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ON THE NUMERICAL STUDY OF THE LOW DENSITY
PLASMA SHEATH EQUATIONS IN THE PLASMA LIMIT

BY HlTOHISA ASAI AND PAUL R. CARON

Abstract.

The cylindrical low density plasma sheath in the plasma limit for three
ionization source functions is formulated and is discussed numerically. The
three functions are: (1) the function proportional to electron density, (2) a
constant function, and (3) the function proportional to the inverse radius
except in a range near the center of the cylinder. We apply two iteration
schemes to the formulated equations and consider the convergence of the
iterations. Comparisons are made between the two processes and the numeri-
cal results.

I. Introduction.

The classic paper of Tonks and Langmuir [9] analyzed the low-pressure dis-
charge for plane, cylindrical and spherical geometries. The ion mean free path is
assumed to be large compared to the transverse dimensions of the discharge tube
and hence the positive ions fall freely to the tube walls in the self-consistent field.
The electron density is assumed to have a simple Boltzmann dependence and a
function which describes the spatial variation of ion-electron pair generation must
be assumed. With Poisson's equation, these assumptions lead to what Tonks and
Langmuir termed the complete plasma-sheath equation, and they obtained solutions
in the form of a power series for the plasma limit, i.e. they assumed exact charge
neutrality everywhere. Harrison and Thompson [3] analytically solved the plasma
equation in plane geometry. Solutions of the complete plasma-sheath equations
have been obtained in plane geometry by Self [8] and in cylindrical geometry by
Parker [6]. Parker considered only the case where the ionization source function
is proportional to electron density.

In this report we shall present a numerical study of the cylindrical low
density plasma sheath in the plasma limit for three ionization source functions:
(1) the ionization function proportional to electron densityυ; (2) a constant func-
tion50; (3) a function which is proportional to the inverse radius except for small
radii where it is constant. The lattermost case has application to low density

Received January 13, 1969.
1) This case was considered by Parker and is applicable to a positive column.
2) This case has application to beam generated plasmas.
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LOW DENSITY PLASMA SHEATH EQUATIONS 291

cylindrical screen cathode discharges [2].
Let us consider the low density plasma sheath in cylindrical geometry. We

assume the ions to be in free fall to the walls and the electrons to have a Boltz-
mann distribution. Thus,

(!_!) „ Λ,Λ_ - v S(p)pdp

(1-2) nβ(r)=nQ exp [eV(r)/kT]

where S is the ionization source function, e is the electron charge, mt is the ion
mass, k is Boltzmann's constant, T is the electron temperature and nQ is the elec-
tron density at r=0 where the potential is chosen to be zero (i.e. 7(0) = 0). In the
plasma limit the ion and electron densities are equal everywhere. Thus,

Numerical solutions of the non-linear integral equation (1-3) for the three forms
of S are described.

Case 1. The ionization source function is assumed to be proportional to the
electron density,

S(r)=ane(r)

which with the substitutions

eV
η~ kT

reduces equation (1-3) to

(1-4)

Solutions of (1-4) are desired for 0^ζ^ζω and ζω defines the location of the wall
where the electron and ion fluxes must be equal. These quantities are

1 Γr»
ft= — \ S(ρ)pdp

'ω Jo

where me is the electron mass. Therefore, the equation which determines ζω is
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1 ^ ΓCω _5?(σ) / mi

Case 2. The source function is assumed to be constant, S(r)=S0, which with
the substitutions

kT '

reduces (1-3) to

σdσ
(1-6)

In this case the quantity ζω is given by

(1-7) ζ.*'<c.) =

Case 3. We assume the source function to be given by

(1-8) S(r)= a , >So — (r^i r

We use this function and the same substitutions as in Case 2 to reduce equation
(1-3) to

In this case the quantity ζω>ζα is given by

We will solve equations (1-4), (1-6) and (1-9) numerically by applying itera-
tion schemes. One is Newton's Method and the other is the inverse treatment of
the function η(ζ). A comparison of results using these two schemes will be
presented.
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II. Application of Newton's Method.

An approximate linear equation can be obtained if the function

(2-1)

is differential at a point fϋ(x) with a fixed x, this allows the function P(x,f(x)) to
be expressed in the form

'̂
where

\\d[f(x)-fo(x)]\\=0[\\f(x)-f0(x)\n

and

L df(x) *"" ̂

and where the norms are the infinite ones.
As ||/(aO-/o(aOI|->0, that is, /0(a?) is close to f(x) then P(x,f0(x))+P'(x,f0(x))
)—/O(Λ?))—*0, P(a?,/(a?))—>0. If [P'fe/oW)]"1 exists, we have a unique solution

(2-2)

This procedure may be repeated with /<>(#) replaced by f^x) to obtain another
approximation, fz(x), and so on. In order to see through the procedure, we shall
consider that if f(y) might be perturbated as f(y)=f(y)+Λf(y)-\-Λ2f(y)+>-, then
the equation (2-1) is

where Δίf(y}=O(s,ί)ί ε is an order perturbation. Hereafter we shall use the original
notation, f(x), instead of f(x). Suppose we only consider the quadratic perturba-
tions for evaluation of the linear approximation on Newton's method, so that

3) It is consistent with the derivative in the sense of Frecht.
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λ-

and in the denominator of equation (2-3)

/ Δf(x)-Δ

1 Λ*f(x)-Λ*f(z) 3(Jf(x)-Δf(z)\*

2 f(x)-f(z) 2 f(x)-f(z) ^ 8 V f(x)-f(z) ) '

Since the equations are Volterra type of the second kind [5], in a numerical
process, we may find the solution f ( x i ) at a fixed value xι by using Newton's
method and a set of known values of /(#/) at 0^^ < .̂ Simultaneously, we
assume the f(z) (Q^z<x) has already been found, so that Δf(z) and Δ2f(z) may be
replaced with zero.

The equation (2-3) becomes

Γ*-° j g g j ^ ί i 1 ^/W . 3 7 Δf(x) \ 2 1 J2/(^) 1
J. *Sf(x)-f(z) I 2 /(*)-/(*) 8 \/(a?)-/(«) / 2 f(x)-f(z) \ *

(2-4)

= ̂ ' W ^1 _ J/(a?) _ J_

We introduce new symbols

S *

a

ze~f< z:>

Equation (2-4) may be written

(2-5)

^) will be real values, if the discriminant D^Q. That is.
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(2-6)

2 Gϊ
_Go
Gi

If we use Gi J/(α?) + G0 = 0 as an approximate equation instead of perturbated
quadric equation (2-5), we have

as in Newton's method.
We will now discuss the theorem on the convergence of Newton's method in

a Banach space as formulated by Kantrovic [4], [7].
// K^\\G2(xJ(x))\\ for a fixed x in \\f(x)-f«(x)\\^p

(2-7)

Newton's method will converge to a solution f(x) of equation (2-1) in the closed
ball U(f0(x),ρ), where

(2-8)

We have used the abbreviations G0,o=G0(a?,/0(a?)), GI,O=GI(Λ:,/O(Λ?)).
From the Taylor expansion we obtain

and from the Neumann series expansion of an inverse operator, we have

ι.1]-̂  Σ {/-[
n=0

where

therefore,
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if [Gi.i]"1 exists, therefore, using the above notations for j30, J?0 and K,

where hQ=BϋKηQ.
Multiplying both sides of the above Neumann series by G0.ι we obtain

then our iterations process from fι(x) to fz(x) is

Define

at f(x)=fι(χ) by a fixed x,

The norm of this is

- sup
/6C/o(a?),/ι(a?)]

from

where O^^gl. From the above definition

therefore

\\r/^ Ί - i l l ll^1 I I - - I I Ell[G l t 0] Ί l l | G 0 , ι l l ^ _ sup I |
/€[/θ(Λθ,/l(Λθ] Z ^

Finally in the iteration process from /ι(^) to /2(#), the correction is less than
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(2-9) ll/2W-ΛWI|gτ^Γ4r'?<>^
1 — rlQ Δ

Now we investigate hi and hl9

297

(2-lOa)

,
0
 ,

 A
ι v(2

~
lob)

1 h
0 ho _ ί ho

•(ho—ηoho)^ho—y}oho^ho

from l/2-fe0^l/4. From equation (2-8)

1-N/1-4L

= 2

since Ao/(l-A0)<l and l-A0^

similarly

From equations (2-7), (2-9), and (2-10) since Ao=Λ/2Aι/(l+\/2Aΐ),

-L r -L ^/^l , -l Λ ^ •*• /

and

2*!

When we choose the maximum values A0=l/4, Aι=l/4, po=2ηo, 370^2371, 2ηιhQ=pι
then U(fι(x\ ^0 c J7(/0(a?), /t>0). It follows by mathematical induction that Newton's
process generates an infinite sequence {/TO(#)} by starting from /0(#) at which A0/2
+370^l/4 is satisfied, and by substituting Ai—>A0, Bi-*B0, 371-̂ 370, and hi-^ho in
previous equations. Hence, we find the sequences of numbers {ArJ, {#n}, {5771}
and {fen}
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•*-

1

1- l-4&» (AoAι ... Λn_ι}

2few

for n=Q,l,2, ,m. We would like to show (ΛO)} is a Cauchy series. Let
be an integer, then fn+p(x)c U(fn(x\ pn),

l~ ~^n

In equation (2-11), ^ (f=0, 1, 2, •••, w) is less than one half,

f]n= " 1

(2-12)

as n-^oo, pn^Zhfηo-^Q, then the sequence {/»(#)} is a Cauchy series.
The error estimation may be obtained from the fact that

and ||/*(^)-Λ(^)||^2^2

0

n37o, where /*(a?) is a fixpoint value.
We have mentioned only equation (1-4), but the arguments for establishing

equation (1-6) and (1-9) are similar. We have proved the existence of the solution
of Newton's method. The uniqueness and other theorems on the convergence of
Newton's method may be found elsewhere [7], [1].

III. Inverse function of f(x).

When we take an inverse function of f(x) like

/(#)=«,



LOW DENSITY PLASMA SHEATH EQUATIONS 299

and dz=g'(v)dv.
Case 1, equation (2-1).

(2-1)

becomes

S
u

β \/U — V

Let g(u)2=F(u\ 2g(u)gf(u)=F'(u) and multiply equation (3-1) by the term l/\/w—u
and integrate from β to w with respect to the variable u,

V^-^ Jβ*w—u

Changing the order of integration

β Jβ\W — \U — V Jβ fW — U

The second integral in the first term of the above equation is π.

F(v)e~υdv- — ^\
π Jβ ΛW—U

The initial condition is α=0, j8=0, then F(β)=0.

f O (*w /"cvT/Γ (*w }
— \ vf(u) e-udu-\ F(v)e-υdv\.
π Jo \Jw-u Jo J

We will use equation (3-2) as an iteration scheme for equation (1-4) by using
Fm+ι(w) in the left hand side and Fm(u) in the right hand side.

For numerical calculation, we use the discretized value of F(u), u=iΔw,
£=0,1, 2 ••-,«, where Δw is the length of increment, n is the number of sub-
division of the distance zero to w. Suppose we are now at the nth step or at a
point u=dw n. We may consider F(u); ΰ^u^(n—V) Δw is a known value, then
at mth iteration with a fixed w,

Fm+ί(u>)-Fm(w)

=ew I- Γ JP*M-^»=M e~udu- Γ
I K Jw-Δw \/W — U Jw-Δ

=P{Fm(w)}-P{Fm-1(w)}

where
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\\P\\= sup
uζD=iw—dw,it

(3-3)

where

= du-\-

π */F(u*)

\rdu\

-1

(3-4)

then

(3-5)

Δw

If 0<1 for m=ΰ,l,2,- with a suitable starting FQ(w\ then the scheme converges
in a ball U(F,(w\ r).

The error is

(3-6) \\Fm(w)—F*(w)\\^θmro

from equation (3-5), where r^r0=(l/(l—0))\\Fι(w)—FQ(w)\\, F*(w) is the fixed point
value. As we have mentioned above, we may take the same procedure for equa-
tions (1-6) and (1-9).

Case 2, equation (1-6).

zdz

becomes

(3-7) F(w)=F(β)+ -

With the initial conditions α=0, β=Q, and F(β)=Q, we will use equation (3-7) as
an iteration scheme of equation (1-6).

(3-8)
w—

O f

= ̂  (π Jo

4) In general, u* is a specific point which satisfies above the definition of norm P
mσ a kind of norms IIF(V)ILamong a kind of norms
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where

\\P\\=β€Λ_sup

2
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\\P(F(u)}\\

301

2 r
^ sup — \

D π JD

^ sup
D

π ΎF(«*r

// θ=(4lπ)*/dwlF(u*) e~weΔW<l for m=Q, 1,2, ••• ίwYΛ α ^Λ:̂  w then the iteration
scheme (3-8) will converge with same error as equation (3-6).

Case 3, equation (1-9).

=χe~f<:x:>,

becomes the following by the same process

The first term is

— U Λ/U — V — V

cwcw F'
= \ \ / -

Jo Jv VW — U

, ,
dudυ—/

\/U — V

π{W F'(v)dv-π(W F(v)dv
JO J^8

—u \/u—v

_TO
—u \/u—v

dvdu

dudv

The second term is

dvdu F'(v} dudv
}υ \/F(v)\/w—u \/u—v

= Λ/F(j§) 7τ

then equation (l-9b) is
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(3-12)

We will use equation (3-11) or (3-12) in the range w^β, and equation (3-8) in
range w^β as an iterational scheme for equation (1-9).

The norm of operator P as same as equation (3-3) or (3-9)

\\P{Q(u)}\\ ^ e~w

x,-W (Mw ,,ί ,,-W pJw 1 f eΔW__Λ I

(3-13) gsup-^V -FT^^sup—ττr-\ -7= —-j ί+1
a1^ πfir(^) Jo V t f πg(β) Jo V t { Δw \

The scheme will converge to the fixed point-value if #<1 for m=Q, 1,2, ••• 1/F
estimate equation (3-13) roughly as if 2lπ^g(β)IΔw, then θ^\. Equation (3-2),
equation (3-7) and equation (3-11) define an integral operator of F(w) from C[0, w]
into itself. Let us take FQ(w)=l as a starting value of the iteration. The func-
tion e~u in the interval Q^u^w may be replaced by linear functions, one is the
upper bound, the other is the lower bound, that is

g-w ι e~w—1
- u + l

w w

where

l-e~u

b=

then the bounded range of Fι(w) may be found after one iteration,

from equation (3-2),

~
όπ

using equation (3-7), in Case 3 the same results are obtained.
One may establish a relation between Δw and w by substituting F^(w) for
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F(u*) into equation (3-4) and equation (3-9) so that

(3-14a)
16 \ 3π \

and

(3-14b) Δw< ^-
Jitu

Suppose w* is satisfied when the right hand side of (3-14) equals zero, the rela-
tions are valid in a domain 0^^<^*.

We know F(u) on Q^u^w, in which w is less than «;*, is bounded because
supo£w^wF(&) indicates the position of a cylindrical wall.

Our iteration schemes will converge to a fixed point from the contraction
mapping principle, such that by choosing Δw properly from (3-14) and starting
with F0(u)=Ffj or Ff, there is a convergent ball U(F0(u), r) for our integral
operator P where r^(

IV. Numerical results.

Given the interval mesh Δx of numerical integration, the first I intervals are
integrated with a fine mesh J#/100, and the following 7x9 are done with the
other fine mesh Δx/W. The remaining intervals are done with Δx.

In order to avoid the singularity of the integrand, the last interval mesh uses
a formula of integration by parts with linear interpolation of the unknown
function.

If we assume that f(x) is increasing monotonously as x increases and the
/'(αO^O, /'(#)< oo at xι>x>0 then \\G2(x,f(x))\\ at a fixed #ι>#>0 is bounded,
and if the condition equation (2-6) is satisfied, namely G0,o is enough to be smaller
(the first approximation fQ(x) is sufficiently close to the fixed point value), we may
find a numerical solution at a fixed x.

The error and error propagation may be taken as

(4-1) error=ei+0i+JV0<+2(N^

where et=(Δx2l2) max |/"(ζ)| is an error of the linearization of last integration
step with x— Δx^ζ^x, et is a truncation error of the iteration schemes. 0$ is a
numerical integration formula error, Δx is an integration step seize and N is the
number of the integration step.

For example, take J#=5xl()-8, 7V=200, et=!Q-*, e^Δx*, and max /"(C)=20,
then, error^3^=7.5xlO~4<10~3 is a good indication of the accuracy of our results.
See Table I, Δx= 0.0025 and Δx= 0.005, at the position near wall.

In the case of inverse treatment of f(χ\ the following numerical approxima-
tion of the integration was used.
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Where Δx, N are as before, the W^ are the weights for the numerical integration.
Equations Θ, equation (3-4), equation (3-9), and equation (3-13) are always less

than one where &* is near zero because the solutions are expected as w1/n(n>l)
near the origin, Aw can be chosen small enough so that θ is less than one. In
the region far from zero of w, the term e~w becomes very small and the θ will
be smaller.

The inverse treatment has the following advantages from the numerical view
point when compared with Newton's method:

(1) less calculation during iteration,
(2) faster convergence,
(3) less error,
(4) we may find more accurate wall position since unknown functions F'(s)—Q

(f'(s)=0° in Newton's method) where s is the wall position.
However Newton's method is a powerful one when we cannot apply the

inverse treatment.
All the numerical integration was done by Simpson rule. By using the

Atkin's extrapolation formula [1], we may estimate a more accurate wall position.

Case 1 0.77186, Case 2 0.58280.

The numerical results are presented in Table I, Table II, Figure 1, Figure 2, and
Figure 3.

Table 1-A (Case 1)

X

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.75

0.76

0.765

0.77

wall

Parker's Results

/w
0.

0.0100

0.0407

0.0935

0.1719

0.2821

0.4378

0.6787

0.8901

0.9598

—

1.0790

0.772

Newton's Method ε^lO~5

DX=Q.W

/«

0.

0.01006

0.04101

0.09414

0.17284

0.28351

0.43985

0.68265

0.89985

0.97671

no soΓn

—

DX= 0.005

Λ*)

0.

0.010125

0.040872

0.093850

0.17238

0.28283

0.43881

0.68058

0.89433

0.96650

1.01718

no soΓn

—



LOW DENSITY PLASMA SHEATH EQUATIONS 305

Inverse Case
Table 1-B (Case 1)

~5 Where * Indicates Wall Position

£>J£=:0.01

X

0.

0.09971
0.10342

0.19797
0.20037

0.29897
0.30054

0.39570
0.40649

0.49664
0.50424

0.59965

0.69861
0.70158

0.74936
0.75081

0.75990

0.77

*

0.76906

/(*)

0.

0.01
0.011

0.04
0.041

0.093
0.094

0.17
0.18

0.28
0.29

0.44

0.68
0.69

0.9
0.91

0.98

no soΓn

1.16

DX= 0.005

X

0.

0.09937
0.10181

0.19943
0.20066

0.29307
0.300815

0.39699
0.40232

0.49763
0.50143

0.59779
0.60053

0.69797
0.69959

0.74893
0.74968

0.75888
0.75941

0.76883
0.768993

*

0.77051

/O)

0.

0.01
0.0105

0.0405
0.0410

0.090
0.095

0.170
0.175

0.28
0.285

0.435
0.440

0.675
0.68

0.89
0.895

0.960
0.965

1.080
1.085

1.150

DX= 0.0025

X

0.

0.09962
0.10084

0.19729
0.20329

0.29775
0.30166

0.39756
0.40022

0.49996
0.501924

0.59954
0.60092

0.69922
0.70004

0.74985
0.75030

0.75974
0.76008

0.76999
0.77013

*

0.77121

A*)

0.

0.01
0.01025

0.04
0.0425

0.0925
0.0950

0.17
0.1725

0.2825
0.285

0.4375
0.440

0.6775
0.68

0.8925
0.895

0.9625
0.965

1.0925
1.095

1.155

Table 2-A (Case 2)

X

0.
0.1
0.2
0.3
0.4
0.48
0.50
0.52
0.54
0.56
0.57

Newton's Method /(#) εί^!0~5

MΓ=O.Q4

0.
0.010198
0.042255
0.10190
0.20388
0.35411

0.48291
no soΓn

DX=0.02

0.
0.010166
0.042165
0.10284
0.20649
0.35050
0.040368
0.47011
0.55865
0.69995
no soΓn

DX=0.01

0.
0.01046
0.04246
0.10240
0.20493
0.34648
0.39829
0.46221
0.54582
0.66987
0.77239
no soΓn
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Table 2-B (Case 2)
Inverse Case εt^W~5

DX=OM

X

0.

0.099315

0.19501

0.21681

0.29788

0.31061

0.39755

0.40434

0.45941

0.48254

0.50187

0.52084

0.52357

0.53139

0.54051

0.54459

0.55189

0.56091

0.56217

0.56581

0.57251

0.57481

0.58006

0.58242

0.58273

0.58255

/O)

0.

0.01

0.04

0.05

0.1

0.11

0.2

0.21

0.3

0.35

0.4

0.46

0.47

0.5

0.54

0.56

0.6

0.66

0.67

0.7

0.77

0.8

0.9

1.0

1.06

1.1

DX= 0.005

X

0.

0.099417

0.19519

0.21697

0.29798

0.31061

0.39721

0.40470

0.45971

0.48285

0.50208

0.52102

0.523791

0.53154

0.54065

0.54472

0.55200

0.56101

0.56231

0.56590

0.57263

0.57488

0.58012

0.58248

0.58279

0.58760

Λ*)

0.

0.01

0.04

0.05

0.1

0.11

0.2

0.21

0.3

0.35

0.4

0.46

0.47

0.5

0.54

0.56

0.6

0.66

0.67

0.7

0.77

0.8

0.9

1.0

1.06

1.1

£>J£= 0.0025

X

0.

0.099305

0.19527

0.21703

0.29767

0.39743

0.45986

0.48297

0.50219

0.521102

0.52388

0.53162

0.54072

0.54479

0.55206

0.56106

0.56236

0.565951

0.57267

0.57493

0.58016

0.58251

0.58282

0.58264

/O)

0.

0.01

0.04

0.05

0.1

0.2

0.3

0.35

0.4

0.46

0.47

0.5

0.54

0.56

0.6

0.66

0.67

0.7

0.77

0.8

0.9

1.0

1.06

1.1

A starting value of iterations at each step was chosen as a linear extrapola-
tion, namely f^(x)^W'f(x—Δx)-\-(\—w) f(x—2Ax) where w is a weight parameter.

In order to accelerate convergences of Newton's method an acceleration factor
was used. If the whole terms of Equation (2-5) is using as an evalution of a
perturbation term ε instead of only the linear term of the equation, several
Newton's iteration steps will be replaced by one step of this evaluation with the
calculation of G2(f(x),x).
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ADDED IN PROOF. After presenting the paper, we have applied the Newton's
method for the equations to solve

1 <PF(x) f* e-'^dz

b dx* }Λ(F(x)-F(z)-γ(x-zγγn

1 ΓxtPF(x) dF(x)Ί (" __z^™dz___

b\_dx* ^ dx J } . (F(x)-F(z) - rO-ίO2)1'2

The mathematical proof and the numerical process for these equations are similar
to those presented in this paper.




