ON THE TOTAL ABSOLUTE CURVATURE OF MANIFOLDS IMMERSED IN RIEMANNIAN MANIFOLD

BY BANG-YEN CHEN

For the total curvature \(\int_C k(s) ds \) of a closed curve \(C \) of class \(C'' \) in an \(n \)-dimensional Euclidean space \(E^n \), as is well known, we have the inequality:

\[
\int_C k(s) ds \geq 2\pi
\]

where \(s \) denotes the arc length of \(C \) and \(k(s) \) the curvature of \(C \). The equality holds only when \(C \) is a plane convex curve. This was proved by Fenchel [6] in 1929, in the case \(n=3 \) and by Borsuk [1], in 1949, in the case \(n>3 \).

Chern and Lashof [4], in 1959, extended this result to the case of a compact orientable \(n \)-dimensional manifold \(M^n \) immersed in Euclidean space \(E^{n+N} \) and obtained the inequality

\[
\int_{M^n} K^*(p) dV \geq 2c_{n+N-1}
\]

where \(K^*(p) \) denotes the total curvature of \(M^n \) at \(p \), \(dV \) is the volume element of \(M^n \) and \(c_{n+N-1} \) denotes the volume of the \(n+N-1 \) dimensional unit sphere. The equality holds only when \(M^n \) belongs to a linear subspace \(E^{n+1} \) of dimensional \(n+1 \), and is imbedded as a convex hypersurface in \(E^{n+1} \).

The left hand sides of (1) and (2) represent the total curvature of \(C \) and \(M^n \), respectively. \(K^*(p) \) is defined by

\[
K^*(p) = \int_{S^{n-1}_p} |G(p, e)| d\sigma_{N-1}
\]

where \(S^{n-1}_p \) denotes the \(N-1 \) dimensional sphere of all unit normal vectors at \(p \) of \(M^n \), \(G(p, e) \) is the Lipschitz-Killing curvature at \(e \in S^{n-1}_p \) and \(d\sigma_{N-1} \) is the \((N-1)\)-differential form on the normal bundle of \(M^n \) in \(E^{n+N} \) that becomes its volume element on each fibre \(S^{n-1}_p \).

Willmore and Saleemi [12] had generalized Chern-Lashof's results by defining the total curvature of an orientable manifold immersed in a Riemannian manifold, but unfortunately, the results contained mistakes, and hence they are false.

The object of this paper is to generalize the Lipschitz-Killing curvature to the manifolds immersed in a complete, simply-connected Riemannian manifold with non-positive sectional curvature, and then to define the total absolute curvature as

Received January 15, 1967.

299
in the left hand side of (2) and (3), and to prove that many results in [3], [4], [5], [6], [8], [9] and [11] can hold too.

1. Preliminaries.

We shall assume throughout that all manifolds, maps, metric, etc. are differentiable of class C^∞. We shall assume that X is compact and orientable, and Y is complete, simply-connected Riemannian manifold with non-positive sectional curvature. Then a well-known theorem of Cartan [2] states that any two points of Y can be joined by a unique geodesic. Equivalently, at each point $m \in Y$ the exponential map $\text{exp}_m: T_m(Y) \to Y$ is a global diffeomorphism.

Now, let f is an immersion from X to Y:

(4) \hspace{1cm} f: X \to Y

that is, we assume that the map df_p induced on the tangent space $T_p(X)$ to X at p is of rank n for all p in X, where $\dim X = n$, and $\dim Y = n+N$. In the following, let \bar{e} always denote the parallel translation of the tangent vector $e \in T_p(Y)$, $p \in X$, along the unique geodesic joining $f(p)$ and a fixed point.

Now, let q be a point in $f(X)$, and set

(5) \hspace{1cm} B_v = \{ (p, e) : p \in X, \bar{e} \text{ the parallel translation of the unit tangent vector } e \text{ along the unique geodesic joining } f(p) \text{ and } q \text{ and perpendicular to } \exp_q^{-1}(f(X)) \text{ at } \exp_q^{-1}f(p), e \in T_{f(p)}(Y) \}.

It is clear that if the Riemannian manifold Y is the $(n+N)$-dimensional Euclidean space \mathbb{E}^{n+N}, then B_v is just the normal bundle of X, and so we call that B_v is the pseudo-normal bundle of X with respect to the point q, and each element of B_v is called a pseudonormal vector of X with respect to the point q. It is easy to see that B_v is a bundle of $(N-1)$-dimensional spheres over X by the properties of parallel translation, and is a C^∞-manifold of dimension $n+N-1$. The mapping

(6) \hspace{1cm} \tilde{v}: B_v \to S_q^{n+N-1}

of B_v into the unit sphere S_q^{n+N-1} of $T_q(Y)$ defined by $\tilde{v}(p, e) = \bar{e}$ is the mapping with which we will be concerned in this paper.

Let dV be the volume element of X. There is a differential form $d\sigma_{N-1}$ of degree $N-1$ on B_v such that its restriction to a fibre is the volume element of the sphere of pseudo-normal vectors at $p \in X$; then $d\sigma_{N-1} \wedge dV$ is the volume element of B_v. Let $d\Sigma_{n+N-1}$ be the volume element of S_q^{n+N-1}. The function $G(p, q, e)$ defined by

(7) \hspace{1cm} \tilde{v}^*d\Sigma_{n+N-1} = G(p, q, e)dV \wedge d\sigma_{N-1}

where \tilde{v}^* is the dual mapping on differential forms induced by \tilde{v} is a function in B_v. It generalizes the Lipschitz-Killing curvature and we call it the G-Lipschitz-Killing curvature at e. We call the integral
TOTAL ABSOLUTE CURVATURE OF MANIFOLD

(8) \(K^*(p, q) = \int |G(p, q, e)| d\sigma_{n-1} \geq 0 \)

over the sphere of unit pseudo-normal vectors at \(f(p) \) the total absolute curvature at \(p \) with respect to \(q \), and define as the total absolute curvature of \(X \) with respect to \(q \) the integral

(9) \(\int_X K^*(p, q) dV \)

and the total absolute curvature of \(X \) itself as the following

(10) \(T(f) = \inf_{q \in f(X)} \int_X K^*(p, q) dV/c_{n+N-1}. \)

Since \(X \) is compact by the assumption, (9) is a continuous function of \(q \) over \(f(X) \). Hence, there exists at least one point in \(f(X) \), say \(o \) that

(11) \(T(f) = \int_X K^*(p, o) dV/c_{n+N-1}. \)

In the special case, \(Y = E^{n+N} \), we have \(\bar{e} = e \), and the exponential map can be identified with the identity map, hence it is clear that this definition is consistent with Chern-Lashof’s definition in the case where \(Y \) is Euclidean.

2. Generalization of Chern-Lashof’s theorems in [4].

THEOREM 1. Let \(X, Y \) and \(f \) be given as in section 1, then, the total absolute curvature \(T(f) \) satisfies the following inequality

(12) \(T(f) \geq \sum_{i=0}^{n} \beta_i \equiv \beta \)

where \(\beta_i \) is the \(i \)-th Betti number of \(X \).

Proof. For any \(e \in S^{n+N} \), where \(o \) is any one of the points in \(f(X) \) satisfying the equality (11), we define the following function \(g \):

(13) \(g: X \rightarrow R \)

by \(g(p) = \exp_{(p)}^{-1}(f(p)) \cdot e^* \), and let \(m_i(e^*) \) denote the number of critical points of index \(i \) for the function \(g \).

Now, for every \((p, e) \in B \) with \(\bar{e}(e) = e^* \), we have

(14) \(dg(p) = d(\exp_{(p)}^{-1}f)(p) \cdot e^* = 0 \)

hence, \(p \) is a critical point of the function \(g \). Conversely, if \(p \) is a critical point of the function \(g \), then, by the definition of the critical point, we have

\(dg(p)(\exp_{(p)}^{-1}f)(p) \cdot e^* = 0, \)

so that, \((p, e) \) belongs to \(B \), where \(e \) is the unit vector at \(f(p) \) which is the inverse of the parallel translation of \(e^* \) along the unique geodesic joining \(f(p) \) and \(o \) in the
Riemannian manifold Y. Therefore, the number of all critical points of g which is denoted by $m(e^*) \ (= \sum_{i=0}^{n} m_i(e^*))$ is equal to the number of points $(p, e) \in B_\theta$ which is transformed onto e^* by \tilde{v}, hence, by (7) and (8), we have

$$\int_{X} K^*(p, o) dV = \int_{S_\theta^{n+N-1}} m(e^*) d\Sigma^{n+N-1}.$$

But according to Sard's theorem, except a set of measure 0, $m(e^*)$ is well defined and finite, when X is compact. So that, with respect to any coefficient field, we have the Morse's inequalities:

$$m_i(e^*)-m_{i-1}(e^*)+\cdots+(-1)^i m_0(e^*)$$

$$\geq \beta_i-\beta_{i-1}+\cdots+(-1)^i \beta_0, \quad i=0, 1, \ldots, n-1,$$

$$m_0(e^*)-m_{n-1}(e^*)+\cdots+(-1)^n m_0(e^*)=\beta_n-\beta_{n-1}+\cdots+(-1)^n \beta_0.$$

Hence, we have

$$m_i(e^*) \geq \beta_i, \quad i=1, 2, \ldots, n,$$

$$m(e^*) \equiv \sum \beta_i = \beta$$

substitute these into (15), we have

$$T(f) = \int_{X} K^*(p, o) dV/c_{n+N-1} \geq \sum \beta_i = \beta$$

so that, we get the inequality (12).

Theorem 2. Under the same hypothesis of Theorem 1, if

$$T(f) < 3$$

then, X is homeomorphic to a sphere of dimension n.

Proof. Let o be one of the points in $f(X)$ such that it satisfies the equality (11), then, our hypothesis implies that there exists a set of positive measure on S_θ^{n+N-1} such that e^* is a unit vector in the set, $\exp_\theta^{-1}(f(p)) \cdot e^*$ has just two critical points. For if not we would have $T(f) \geq 3$. Now, a theorem of Milnor [7] asserts that if a compact differentiable manifold X has a real-valued differentiable function on it with only two critical points, then, X is homeomorphic to a sphere. It follows from this that X is homeomorphic to a sphere, and this theorem is proved.

Theorem 3. Under the same hypothesis of Theorem 1, if

$$2 < T(f) < 4,$$

then, X is either homeomorphic to a sphere or is an even-dimensional manifold such that it has the homotopy type of an $n/2$-sphere with an n-cell attached, and in this case, the Betti numbers of X are given by

$$\beta_0 = \beta_{n+2} = \beta_n = 1 \quad \text{and} \quad \beta_i = 0 \quad \text{for otherwise}.$$

Proof. If there exists an $e^* \in S_\theta^{n+N-1}$ such that $m(e^*)=2$, then X is homeomor-
phic to a sphere. If there exists no such e^* in S^{n+k-1}, then by the hypothesis, there exists a set of positive measure on S^{n+k-1} such that if e^* is in the set, $\exp_{e^*}(f(p)) \cdot e^*$ has just three critical points. For this vector e^*, by (16), (17), (18), and $\beta_0=\beta_n=1$, it must be

$$m_i(e^*)=m_n(e^*)=1, \quad m_j(e^*)=0 \quad \text{for some } i \quad (1<i<n)$$

and

$$m_j(e^*)=1 \quad \text{for } j \quad (1<j<n, j \neq i).$$

Hence

$$\beta_j=0.$$

These relations and (17) imply $\beta_i=1$. Furthermore, by Poincaré duality theorem, we have $i=n-i$, that is n is even and $i=n/2$. In this case, by a principle of the Morse theorem, X is homotopic to an $n/2$-sphere with an n-cell attached.

Theorem 4. Let X be an even-dimensional homology sphere with an immersion as in Theorem 1. If $\exp_{e^*}(f(X))$ is not imbedded as a convex hypersurface in some $(n+1)$-dimensional linear subspace of the tangent space to Y at o for all o in $f(X)$. Then, the measure of the set e^* in S^{n+k-1} such that

$$m(e^*)=0$$

is positive.

For the proof, we need the following theorems:

Theorem 5. Under the same hypothesis of Theorem 1, let $q \in f(X)$, and set

$$h_t=(\exp_{t})^* f,$$

and let $\tau(h_t)$ denote the total curvature in the sense of Chern-Lashof, then we have

$$T(f)=\inf_{q \in f(X)} \tau(h_q).$$

Proof. Let us denote by B_t^* the (usual) normal bundle of the immersion

$$h_t=\exp_{t} \circ f: X \rightarrow T_q(Y)$$

that is

$$B_t^*=(\{p, e': e' \text{ is the unit normal vectors to } q(X) \text{ at } h_q(p)\}.$$

We define

$$\tilde{\theta}': B_t^* \rightarrow S^{n+k-1}$$

by $\tilde{\theta}'(p, e')=e'$. Then, we have

$$\nu^* d\sigma_{n+k-1}=G'(p, q, e') dV \wedge d\sigma_{n+k-1}$$

where $d\sigma_{n+k-1}$ denotes a differential $(N-1)$-form on B_t^* such that its restriction to
a fibre is the volume element of the sphere of the unit normal vectors.

Now, for a fixed e' in S_q^{n+N-1}, let us define a function w given by

$$w(p) = h_q(p) \cdot e',$$

then it is clear that the number of all critical points of the function w is equal to the elements of B'_t which is transformed into e' by v'. Hence, if we denote by $m'(e')$ the number of all critical points of w, then we have the following equation:

$$\tau(h_q) = \int_{S_q^{n+N-1}} m'(e') d\Sigma_{n+N-1}/c_{n+N-1}.$$

But it is easy to see that the number of all critical points of the function g in (13) is equal to the number of all critical points of the function w in (31), hence

$$\tau(h_q) = \int_{S_q^{n+N-1}} m(e') d\Sigma_{n+N-1}/c_{n+N-1}$$

(33)

$$= \int_{S_q^{n+N-1}} K^*(p, q) dV/c_{n+N-1}$$

so that

$$T(f) = \inf_{q \in f(X)} \tau(h_q).$$

Theorem 6. Under the same hypothesis of Theorem 1, we have $T(f) = 2$ if and only if, there exists some points q in $f(X)$ such that (A): $((\exp_q^{-1})_* f)(X)$ is imbedded as a convex hypersurface in a $(n+1)$-dimensional linear subspace of the tangent space to Y at q.

Proof. Since X is compact, there exists at least one point, say q such that equality (11) holds, hence by (33), we have

$$T(f) = \tau(h_q).$$

But by the assumption, we have $T(f) = 2$ and so that

$$\tau(h_q) = 2.$$

(35)

Therefore, by Theorem 3 in [4], we see that $h_q(X)$ is imbedded as a convex hypersurface in a $(n+1)$-dimensional linear subspace of the tangent space $T_q(Y)$ by h_q, that is $((\exp_q^{-1})_* f)(X)$ is imbedded as a convex hypersurface in an $(n+1)$-dimensional linear subspace of $T_q(Y)$.

Now, we turn to prove theorem 4.

Proof of Theorem 4. Since by the assumption, X is an even-dimensional, orientable, compact manifold, and is a homology sphere, we have $\beta_0 = \beta_n = 1$, and $\beta_i = 0$ for otherwise. So that we have

$$\sum_{i=0}^{n} \beta_i = 2 \quad \text{and} \quad \sum_{i=0}^{n} (-1)^i \beta_i = 2,$$

(36)

and hence, (17) becomes
TOTAL ABSOLUTE CURVATURE OF MANIFOLD

\[m_n(e^*) - m_{n-1}(e^*) + \cdots + m_2(e^*) - m_1(e^*) + m_0(e^*) = 2 \]

that is

\[m_1(e^*) + m_2(e^*) + \cdots + m_{n-1}(e^*) = m_0(e^*) + m_2(e^*) + \cdots + m_n(e^*) - 2, \]

so that

\[m(e^*) = 2(m_0(e^*) + m_2(e^*)) \]

if the equality holds almost everywhere in \(S_q^{n+N-1} \) for every \(q \) in \(f(X) \), then we get \(T(f) = 2 \), but by theorem 6, this implies that (A) of theorem 6 holds. This is a contradiction, so that we have proved the theorem completely.

4. Manifold immersed in a total geodesic submanifold.

THEOREM 7. Under the same hypothesis of Theorem 1, if \(f(X) \) lies in an \((n+N')\)-dimensional totally geodesic submanifold \(\bar{Y} \) of \(Y \). Then

\[T(f) = \bar{T}(f) \]

where \(\bar{T}(f) \) denotes the total absolute curvature of the mapping

\[\bar{f} : X \longrightarrow \bar{Y} \subset Y \]

where \(\bar{f}(p) = f(p) \) for every \(p \in X \).

Before to prove this theorem, we first prove that if \(N' = N-1 \), then this theorem is valid, and we state it as a lemma:

LEMMA 1. If \(N' = N-1 \) in the theorem 7, then this theorem holds.

Proof. We consider the bundle of all frames

\[(p, e_1, e_2, \cdots, e_{n+N-1}) \]

such that \(e_1, e_2, \cdots, e_{n+N-1} \in T_{\bar{f}(p)}(\bar{Y}) \), \(o \in f(X) \) and \(\tilde{e}_i, \cdots, \tilde{e}_n \) are tangent to \(((\text{exp}_o^{-1}) \circ f)(X) \) at \(((\text{exp}_o^{-1}) \circ f)(p) \) and \(\tilde{e}_{n+1}, \cdots, \tilde{e}_{n+N-1} \) are normal to \(((\text{exp}_o^{-1}) \circ f)(X) \) at \(((\text{exp}_o^{-1}) \circ f)(p) \).

Now, let us put

\[\bar{w}_{n+N-1,A} = d\tilde{e}_{n+N-1,A} \]

then

\[d\tilde{e}_{n+N-1} = \sum_{A=1}^{n+N-2} \bar{w}_{n+N-1,A} \tilde{e}_A. \]

Now, let \(d\Sigma_{n+N-2} \) denote the volume element of the unit \((n+N-2)\)-sphere in \(T_o(\bar{Y}) \), then we have

\[d\Sigma_{n+N-2} = \bar{w}_{n+N-1,1} \wedge \cdots \wedge \bar{w}_{n+N-1,n+N-2} \]

hence we have
where \tilde{B}_n denotes the pseudo-normal bundle of X with respect to \bar{Y}, and $\tilde{\varphi}$ the corresponding mapping from \tilde{B}_n to S_o^{n+N-2}.

Now, let e be one of the two unit vectors perpendicular to \bar{Y}, in the tangent space $T_{f(p)}(\bar{Y})$, a unit pseudo-normal vector at $f(p)$ can be written uniquely in the form:

$$e'_{n+N}=(\cos \theta)e_{n+N-1}+(\sin \theta)e, \quad -\pi/2 < \theta \leq \pi/2,$$

where e_{n+N-1} is the unit vector in the direction of its projection in $T_{f(p)}(\bar{Y})$, let

$$e'_{n+1}=(\sin \theta)e_n+(\cos \theta)e_n$$

and

$$e'_{s-1}=e_s \quad \text{for} \quad s=1, \ldots, n+N-2$$

We also denote by B'_n and $\tilde{\varphi}'$ the corresponding pseudo-normal bundle and the mapping to S_o^{n+N-1}. Then, the total absolute curvature with respect to the point o of the immersion $f: X \rightarrow Y$ is given by

$$T(f, o)=\int_{B'_n} |\tilde{\varphi}'_1(\tilde{\varphi}'_{n+1}, \ldots, \tilde{\varphi}'_{n+N-1})|/|C_{n+N-1}|$$

Now, by (44) we have the following equality by the properties of parallel translation that

$$e'_{n+N}=(\cos \theta)e_{n+N-1}+(\sin \theta)e.$$

Therefore we get

$$d\tilde{e}'_{n+N}=(\cos \theta)d\tilde{e}_{n+N-1}+(-\sin \theta)e_{n+N-1}+(\cos \theta)e)d\theta$$

$$=(\cos \theta)d\tilde{e}_{n+N-1}-\tilde{e}'_{n+N-1}d\theta.$$

But we have

$$d\tilde{e}_{n+N-1} \cdot \tilde{e}'_{n+N-1}=d\tilde{e}_{n+N-1} \cdot ((\sin \theta)e_{n+N-1}-(\cos \theta)e)$$

$$=-(\cos \theta)(d\tilde{e}_{n+N-1} \cdot \tilde{e})$$

$$=-(\cos \theta)(\tilde{e}_{n+N-1} \cdot \tilde{e})$$

$$=0.$$
also

\[\phi_{n+N,s} = \tilde{e}_{n+N}^* \cdot \tilde{e}^*_s = ((\cos \theta) \tilde{e}_{n+N-1} - \tilde{e}_{n+N}^* d\theta) \cdot \tilde{e}^*_s \]

\[= (\cos \theta) \tilde{w}_{n+N-1,s}. \]

Therefore by (47) we have

\[T(f, o) = \frac{1}{C_{n+N-1}} \int_{\partial o} |\nu^* ((\cos \theta)^{n+N-2} \tilde{w}_{n+N-1,1} \wedge \cdots \wedge \tilde{w}_{n+N-1,n+N-2} \wedge d\theta)| \]

\[= \frac{C_{n+N-2}}{C_{n+N-1}} \left(\int_{-\pi/2}^{\pi/2} |\cos \theta|^{n+N-2} d\theta \right) \bar{T}(f, o) \]

hence by the fact

\[c_h = \frac{2(\Gamma(1/2))^{k+1}}{\Gamma((k+1)/2)} \quad \text{and} \quad \int_{-\pi/2}^{\pi/2} |\cos \theta|^k d\theta = \frac{\Gamma(1/2)\Gamma((k+1)/2)}{\Gamma((k+2)/2)} \]

we have

\[(54) \quad T(f, o) = \bar{T}(f, o) \]

so that we get \(T(f) = \bar{T}(f) \). This completes the proof of the lemma.

Lemma 2. Let \(f: X \to E^{n+N} \) be an immersion of a compact, orientable differentiable manifold of dimension \(n \) in the Euclidean space \(E^{n+N} \), such that \(f(X) \) lies in an \((n+N') \)-dimensional linear subspace \(E \) of \(E^{n+N} \). Let \(\bar{f} \) denote the induced mapping of \(f \) into the \((n+N') \)-dimensional linear subspace \(E \). Then, they have the same total absolute curvature, that is

\[(55) \quad T(f) = \bar{T}(f) = T(\bar{f}). \]

Proof. Since any linear subspace of the Euclidean space \(E^{n+N} \) can be regarded as a totally geodesic submanifold of \(E^{n+N} \), we can select a sequence of linear subvariety of \(E^{n+N} \):

\[(56) \quad E = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_{N-N'} = E^{n+N} \]

satisfies that

\[(57) \quad \dim E_i - \dim E_{i-1} = 1, \quad i = 1, 2, \ldots, N-N'. \]

so that by the fact that each \(E_{i-1} \) can be regarded as totally geodesic submanifold of \(E_i \), hence we can apply Lemma 1, \((N-N') \)-times and then we will get the desired result (55).

Proof of Theorem 7. Since by (33) we have

\[T_q(\exp_{q^{-1}} f) = T(q, f) \quad \text{for each} \ q \ \text{in} \ f(X). \]

we can identify the tangent space \(T_q(Y) \) with \(E^{n+N} \). Now, by the assumption, \(Y \)
is a totally geodesic submanifold of Y, hence if we denote the exponential map of Y at $q \in f(X)$ by Exp_q, then we have

$$(59) \quad (\text{exp}_q)^{-1} \, Y = (\text{Exp}_q)^{-1}.$$

Hence by the fact $f(X)$ lies in Y, and the result in Lemma 2, we can easily get (38).

5. Immersions with minimal total absolute curvature.

Definition. An immersion $f: X \rightarrow Y$ is said to be minimal, if $T(f) = \beta(X)$, where X and Y are both under the same hypothesis as in Theorem 1.

Theorem 8. If (4) is a minimal immersion with the real field as coefficient field, then X has no torsion.

Proof. Let $\beta_i(X, Z_p)$ be the i-th Betti number of X with the coefficient field, $Z \mod p$ (p is a prime), and $\beta_i(X, R)$ be the i-th Betti number of X with the real coefficient field R, then

$$\beta_i(X, R) \leq \beta_i(X, Z_p), \quad i = 0, 1, \ldots, n. \quad (60)$$

But by the hypothesis, we have

$$T(f) = \beta(X, R) \quad (61)$$

and by Theorem 1, we have

$$T(f) \geq \beta(X, Z_p) \quad (62)$$

so that we have

$$\beta_i(X, R) = \beta_i(X, Z_p) \quad \text{for} \quad i = 0, 1, \ldots, n. \quad (63)$$

which means that X has no torsion.

Theorem 9. Let

$$\rho(p) = \sup_{q \in g^{q+N-1}, e \in f(X)} |G(p, q, e)|. \quad (64)$$

Then, we have

$$\int_X \rho(p) dV \geq \frac{\beta c_n + N - 1}{c N - 1}. \quad (65)$$

The proof of this theorem is similar to the proof of Theorem 5 in [11], and the following corollary follows immediately.

Corollary. Under the same hypothesis and notations, we have

$$\nu(X) \geq \frac{\beta c_n + N - 1}{H c^{N - 1}}. \quad (65)$$
where $H = \sup_{p \in X} \rho(p)$ and $v(X)$ denotes the volume of X.

6. Total absolute curvature of product immersion.

The following theorem appears in Willmore–Saleemi’s paper.

Theorem 10. Let $f: X \to Y$ and $f': X' \to Y'$ be two immersions satisfying the hypothesis in Theorem 1. Let

$$f \times f': X \times X' \to Y \times Y'$$

be the product immersion, and let $T(f \times f')$ be the corresponding total absolute curvatures, then

$$T(f \times f') = T(f) \times T(f').$$

Proof. Suppose that $\dim X = n$, $\dim X' = n'$, $\dim Y = n+N$, and $\dim Y' = n'+N'$. Now, if $q \in f(X)$ and $q' \in f'(X')$, let B_q, B'_q and \tilde{v}, \tilde{v}' be the pseudo-normal bundles and the mappings of f and f', respectively. Then, with the notations in Lemma 1, we have

$$T(f, q) = \int_{B_q} |\tilde{v}^*(\bar{w}_{n+N,1} \wedge \cdots \wedge \bar{w}_{n+N,n+n+N-1})| e_{n+N-1}$$

(68)

$$T(f', q') = \int_{B'_q} |\tilde{v}'^*(\bar{w}_{n'+N',1} \wedge \cdots \wedge \bar{w}_{n'+N',n'+N'-1})| e_{n'+N'-1}$$

(67)

Let B be the set of the forms

$$b = (p, p'; e_1, \ldots, e_{n+N}, e'_1, \ldots, e'_{n'+N'})$$

such that the parallel translation vectors $\bar{e}_1, \ldots, \bar{e}_{n+N}$ of e_1, \ldots, e_{n+N} along the unique geodesic joining $f(p)$ and q are unit normal vectors of $((\exp_q^1) \circ f(X))$ at $\exp_q^1 \circ f(p)$ and $(p', e'_1, \ldots, e'_{n'+N'})$ are the analogous element of the immersion f'.

Now, let B^q denote the pseudo-normal bundle of the product immersion $f \times f'$ and we also denote the corresponding mapping from B^q to $S^{n+N+n'+N'-1}_{(0,\pi)}$ by \tilde{v}, that is

$$\tilde{v}((p, p'), e) = \bar{v},$$

(70)

where \bar{v} denotes the parallel translation vector of e along the unique geodesic joining (p, p') and (q, q').

Let us consider the unit vector

$$e^* = \bar{e}_{n+N} \cos \theta + \bar{e}^*_{n+N} \sin \theta.$$

(71)

It is clear that e^* is a unit normal vector to $\exp_{q', q''}^1(f(X) \times f'(X'))$ at $\exp_{q', q''}^1(f(p), f'(p'))$ and we have

$$de^* = \cos \theta \, d\bar{e}_{n+N} + \sin \theta \, d\bar{e}^*_{n+N} + (\cos \theta \, \bar{e}^*_{n+N} - \sin \theta \, \bar{e}_{n+N})d\theta$$

(72)

so that if we set $r = n+N+n'+N'-1$, we have
\[T(f \times f'; (q, q')) = \left(\int_{B_q} |\hat{\beta}^*(\varpi_{n+1} \cdots \varpi_{n+N-1} \varpi') \cdots \right) \left(\int_{B_{q'}} |\hat{\beta}^*(\varpi'_{n'+N'} \cdots \varpi'_{n'+N'-1}) \right)^{\alpha/2} \left(\cos \theta \right)^{n+N-1} \left(\sin \theta \right)^{n'-N'} \, d\theta \right) / c_r \]

(73)

\[= \left(\int_{B_q} |\hat{\beta}^*(\varpi_{n+1} \cdots \varpi_{n+N-1})| \int_{B_{q'}} |\hat{\beta}^*(\varpi'_{n'+N'} \cdots \varpi'_{n'+N'-1})| \left(\cos \theta \right)^{n+N-1} \left(\sin \theta \right)^{n'-N'} \, d\theta \right) / c_r \]

\[= \left(c_{n+N-1} c_{n'+N'-1} T(f, q) T(f', q') B \left(\frac{1}{2} (n+N), \frac{1}{2} (n'+N') \right) \right) / 2c_r \]

So that we get

(74)

\[\inf_{(q, q') \in (f(\mathbb{X}) \times f'(\mathbb{X}'))} T(f \times f'; (q, q')) = \inf_{q \in f(\mathbb{X})} T(f, q) \times \inf_{q' \in f'(\mathbb{X}')} T(f', q') \]

that is

(75)

\[T(f \times f') = T(f) T(f'). \]

Corollary 1. If \(f: X \to Y \) and \(f': X' \to Y' \) are both minimal immersions, then the product immersion is also minimal immersion.

This follows immediately from theorem 10 and the definition of the minimal immersion.

Corollary 2. If \(f: X \to Y \) and \(f': X' \to Y' \) are both minimal immersion with the real field, as the coefficient field, then the product immersion has no torsion.

This follows from theorem 8 and 10.

The author has great pleasure in taking this opportunity of expressing his warmest thanks to Professor T. Nagano for his valuable suggestion and guidance, and also thanks to Professor T. Otsuki for the valuable improvement.

References

National Tsing Hua University,
Institute of Mathematics,
Tamlang College of Art and Science,
Department of Mathematics, Formosa, China.