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THE STRONG CONVERSE THEOREM IN THE DECODING
SCHEME OF LIST SIZE L

BY SHOICHI NISHIMURA

1. Introduction.

The coding theorem, discovered by Shannon [5], states that information can be
transmitted with arbitrarily small error probability by means of words lengthening.
A question will arise on what will become of an asymptotic behavior of an error
probability. Denoting by M the number of input messages and by N the length of
corresponding input words, the rate is defined as R=(l/N)logM. If we lengthen
the word with a fixed rate, the error probability approaches exponentially zero.
For a broad class of channels its first exponential error-bound was given by Fano
(1956). Its precise upper estimate was obtained by Gallager [4], and its precise
lower estimate was obtained by Shannon, Gallager, and Berlekamp [6],

On the other hand, the weak converse theorem for Shannon's coding theorem
was proved by Feinstein [3] using Fano's inequality. It states that if the rate is
above the channel capacity, for a sufficiently large N the error probability is positive.
Wolfowitz [7] proved the strong converse theorem; there exists a positive constant
K such that there does not exist M=eNC+κ*/N input messages such that its error
probability is below λ>0. In this paper we derive the strong converse theorem in
the decoding scheme of list size L. The rate is defined as

D 1 , M
R= — l o g - .

If R>C+ε, then the average error probability approaches one. The decoding
scheme of list size L which was mentioned in Shannon, Gallager, and Berlekamp
[6], is that the decoder, rather than mapping the output words into a single message,
maps it into a list of messages. If the transmitted source message is not on the
list of decoded message, we say that a list decoding error has occurred.

2. Channel and list decoding.

Let input alphabets be z=l, •••, / (I^a) and output alphabets be 7=1, •••,/ (f^a).
Let XN be the set of all input words of length N that can be transmitted, and let
YN be the set of all output words of length N that can be received. Let P(y | xm),
for XTΠ^XN and yG YN, be the conditional probability of received word y, given that
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xm was transmitted. We assume memoryless channel such that

P(y\*m)= Π PUm\tm.n) and P(/ | i )M) for all (i,j).
n=l

For a given code and a list decoding scheme, let Am be the set of output words for
which message m is on the list of decoding messages. That is, we put Xy as
Xy={m;yeAm}, then Xy contains at most L elements. We assume that we transmit
input words with equi-probability 1/M, then the average error probability is

Σ Σ
m=l .ις_JJ

y Q A

and the rate as

τ> λ i M

In the case of L = l the decoding scheme satisfies AmΓiAm>=φ im^mf) which is an
ordinary decoding scheme and R=(l/N)log M is an ordinary rate. In the case of
L=M while the error probability is equal to zero (P(<?)=0), the rate R is also equal
to zero (R=0).

Shannon, Gallager, and Berlekamp [6] proved that if

1 M
l

then for the same R the average error probability has respectively the same expo-
nential order with N independent as L and M.

There is a limit to bits per second which is transmitted through a given
channel. We, for example, consider that a moon's figures is transmitted to the
earth by means of television. To obtain a clear picture of the moon, a code is
needed redundancy. The longer the word for a point becomes, the rougher the
picture must become. Vice versa. The finer the picture becomes, the worse the
accuracy for a point becomes. In such a case we could use a list decoding scheme.
If the camera is not moved quickly, there is no difference between a received
information at present and received informations in the immediate past. From a
received word we do not decide a message, but we obtain a list and make a picture
by referring to informations in the immediate past.

3. Strong converse theorem.

At first we shall begin with several probabilistic lemmas of Bernoulli trials.

LEMMA 1. If Y be any nonnegative {discrete) random variable, and d be any
positive real number, then



E(Y)=ΣyP(y)= Σ yP(y)+ΣyP(y)
y O^y^d y>d
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Proof.

S Σ yP(y)>dΣ P(y)=dP{Y>d}.
y>d y>d

LEMMA 2. If Y be a {discrete) random variable, b be any real number and r
be any positive real number, then

P{X> b} < e~rbE [erX] and P{X< b} < erbE [e~rX].

Proof Now taking Y=erX and d=erb, we obtain

P{X>b}<e~rbE[erX],

In the same way we obtain

P{X<b}=P{-X>-b}<erbE[erX].

LEMMA 3. If Z\, •••, ZN be an independent identically distributed Bernoulli trials
(E[Zn]=p, n=l, •••, N, l^yp^λyO) and if SN stand for the number of successes in
N Bernoulli trials (SN—Σ%=I Zn). Then there exists a positive constant c' such that

P{\SN-

Proof. At first we only estimate:
i) In the case of 1 ^

ii) In the case of l>p(l+δ).
From lemma 2 we have

Since ZU",ZN are mutually independent, we have

P{SN>Np(l+δ)}^e-rNpt1+δ>E[erZi]N.

We put φ(r)=E[erZq=l-p+per and μ(r)=\og φ(r), then

P{SN>Np(l+δ)}^eNίμ^-rP«+δ».

To obtain the tightest bound we differentiate μ(r)—rp(l+δ) by r.
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Consequently

μ(r)-rpa+δ)=μ(r)-rμ'(r)

We differentiate this by p.

\-p-pS δ

(l-/>)(l+3) 1-p

μ(f)—rμr(r) is monotone decreasing with respect to p. Since pl^λ, we have

μ(r)-rμ\m-{l-λ-λδ) log ( l - ~ ) - ^ ( l + 3 ) log (1+3).

P{S*>tf/<l+W^exp[-#J(l^^

In the same way as above, we have

Since

those which are two terms in the brackets are positive. Let we put the smaller of
these as c', then we completed the proof.

Let us assign a probability vector P=(pi, --,pi) on input alphabets such shat
pi is a multiple of 1/iV, then we have a probability vector Q=(qi, •••, qi) on output
alphabets such that qj=Σι%PU\ϊ)Pi- Even though we assigned input probability as
has been described, discussion from now on should not merely relied upon the
usage of these words. Attention should also be given to the fact that probabilistic
approach only will be applied concering the relation between input and output, that
is, the number of generated sequence, etc.

We define the function H as follows:

H(Q\P)=-ΣPiPUIi) logP(j| i).

Let N(i I x) be the number of alphabets i in x, N(j | y) be the number of alphabets
j in y and N(ij\xy) be the number of pairs (in,jn) = (i,J) in (#,#). For convenience'
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sake, we introduce following sets dependent on δ> η>0.

DEFINITION 1. xzXN is called to be P-seq. if N(i\x)=Npi for all i.
Now we put

\{y;N(ij\xy)>N(i\x)P(j\iχi+y)} for p^δ,

[φ for Pi<δ,

({y;N(ij\xy)<N(i\x)P(i\i)(X-η)} for p&d,
\
[φ for pi<δ

and V(x)= U %, (Vτj{x)*u Vt£x)*).

DEFINITION 2. y€ YN is called to be generated by P-seq. if yQ V(x)c.

LEMMA 4. P{V(x)\χ}^2a2e-Nc".

Proof. For a given channel, the conditional probability P(j\ i) is fixed and the
number of pairs (i,j) is finite, then there exists a positive constant λ such that
Λ=min(ity) P ( i | ί ) > 0 . If Ky(^)* or KyO)* is not empty, i\T(f | α?) must be larger
than Nδ. Using lemma 3 there exists cr such that

P{V%J(x)*\x}^e-Nδe> and P{Vtj(x)*\x}^e-Nδet for all (/,;).

If we put c"=δc'y we completed the proof.

Let B(P) be the number of output words which is generated by P-seq. x.

LEMMA 5. We have

B(P)^expN{H(Q)-a(η+δ) log λ}.

Proof. By

N(ij I χy)^N(i I χ)P(j \ i){\+η)=NPiPU \ ί){l+η) for p^δ

and

N(ij\xy)^N(PiPU\i)+δ) for A<<5,

we have

ΛT(i|y)^iV(^+^+δ)) for all j.

Since qj=ΣιPiP(J\ϊ), we have

π (βi)Naιi°^ π
3=1 J=l

log fl].
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The probability of set y which is generated by P-seq. is less than or equal to
one. We have

logλ}.

LEMMA 6. / / x be P-seq. and y be generated by x, then

P{y I ̂ }^exp [-N{H(Q| P)+a(η+S) log λ}].

Proof

P{y I x}=U P(j I ϊ)N<u\w ^ Π P(j I i)NiPiPU\i^-^
3 3

gexp [- N{H(Q I P)+a(η+S) log λ]}.

Now we can prove the strong converse theorem. At first we attach conditions
to xm and Am, and step by step detach them.

LEMMA 7. Let xm(m=l, •• ,M) be P-seq. and Am be the subset of output words
y which is generated by xm. Let (xuAi), " ,{XM,AM) be a decoding scheme of list
size L. If R^C+ε/2 where R is the rate of list size L and C is the channel
capacity, then for a sufficiently small δ and η there exists a positive constant c[ such
that

Proof. From lemma 5 and definition of list decoding, we have

M

J] (the number of y which is contained in Am)
771 = 1

^LB(P)^L exp [N{H(Q)-a(η+δ) log λ}].

From lemma 6, we have

P(y I a?)^exp [-N{H(Q | P)+a(v+δ) log λ}].

Then we obtain

1-P(β)=^r ΣP(Am\xm)
M m = i

^ ^ : L exp [iV{/ί(Q)-^+^ logλ}] exp [-iV{̂ Γ(Q | P ) + ^ + ^ ) log Λ}1

[-N{R-C+2a(η+δ)logλ]]
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For sufficiently small δ and 37, we have

where c[ is dependent on ε, δ, η and λ, but independent of N. Hence

Next we detach the condition to Am.

LEMMA 8. Let (xl7 Ai)t •••, (XM, AM) be a decoding scheme such that xm is P-seq.
and Am is any list size L decoding set. If i?>C+ε/2, then there exists positive
constants c" and c" such that

Proof. Let Am be the intersection of Am and V(xm)c, Aίn be the intersection
of Am and V(xm).

1-P(e)= -j- Σ P(Λm \χm)=^τΣ P(A!n l ^ + ^ Σ ?(A>! \ xm).
i-yJ- m = l -LyJ- m = l i^J- m = l

From lemma 7 the first term can not exceed e~NcΊ. From lemma 4 the second term
can not exceed 2a2e~Nc"'. Then for fixed sufficiently small δ and η, there exists
positive constant c" and c" such that

Thus we completed the proof.

The number of probabilistic vector P is at most (iV+l)α. For each P lemma
8 was prove. We number the class of P-seq. into which we classify xm (m=l, •••, M).

Λ M K Ά/f 1

l-P{e)=—Σ^P(AmIxm) = Σ~-jfcΣ P(Λmk\xmk),

where Mk is the number of β-th class of P-seq. xm and K^(N+ΐ)a.
We assume that R^C+ε.
i) If Mk>LeNω+ε/2\ then from lemma 8 we have

c2

ϋ) If Mk^LeN<G+ε/2\ then we have

Mk 1
M Mk
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Hence we obtain

l-P(e)^(N+l)a max (ca"έΓ*cϊ, e~Nε/2).

Then for a sufficiently large N there exist positive constants cx and c2 such that
P(e)^l-c2e-Ncκ

The above will be summarized as follows:

THEOREM. (Strong converse theorem) Let a given channel be a discrete memo-
ryless channel such that P(j\i)^0 for all (i,j). Let input messages m=(l, ~-,M)
be transmitted with equi-probability 1/M. If i?=(l/iV)log(M/L)^C+e, where C is
the channel capacity, then for any code (xίf Aΐ), •••, (XM, AM) which is list size L,
there exist positive constants cίf and c2 such that for a sufficiently large N,
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