{b}=\frac{1}{n} H_{a}^{a} C . \tag{2.6}
\end{equation*}
$$

Thus if the mean curvature vector is parallel with respect to the connection induced in the normal bundle, that is, if the covariant derivative of the mean curvature vector

$$
\nabla_{c}\left(\frac{1}{n} H_{a}{ }^{a} C\right)=\frac{1}{n}\left(\nabla_{c} H_{a}{ }^{a}\right) C+\frac{1}{n} H_{a}{ }^{a}\left(-H_{c}{ }^{b} X_{b}+L_{c}{ }^{x} C_{x}\right)
$$

is tangent to M^{n}, then we have

$$
\begin{equation*}
H_{a}{ }^{a}=\text { const. } \neq 0, \quad L_{c}{ }^{x}=0 \tag{2.7}
\end{equation*}
$$

by virtue of $L_{c}{ }^{m}=L_{c m}{ }^{m}=0$.
We next assume that the mean curvature vector of M^{n} with respect to S^{m-1} never vanishes and choose the last normal $C_{m-1}{ }^{h}$ in the direction of the mean curvature vector. We put

$$
\begin{equation*}
C_{m-1}{ }^{h}=C^{\prime h}, \quad H_{c b m-1}=h_{c b}, \quad l_{c m-1}^{u}=l_{c}^{u} . \tag{2.8}
\end{equation*}
$$

Then, from

$$
\begin{aligned}
\frac{1}{n} g^{c b} V_{c} B_{b}{ }^{h} & =\frac{1}{n} h_{a}^{a u} C_{a}{ }^{h} \\
& =\frac{1}{n} h_{a}{ }^{a r} C_{r}{ }^{h}+\frac{1}{n} h_{a}^{a} C^{\prime h},
\end{aligned}
$$

we find

$$
\begin{equation*}
h_{a}{ }^{a r}=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h}=\frac{1}{n} h_{a}^{a} C^{\prime h} \tag{2.10}
\end{equation*}
$$

where here and in the sequel r, s, t run over the range $\{n+1, \cdots, m-2\}$.
Thus if the mean curvature vector of M^{n} with respect to S^{m-1} is parallel with respect to the connection induced in the normal bundle of M^{n} in S^{m-1}, that is, if the covariant derivative of the mean curvature vector

$$
\nabla_{c}\left(\frac{1}{n} h_{a}{ }^{a} C^{\prime / h}\right)=\frac{1}{n}\left(\nabla_{c} h_{a}{ }^{a}\right) C^{\prime h}+\frac{1}{n} h_{a}{ }^{a}\left(-h_{c}{ }^{b} B_{b}{ }^{h}+l_{c}{ }^{u} C_{a}{ }^{h}\right)
$$

is tangent to M^{n}, then we have

$$
\begin{equation*}
h_{a}^{a}=\text { const. } \neq 0, \quad l_{c}^{r}=0 \tag{2.11}
\end{equation*}
$$

by virtue of $l_{c}^{m-1}=0$.

§ 3. Integral formulas.

Let M^{n} be a submanifold in E^{m}. We put

$$
\begin{equation*}
X=X_{a} v^{a}+C_{x} \alpha^{x} \tag{3.1}
\end{equation*}
$$

and differentiate this covariantly along M^{n}. Then we obtain

$$
X_{c}=\left(H_{c b}{ }^{x} C_{x}\right) v^{b}+X_{a} \nabla_{c} v^{a}+\left(-H_{c}{ }^{a}{ }_{x} X_{a}+L_{c x}{ }^{y} C_{y}\right) \alpha^{x}+C_{x} \nabla_{c} \alpha^{x},
$$

from which

$$
\begin{equation*}
\nabla_{c} v^{a}=\delta_{c}^{a}+H_{c}{ }^{a}{ }_{x} \alpha^{x} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} \alpha^{x}=-H_{c b} v^{x} v^{b}-L_{c y}{ }^{x} \alpha^{y} \tag{3.3}
\end{equation*}
$$

from which

$$
\begin{equation*}
\nabla_{a} v^{a}=n+H_{a}{ }_{a}{ }_{x} \alpha^{x} . \tag{3.4}
\end{equation*}
$$

Assuming M^{n} to be compact and orientable and integrating, we have from equation (3.4)

$$
\begin{equation*}
\int_{M^{n}}\left(n+H_{a}{ }^{a}{ }_{x} \alpha^{x}\right) d S=0, \tag{3.5}
\end{equation*}
$$

where $d S$ is the surface element of M^{n}.
On the other hand, we have

$$
\begin{aligned}
\nabla_{a}\left(H_{b}{ }^{a} v^{b}\right) & =\left(\nabla_{a} H_{b}{ }^{a}\right) v^{b}+H_{l}{ }^{a}\left(\delta_{a}^{b}+H_{a}{ }^{b}{ }_{x} \alpha^{x}\right) \\
& =\left(\nabla_{a} H_{b}{ }^{a}\right) v^{b}+H_{a}{ }^{a}+H_{c b} H^{c_{b}}{ }_{x} \alpha^{x}
\end{aligned}
$$

by virtue of (3.2), from which, by integration,

$$
\begin{equation*}
\left.\int_{M^{n}}\left\{\left(\nabla_{a} H_{b}^{a}\right) v^{b}+H_{a}^{a}+H_{c b} H^{c b}{ }_{x} \alpha^{x}\right)\right\} d S=0 . \tag{3.6}
\end{equation*}
$$

If we assume that the mean curvature vector of M^{n} in E^{m} is parallel with respect to the connection induced in the normal bundle, we have (2.7) and consequently we have from (1.9)

$$
\nabla_{a} H_{b}{ }^{a}=\nabla_{b} H_{a}{ }^{a}=0 .
$$

Thus (3.6) becomes

$$
\begin{equation*}
\int_{M^{n}}\left(H_{a}^{a}+H_{c b} H^{c b} x \alpha^{x}\right) d S=0 \tag{3.7}
\end{equation*}
$$

Now subtracting (3.5) $\times(1 / n) H_{b}{ }^{b}$ from (3.7), we obtain

$$
\begin{equation*}
\int_{M^{n}}\left(H_{c b} H^{c b}{ }_{x} x^{x}-\frac{1}{n} H_{b}{ }^{b} H_{a}{ }^{a}{ }_{x} \alpha^{x}\right) d S=0 . \tag{3.8}
\end{equation*}
$$

Let M^{n} be a submanifold of a sphere S^{m-1} in E^{m}. We put

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+C_{u}{ }^{h} \alpha^{u} \tag{3.9}
\end{equation*}
$$

and differentiate this covariantly along M^{n}. Then we obtain

$$
-c^{2} v B_{c}{ }^{h}=\left(h_{c b}{ }^{u} C_{u}{ }^{h}\right) v^{b}+B_{a}{ }^{h} \nabla_{c} v^{a}+\left(-h_{c}{ }^{a}{ }_{u} B_{a}{ }^{h}+l_{c u}{ }^{v} C_{v}{ }^{h}\right) \alpha^{u}+C_{u}{ }^{h} \nabla_{c} \alpha^{u},
$$

from which

$$
\begin{equation*}
\nabla_{c} v^{a}=-c^{2} v \delta_{c}^{a}+h_{c}{ }^{a}{ }_{u} \alpha^{u} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} \alpha^{u}=-h_{c b}{ }^{u} v^{b}-l_{c v^{u}}{ }^{u} \alpha^{v}, \tag{3.11}
\end{equation*}
$$

from which

$$
\begin{equation*}
\nabla_{c} v^{c}=-n c^{2} v+h_{a}{ }^{a}{ }_{u} \alpha^{u} . \tag{3.12}
\end{equation*}
$$

Assuming M^{n} to be compact and orientable and integrating, we have from equation (3.12)

$$
\begin{equation*}
\int_{M^{n}}\left(-n c^{2} v+h_{a}{ }^{a}{ }_{u} \alpha^{u}\right) d S=0 . \tag{3.13}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\nabla_{a}\left(h_{b}{ }^{a} v^{b}\right) & =\left(\nabla_{a} h_{b}{ }^{a}\right) v^{b}+h_{b}{ }^{a}\left(-c^{2} v \delta_{a}^{b}+h_{a}{ }^{b} u \alpha^{u}\right) \\
& =\left(\nabla_{a} h_{b}{ }^{a}\right) v^{b}-c^{2} v h_{a}{ }^{a}+h_{c b} h^{c b}{ }_{u} \alpha^{u},
\end{aligned}
$$

by virtue of (3.12), from which by integration

$$
\begin{equation*}
\int_{M^{n}}\left\{\left(\nabla_{a} h_{b}{ }^{a}\right) v^{b}-c^{2} v h_{a}{ }^{a}+h_{c b} h^{c b}{ }_{u} \alpha^{u}\right\} d S=0 . \tag{3.14}
\end{equation*}
$$

If we assume that the mean curvature vector of M^{n} in S^{m-1} is parallel with respect to the connection induced in the normal bundle, we have (2.11) and consequently we have from (1.26)

$$
\nabla_{a} h_{b}{ }^{a}=\nabla_{b} h_{a}{ }^{a}=0 .
$$

Thus (3.14) becomes

$$
\begin{equation*}
\int_{M^{n}}\left(-c^{2} v h_{a}{ }^{a}+h_{c b} h^{c b} \alpha_{u}^{u}\right) d S=0 . \tag{3.15}
\end{equation*}
$$

Now subtracting (3.13) $\times(1 / n) h_{a}{ }^{a}$ from (3.15), we find

$$
\begin{equation*}
\int_{M^{n}}\left(h_{c b} h^{c b}{ }_{u} \alpha^{u}-\frac{1}{n} h_{b}{ }^{b} h_{a}{ }^{a}{ }_{u} \alpha^{u}\right) d S=0 . \tag{3.16}
\end{equation*}
$$

§ 4. Applications of integral formulas.

Let M^{n} be a compact and orientable submanifold of E^{m} whose mean curvature vector is parallel with respect to the connection induced in the normal bundle. We assume that

$$
\begin{equation*}
H_{c b x} \alpha^{x}=H_{c b} \alpha, \quad\left(H_{c b m}=H_{c b}, \alpha^{m}=\alpha\right) \tag{4.1}
\end{equation*}
$$

that is,

$$
\begin{equation*}
H_{c b n+1} \alpha^{n+1}+\cdots+H_{c b m-1} \alpha^{m-1}=0 \tag{4.2}
\end{equation*}
$$

Since

$$
\nabla_{c} X_{b}=H_{c b}{ }^{x} C_{x} \quad \text { and } \quad X=X_{a} v^{a}+C_{x} \alpha^{x},
$$

the assumption (4.1) is equivalent to

$$
\begin{equation*}
\left(\nabla_{c} X_{b}\right) \cdot X=H_{c b} \alpha \tag{4.3}
\end{equation*}
$$

If the assumption (4.1) is satisfied, then integral formula (3.8) reduces to

$$
\int_{M n} \alpha\left(H_{c b} H^{c b}-\frac{1}{n} H_{b}^{b} H_{a}^{a}\right) d S=0
$$

or to

$$
\begin{equation*}
\int_{M n} \alpha\left(H_{c b}-\frac{1}{n} H_{e}^{e} g_{c b}\right)\left(H^{c b}-\frac{1}{n} H_{d}{ }^{a} g^{c b}\right) d S=0 \tag{4.4}
\end{equation*}
$$

Thus, if α has a fixed sign, we have

$$
\begin{equation*}
H_{c b}=\frac{1}{n} H_{d}{ }^{d} g_{c b} \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
H_{c b}=\frac{1}{\lambda} g_{c b}, \tag{4.6}
\end{equation*}
$$

λ being a constant, that is, the submanifold M^{n} is umbilical with respect to the mean curvature normal, or M^{n} is pseudo-umbilical.

Since

$$
H_{c}^{a}=\frac{1}{\lambda} \delta_{c}^{a}, \quad L_{c}^{x}=0
$$

we have, from equation (1.5) of Weingarten,

$$
\nabla_{c} C=-\frac{1}{\lambda} X_{c}
$$

from which

$$
C=-\frac{1}{\lambda} X+\frac{1}{\lambda} A
$$

or

$$
\begin{equation*}
X-A=-\lambda C \tag{4.7}
\end{equation*}
$$

A being a constant vector, which shows that the submanifold M^{n} lies on a sphere S^{m-1} with centre at A and radius $|\lambda|$. Thus we have

Theorem 4.1. Suppose that the mean curvature vector of a compact and orientable submanifold M^{n} of a Euclidean space E^{m} does not vanish and that we take the last unit normal C_{m} to M^{n} in the direction of the mean curvature vector. If the mean curvature vector is parallel with respect to the connection induced in the normal bundle of M^{n} in $E^{m}, H_{c b x} \alpha^{x}=H_{c b} \alpha$, and α has a fixed sign, then the submanifold M^{n} lies on a sphere S^{m-1}.

The assumption

$$
H_{c b x} \alpha^{x}=H_{c b} \alpha
$$

or

$$
H_{c b n+1} \alpha^{n+1}+\cdots+H_{c b m-1} \alpha^{m-1}=0
$$

is satisfied if
(A)

$$
\alpha^{n+1}=0, \cdots, \alpha^{m-1}=0
$$

or
(B)

$$
H_{c b n+1}=0, \cdots, H_{c b m-1}=0
$$

is satisfied.
We first assume that condition (A) is satisfied. Then we have

$$
\begin{equation*}
X=X_{a} v^{a}+C \alpha \tag{4.8}
\end{equation*}
$$

that is, the position vector X is in the linear space spanned by the tangent plane to M^{n} and the mean curvature vector of M^{n} with respect to E^{m}. This is the condition assumed by Katsurada [6, 7, 8], Kôjyô [7] and Nagai [8] in their study of submanifolds with parallel mean curvature vector.

On the other hand, we have, from (1.37),

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} X_{b}=\frac{1}{n} h_{a}^{a u} C_{u}-c^{2} X \tag{4.9}
\end{equation*}
$$

and consequently, comparing (4.8) with (4.9) we find

$$
\begin{equation*}
v^{a}=0, \quad h_{a}^{a r}=0, \tag{4.10}
\end{equation*}
$$

which mean that the position vector X is in the direction of the mean curvature vector of M^{n} with respect to E^{m} and the submanifold M^{n} is a minimal submanifold of the sphere S^{m-1}.

Conversely, suppose that the submanifold M^{n} lies on a sphere S^{m-1} and the radius vector X of S^{m-1} is in the direction of the mean curvature vector of M^{n} with respect to E^{m}, then we have

$$
\begin{equation*}
X=r C \tag{4.11}
\end{equation*}
$$

r being the radius of S^{m-1}, and consequently

$$
\begin{equation*}
\nabla_{c} C=\frac{1}{r} X_{c} \tag{4.12}
\end{equation*}
$$

which shows that the mean curvature vector of M^{n} with respect to E^{m} is parallel with respect to the connection induced in the normal bundle of M^{n}. Equation (4.11) shows that the condition (A) is satisfied and $\alpha=r$ has a fixed sign. Thus we have

Theorem 4.2. In order that a submanifold M^{n} satisfying the conditions given in Theorem 4.1 satisfies the additional condition (A), it is necessary and sufficient that M^{n} lies on a sphere S^{m-1} and the radius vector of S^{m-1} is in the direction of the mean curvature vector of M^{n} with respect to E^{m}. In this case the submanifold M^{n} is minimal in S^{m-1}.

We next assume that the condition (B) is satisfied. In this case, equations of

Gauss become

$$
\begin{equation*}
\nabla_{c} X_{b}=H_{c b} C \tag{4.13}
\end{equation*}
$$

and equations of Weingarten become

$$
\begin{equation*}
\nabla_{c} C_{u}=L_{c u}{ }^{v} C_{v} \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} C=-H_{c}^{a} X_{a} . \tag{4.15}
\end{equation*}
$$

Equation (4.14) gives

$$
\begin{equation*}
\nabla_{a} L_{c v}{ }^{u}-\nabla_{c} L_{d v}{ }^{u}+L_{d w}{ }^{u} L_{c v}{ }^{w}-L_{c w}{ }^{u} L_{d v}{ }^{w}=0, \tag{4.16}
\end{equation*}
$$

which shows that we can assume that the $L_{c v}{ }^{u}$ vanish and consequently that

$$
\begin{equation*}
\nabla_{c} C_{u}=0, \tag{4.17}
\end{equation*}
$$

that is, the unit normals C_{u} are constant vectors. Since

$$
\nabla_{c}\left(C_{u} \cdot X\right)=0,
$$

that is

$$
C_{u} \cdot X=\text { const., }
$$

the submanifold M^{n} is on an ($n+1$)-dimensional plane E^{n+1} in E^{m}.
Since $H_{c b}=\lambda g_{c b}, \lambda$ being a constant, we have, from (4.13) and (4.15),

$$
\nabla_{c} X_{b}=\lambda h_{c b} C \quad \text { and } \quad \nabla_{c} C=-\lambda X_{c}
$$

respectively, where X can be regarded as the position vector in an ($n+1$)-dimensional Euclidean space, thus, from the second equation above, we have

$$
\nabla_{c}(C+\lambda X)=0,
$$

from which

$$
C+\lambda X=\lambda B,
$$

B being a constant vector and consequently the submanifold M^{n} is a sphere S^{n} lying in an ($n+1$)-dimensional Euclidean space E^{n+1}.

Conversely, a sphere S^{n} in E^{m} satisfies all the conditions stated in Theorem 4.1 and (B). Thus we have

Theorem 4.3. In order that a submanifold M^{n} satisfyiug the conditions given in Theorem 4.1 satisfies the additional condition (B), it is necessary and sufficient that the submanifold is an n-dimensional sphere.

Next, let M^{n} be a compact and orientable submanifold of a sphere S^{m-1} in E^{m}.

We assume that

$$
\begin{equation*}
h_{c b u} \alpha^{u}=h_{c b} \alpha, \tag{4.18}
\end{equation*}
$$

that is,
(4. 19)

$$
h_{c b}{ }_{n+1} \alpha^{n+1}+\cdots+h_{c b m-2} \alpha^{m-2}=0 .
$$

Since

$$
\nabla_{c} B_{b}{ }^{h}=h_{c b}{ }^{u} C_{u}{ }^{h} \quad \text { and } \quad v^{h}=B_{a}{ }^{h} v^{a}+C_{u}{ }^{h} \alpha^{u},
$$

the assumption (4.18) is equivalent to

$$
\begin{equation*}
G_{j i}\left(\nabla_{c} B_{b}{ }^{j}\right) v^{2}=h_{c b} \alpha . \tag{4.20}
\end{equation*}
$$

If the assumption (4.18) is satisfied, then integral formula (3.16) reduces to

$$
\int_{M^{n}} \alpha\left(h_{c b} h^{c b}-\frac{1}{n} h_{b}^{b} h_{a}^{a}\right) d S=0,
$$

or to
(4. 21)

$$
\int_{M^{n}} \alpha\left(h_{c b}-\frac{1}{n} h_{e}^{e} g_{c b}\right)\left(h^{c b}-\frac{1}{n} h_{d}{ }^{d} g^{c b}\right) d S=0 .
$$

Thus, if α has a fixed sign, we obtain

$$
\begin{equation*}
h_{c b}=\frac{1}{n} h_{d}{ }^{a} g_{c b}, \tag{4.22}
\end{equation*}
$$

or

$$
\begin{equation*}
h_{c b}=\frac{1}{\lambda} g_{c b}, \tag{4.23}
\end{equation*}
$$

λ being a constant, that is, M^{n} is pseudo-umbilical in S^{m-1}.
Since

$$
h_{c}^{a}=\frac{1}{\lambda} \delta_{c}^{a}, \quad l_{c}^{u}=0,
$$

we have, from equation (1.33) of Weingarten

$$
\begin{equation*}
\nabla_{c} C^{\prime}=-\frac{1}{\lambda} X_{c} \tag{4.24}
\end{equation*}
$$

from which

$$
\nabla_{c}\left(\lambda C^{\prime}+X\right)=0,
$$

that is,

$$
\lambda C^{\prime}+X=V
$$

\dot{V} being a constant vector, which shows that the submanifold M^{n} lies on the sphere with centre at V and with radius $|\lambda|$. Thus we have

Theorem 4.4. Suppose that the mean curvature vector of a compact and orientable submanifold M^{n} of a sphere S^{m-1} does not vanish and that we take the last unit normal $C_{m-1}{ }^{h}$ in the direction of the mean curvature vector of M^{n} in S^{m-1}. If the mean curvature vector of M^{n} in S^{m-1} is parallel with respect to the connection induced in the normal bundle of M^{n} in $S^{m-1}, h_{c b u} \alpha^{u}=h_{c b} \alpha$ and α has a fixed sign, then the submanifold M^{n} lies on a sphere S^{m-2}.

Bibliography

[1] Chern, S. S., Minimal submanifolds in a Riemannıan manifold. Technical Report 19, University of Kansas, (1968).
[2] Chern, S. S., M. do Carmo, and S. Kobayashi, Minimal submanifold of a sphere with second fundamental form of constant length. To appear.
[3] Hsiung, C. C., Some integral formulas for closed hypersurfaces in a Riemann space. Pacıfic J. Math. 6 (1956), 291-297.
[4] Katsurada, Y., Generalized Minkowsk1 formulas for closed hypersurfaces in a Riemann space. Annali di Mat. 7 (1962), 283-291.
[5] Katsurada, Y., On certain property of closed hypersurfaces in an Einstein space. Comm. Math. Helv. 38 (1964), 165-171.
[6] Katsurada, Y., Closed submanifolds with constant ν-th mean curvature related with a vector field in a Riemannıan manıfold. J. Fac. Scı., Hokkado Unıv. 21 (1969), 171-181.
[7] Katsurada, Y., and H. Kôjyô, Some integral formulas for closed submanifolds in a Riemann space. J. Fac. Scı., Hokkardo Unıv. 20 (1968), 90-100.
[8] Katsurada, Y., and T. Nagai, On some properties of a submanıfold with constant mean curvature in a Riemann space. J. Fac. Sc1., Hokkaido Unıv. 20 (1968), 79-89.
[9] Kobayashi, S., and K. Nomizu, Foundations of differential geometry, I, II. Interscience Tracts, John Wiley and Sons, New York (1963, 1969).
[10] Koyanagi, T., On certain property of a closed hypersurface in a Riemann space. J. Fac. Sci., Hokkado Univ. 20 (1968), 115-121.
[11] Liebmann, H., Über die Verbiegung der geschlossen Flächen positıver Krümmung. Math. Ann. 53 (1900), 91-112.
[12] Nagai, T., On certain conditions for a submanifold in a Riemann space to be isometric to a sphere. J. Fac. Scı., Hokkaido Unıv. 21 (1969), 135-159.
[13] Nomizu, K., and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature. To appear.
[14] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
[15] Okumura, M., Compact orientable submanifolds of codimension 2 in an odd dimensional sphere. Tôhoku Math. J. 20 (1968), 8-20.
[16] Okumura, M., Submanifolds of codimension 2 with certain properties. To appear in J. of Diff. Geom.
[17] ŌTSUKı, T., Integral formulas for hypersurfaces in a Riemannian manıfold and their applications. Tôhoku Math. J. 17 (1965), 335-368.
[18] Simons, J., Minımal varıetıes in Riemannıan manıfolds. Ann. of Math. 88 (1968), 62-105.
[19] Süss, W., Zur relatıven Differentialgeometrie, V. Tôhoku Math. J. 31 (1929), 201-209.
[20] Tani, M., On hypersurfaces with constant k-th mean curvature. Kōda1 Math. Sem. Rep. 20 (1968), 94-101.
[21] Yano, K., Closed hypersurfaces with constant mean curvature in a Riemannian manifold. J. Math. Soc. Japan 17 (1965), 330-340.
[22] Yano, K., Notes on hypersurfaces in a Riemanniat manıfold. Canadian J. Math. 19 (1967), 439-446.
[23] Yano, K., Notes on submanıfolds in a Riemannian manifold. Kōdai Math. Sem. Rep. 21 (1969), 496-509.
[24] Yano, K., Integral formulas for submanifolds and their applications. Canadian J. Math. 22 (1970), 376-388.
[25] Yano, K., and M. Okumura, Integral formulas for submanifolds of codimension 2 and their applicatıons. Kōdaı Math. Sem. Rep. 21 (1969), 463-471.
[26] Yano, K., and M. Tani, Integral formulas for closed hypersurface. Kōdaı Math. Sem. Rep. 21 (1969), 335-349.

Department of Mathematics,
Tokyo Institute of Technology.

