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ON THE TOTAL ABSOLUTE CURVATURE OF MANIFOLDS
IMMERSED IN RIEMANNIAN MANIFOLD, IP

BY BANG-YEN CHEN

In [3], [4] and [8], Chern, Lashof, Kuiper and Otsuki studied the total absolute
curvature of an oriented compact manifold immersed in a euclidean space, and
obtained some interesting results.

In [11], Willmore and Saleemi defined the total absolute curvature for compact
oriented manifolds immersed in riemannian manifolds. In [1], the author used the
Levi-Civita parallelism to define the total absolute curvature of compact manifolds
immersed in a simply-connected riemannian manifold with non-positive sectional
curvature, and proved that many results due to Chern-Lashof, Kuiper hold. In
1967, Kuiper [5] proposed to study the total absolute curvature for the surfaces
immersed in euclidean 3-sphere.

In this present paper, we consider the total absolute curvature of manifolds
immersed in arbitrary riemannian manifold, in particular, the surfaces in real
space forms.

1. Preliminaries.

In the following, we assume throughout that Mn is an ^-dimensional mani-
fold, and Yn+N is an oriented riemannian manifold of dimension n+N.

Let

(1) /: Mn— Yn+N

be an immersion of Mn into Yn*N.
In the following, by a frame x,eι,~ ,en+N in Yn^N we mean a point x and

an ordered set of mutually perpendicular tangent unit vectors eit --,en+N at x, such
that their orientation is coherent with that of Yn+N. Unless otherwise stated,
we agree on the following ranges of the indices:

(2) l^i,j,k^n, n+l^r,s,t^n+N, l^A,B,C^n+N.

Let F(Yn+N) be the bundle of the frames on FW+ΛΓ. In F(Yn+N), we in-
troduce the linear differential forms ΘA,ΘAB by the equations:
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( 3 ) dx= Σ 0AeA, deA= Σ 0ABeB, 0AB+0BA=Q.
A B

The exterior derivative satisfies the following equations of structure:

( 4 ) dθA= Σ ΘB/\ΘBA, dθAB= Σ θAoΛθOB+ΩAB.
B C

Let B be the set of elements b=(p,eι, ,en+N) such that (/(/>), elf •••, en+N) in
F(Yn+N)] pςMn, eι,~ ,en are tangent vectors and en+\,-~,en+N are normal vectors
at f(p). Let MA, <*>AB be the 1-forms on B induced from the natural immersion
B-*F(Yn+N)', (p, <?!,-, en+N)\^(f(p)9 el9 •••, en+N). Then we have

(5) ωr=0.

Hence the first equation of (4) gives

(6) Σβ*Λω<r=0.
z

From this it follows that

(7) 0)ir~ Σ AnjMj, Anj = Arji
3

We define the normal bundle BΌ by

(8) Bυ={(p,e): psMn, e being unit normal vector at /(/>)}.

We call

(9)

the Lips c hit z- Killing curvature at (p,
We call the integral

(10)

the ίoto/ absolute curvature of the immersion /, if the right hand side of (10)
exists, where CH+N-I denotes the volume of the unit (n+N— 1)-sphere and dW
denotes the volume element of the normal bundle BΌ.

REMARK. In the special case: Yn+N is euclidean, then the definitions of the
total absolute curvature in [1], [3] and this present paper are all equivalent.

2. Minimal flat torus in S* with TA(f)=π.

Let

(11) /: Mn—Sn+N

be an immersion from a compact manifold Mn into a euclidean («+N)-sphere

radius α. por any eςSn+N, we define the height function he on Mn as
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follows:

(12) he: Mn-*R; h,(p)=f(p)

where " - " denotes the inner product naturally induced by Sn+N. Then, by Sard's
theorem, we know that for almost all ezSn+N, the height function he have only
non-degenerate critical points. In the following, let ζp(Mn) be the set of real-
valued functions on Mn with only non-degenerate critical points. For any / in

W), let wii(f) denote the number of critical points of index i of / on Mn. Let
Σ* fWίGO The immersion (11) is called to be tight if

(13)

for almost all eeSn+N, where βt(Mn) denotes the j'-th betti number of Mn.
Thank a theorem of Otsuki [8], we have the following theorem:

THEOREM 1. Let f: M2—*SZ be an isometric immersion from a closed riemann-
ian surface M2 into a euclidean 3- sphere S3 with radius a. Then the following
three statements are equivalent:

(a) M2 is imbedded as a minimal flat torus with total absolute curvature
TA(f) = π.

(b) M2 is imbedded as a tight flat torus with total absolute curvature
TA(f)=π.

( c ) /(M2) is equivalent to the standard flat torus

(14) /-— (cos u, sin u, cos v , sin v)
v *

under the action of the orthogonal group O(4) on S3.

Proof, (a) implies (b): If M2 is imbedded in S3 as a minimal flat torus with
total absolute curvature TA(f)=π. Then we have

Trace (A9iJ) = 0 and det (Aw) - -- Γ .

Hence for some suitable cross-section (#, βi, e2, eB) from M2 into B, the matrix
(Asij) is given in the following form:

Ί-lίal0 -I/.

Therefore, if we define the immersion

(15) /': M2-£4

by f'(P)=f(P), for all p in M2, then the Lipschitz-Killing curvature K'(p,e) of
the immersion (15) is given by
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/tf)(cos 0+sin 0)

0 (l/ύO(cos0-sin0)/

where 0=(sin#)£3+((l/tf)cos#)£. Thus we get

0 \

s0-sin0)/

(16) K'(p,e)=-

Let

λ(p)= max K'(p, e), μ(P)= min K'(p, e)
eζ p e€ p

where Sp is the fibre of the normal bundle of the immersion (15) over p. Then
by (16), we have

(17)

Hence the integral of λ(p) over M2 satisfies

(18) ( λ(p}dV=2π2.
-

Therefore, by a result due to Otsuki [8], we know that the immersion /: M2— >S3

is tight.
(b) implies (c): If M2 is imbedded as a tight flat torus with total absolute

curvature TA(f)=π. Then by a result due to Otsuki [8], we have

(19) λ(p)dV=2π2.
jΛf2

On the other hand, by the assumption, we can easily verify that

(20) Λ ( / > ) ^ - > v(M*)=2a*π* (volume of M2).

Therefore, by (19) and (20), we can easily find that

- - , for all
a*

Furthermore, if we set

/ _ - / _ _ _ - / _ /_!_
1 1> 2 2 , 3 3 , 4 a.

then we have

_ J_ , _ 1
> 3 az > ^ , 4 ^2
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This shows that (p, e(, e(, e(, e[) is a Frenet frame in the sense of Otsuki [8] for
the immersion (15). Thus, we have

(21) ωίsΛωas— ^-(*)[/\ωί, o)u/\ω^=——ω[/\ωί,

(22) ωί3Λft4+ωί4Λω2'3=0.

Furthermore, by the definition of e'A, we have

(23) fof

4l=ω(, (1)42=0)2, ω^=cϋ^=0.

Therefore, by (19), (21), (22) and (23), we know that /(M2) is equivalent to a flat
torus of the following form [8]:

(24) (ccosu, csinu, dcosv, dsinv), c2+d2=a2,*

under the action of 0(4) on S3. Furthermore, by (21), we have

(25) 2cd=a2.

Hence, by (24) and (25), we get c=d=a/\Λ2. This proves that/(Af2) is equivalent
to the standard flat torus (14) under the action of O(4).

(c) implies (a): This step is trivial. This completes the proof of the Theorem.

3. Total absolute curvature for surfaces in real space forms.

Throught this section, we assume that YN is one of the following complete
simply connected riemannian manifolds of dimension N:

( I ) An TV-sphere SN of radius a (or of curvature I/a2).
(II) A euclidean TV-space EN.
(III) A hyperbolic TV-space HN of curvature ~l/a2.
Let /: M2~*YN be an immersion from a surface M2 into YN. Then we have

the following equation:

<?
(26) da)i2= — Σr α>ιrΛίθ2r~—;rωιΛα>2>

where from now on δ takes the value:

1 if YN=SN,

(27) δ= 0 if YN=EN,

-1 if YN=H».

By (26), we have
5>

-̂
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Hence, the riemannian sectional curvature S(p) of M2 at p with the induced metric
is given by

§

r ' a2

PROPOSITION 2. Let f: M2—>F3 be an isometric immersion from a compact
surface M2 into a real space form F3 with constant riemannian sectional curva-
ture δ/a2. Then the total absolute curvature TΛ(f) satisfies the following inequality:

(29)

where e(M2) denotes the Euler characteristic of M2. In particular, if <5^0, then
the equality of (29) holds when and only when the Lipschitz-Killing curvature of
the immersion f: M2-* F3 is~ of constant sign.

Proof. By the assumption, we know that for every p in M2, there exist two
elements of Bυ over p, said (p,e) and (p,—e). By (7) and (9), we have K(p,e)
=K(p, —e). Thus, by equation (28), we get

(30) 2πe(M2)=\ K(p,e)dV+δv(M2)/a2.

Thus, by (30) and a result due to Chern-Lashof [3], we can verify that

(31) TA(f)^\e(M2)-δv(M2)/2a2π\ if 3^0,

and

(32) TΛ(f)^e(M2)+2β1(M2) if δ=Q.

From (31) and (32), we can easily deduce that the inequality (29) holds.
Furthermore, if d^O, then by (30), we can easily find that the equality of (29)
holds when and only when the Lipschitz-Killing curvature of the immersion / is
of constant sign. This completes the proof of the Proposition.

THEOREM 3. Let f: M2-^S3 be an isometric immersion from an oriented com-
pact surface M2 into a ^-sphere S3 with radius a. If the total absolute curvature
satisfies the following inequality:

(33)

then M2 is diffeomorphic to a 2-sphere. Furthermore, there exists an immersion
from a torus into S3 with the total absolute curvature v(M2)/2a2π.

Proof. Let g denote the genus of the oriented surface M2. Then by Proposi-
tion 2, we have the following inequality:
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V(M2)

2a2π

Hence, if (33) holds, then by (34), we get 0=0. This means that M2 is diffeo-
morphic to a 2-sphere.

Now, let γ: T2-*SS be the inclusion mapping of the flat torus:

(35) (ccosu, csinu, dcosv, dsinv), c2+d2=a2,

into S3. Then, by (35), we can find that

(36) TA(γ)=

Thus, by (36), we have TA(r)=v(M*)/2a*π. This completes the proof of the
Theorem.

Similarly, we can prove that

THEOREM 4. Let f: M2—*SS be an isometric immersion from an oriented com-
pact surface M2 into a ^-sphere S3 with radius a. If the total absolute curvature
TA(f) satisfies the following inequality.

(37) TA(f}<^j^+2k, £=0,1,2,-,

then the genus of M2 is one of the following integers: 0,1, 2, •••, k. In particular,
if k=l, then M2 is either diffeomorphic to a 2-spkere or a 2-torus.

REMARK. Use Proposition 2. We can get an analogue statement of Theorem
4 for the oriented compact surfaces in hyperbolic space, and also for non-orien-
table case.

4. Surfaces in real space forms with TA(f)=Q.

THEOREM 5. Let f: M2-^YN be an isometric immersion from a complete sur-
face M2 into YN. Then we have the following:

Case (I): YN=SN; If the total absolute curvature TA(f)=0, then M2 is
isometric to a 2-sphere with radius a or to a projective plane of constant riemann-
ian sectional curvature I/a2. Furthermore, M2 is immersed as a totally geodesic
submanifold of YN if and only if TA(f)=Q and f is minimal. In particular, if
N=3, then TA(f)—Q if and only if f is totally geodesic.

Case (II) YN=EN; The total absolute curvature TA(f)=0 if and only if M2

is immersed as a cylinder in EN.
Case (III) YN=HN\ If TA(f)=0, then M2 is a complete surface iviίh constant

negative riemannian sectional curvature —I/a2. In particular, if M2 is compact,
then there exists no immersion from M2 into U3 such that the total absolute curva-
ture is equal to zero.
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Proof. Case (I) YN=SN', If the total absolute curvature TA(f)=Q, then by
(28), we find that the riemannian sectional curvature of M2 is equal to I/a2.
Hence, by the completeness of M2, we know that M2 is either isometric to a 2-
sphere with radius a or isometric to a real protective plane of constant riemannian
sectional curvature I/a2.

If the total absolute curvature TA(f)=Q and / is minimal, then we have
detG4ny) = trace (Anj)=Q, for all r. Hence, by the fact that dimM2=2, we have
Amj=0 for all r,i,j. Thus the second fundamental form vanishes. This means
that M2 is immersed as a totally geodesic submanifold of YN. The converse of
this is trivial.

Now, suppose that N=3, and the total absolute curvature J!A(/)=0. Then
M2 is isometric to a 2-sphere S2 with radius a. Furthermore, by the assumption
TA(f)=Q, we have

(38) Aln-AmAm=Q.

Now let G be the open subset of M2 such that Aι=(AΛij)*Q. If G^φ, we take a
local cross-section (p, el9 e2, es) from M2 into the bundle B, such that

then, from ωι3=0, we get dωιS=ωi2/\ω2B=φωi2/\ω2=Q, hence ωι2=0 (mod <y2)
Therefore the integral curve of the local field βi is a geodesic in M2 and S3.
Now, putting o)i2= po)2, we have <tf<y23=^Λω2+pωιΛωι2=ω2ιΛωι8==0, hence along
this geodesic we have dlogφ+pωι=Q, that is ^>=exp(— f pωi). By means of the
completeness of M2, this local field of frame can be extended as possible as far in
G. But, the above equality shows that this process is endless. Thus we see that
the above geodesic is a great circle in M2 and S3 (We may consider M2&S2(a)).
Therefore G is an open set such that through any point there exists one and only
one closed great circle in it. This is impossible for M2. Hence it must be G=φ.
Thus the immersion / is totally geodesic. This completes the proof of Part (I).

Case (II) YN=EN\ If the total absolute curvature ΓΛ(/)=0, then, by (10),
we know that the Lipschitz-Killing curvature K(p, e) is identically zero. Hence,
M2 is a complete flat surface in EN. Therefore, M2 must be isometric to one of
the following surfaces: Euclidean planes, Cylinders, Tori, Mobius bands and Klein
bottles. Furthermore, by a result due to Chern-Lashof [3], we know that every
closed surface cannot immersed into euclidean spaces with vanishing total absolute
curvature. Hence, by the above results and the fact that the Mobius band in
euclidean spaces has positive total absolute curvature, we know that M2 is either
isometric to a euclidean plane or isometric to a complete cylinder. On the other
hand, Shiohama [10] proved that the only complete orientable surface in euclidean
spaces with vanishing Lipschitz-Killing curvature is cylinder (or plane). Hence, we
know that M 2 is immersed as a cylinder (or plane) in EN. The converse oft his is
trivial.

Case (III) YN=HN] If the total absolute curvature TA(f)=Q, then, by equa-
tion (28), we know that the riemannian sectional curvature is given by
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(39)

Thus, M2 is a complete surface with constant negative riemannian sectional curva-
ture —I/a 2 . Furthermore, by a result due to O'Neill [7], we know that every
compact ^-dimensional riemannian manifold with riemannian sectional curvature
K cannot isometrically immersed in a complete simply connected (n+N)-dimen-
sional riemannian manifold with riemannian sectional curvature K' if N^n and
K^K'^Q. Consequently, we have proved that if M2 is compact, then there exists
no isometric immersion of M2 into F3 with vanishing total absolute curvature.
This completes the proof of the Theorem.

I would like to express my deep appreciation to Professor Tadashi Nagano for
his kind help during the preparation of this paper, and also thanks to Professor
Tominosuke Otsuki for the valuable improvement.
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