
ON RADIAL SLIT DISC MAPPINGS
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§ 1. Introduction.

1. In our previous paper [13] we discussed canonical conformal mappings of a
plane domain and some properties of its image domain. In the present paper we
shall deal with supplementary problems related to radial slit disc mappings.

Let Ω be a plane domain and C be a boundary component of it. As was
remarked by Grδtzsch [4], the general radial slit disc mapping function has no
extremal property about the minimum modulus on C contrary to the case that C
is an isolated continuum, even if the extremal radius of C is finite [10, 7]. We
intend to define a functional of a normalized univalent function in Ω which is
regarded as an essential minimum modulus on C with respect to the extremal
distance and to show that the radial slit disc mapping function is the unique function
maximizing the quantity among the family of the normalized schlicht functions.
To the purpose we shall remark the following property of the incisions of the
image domain of Ω under the radial slit disc mapping which is a direct result
from Ohtsuka's theorem [6], pp. 132: The extremal distance of the incisions from
a compact disc in the image domain is infinite.

Secondly we shall give a characterization of the radial slit domain with its
extremal radius infinite.

Recently Oikawa [8] obtained another interesting characterization as follows:
The radial slit disc mapping function is the unique function minimizing the maximum
modulus on C among the univalent functions which map the boundary components
dΩ—C onto a quasi-minimal set [13] of radial slits. A similar extremal problem
for the annulus was treated by Strebel [11].

§ 2. Extremal distances and metrics.

2. Let Γ be a family of locally rectifiable curves in Ω which is called simply
a curve family Γ and P{Γ) be the class of (measurable) admissible metrics with
respect to the L-normalization i.e.

(1)

The module of the curve family Γ is defined by
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modΓ— inf \\p\\l^ inf \\ p'dxdy,

the extremal length denoted by λ(JΓ) is defined by its reciprocal and λ(Γ) is called
the extremal distance of two sets if Γ is the family of curves joining them.

We state Hersch's theorem as a lemma which is essential in the sequel,

LEMMA 1. (Hersch [5]). Let {Γn} be at most a countable number of curve
families. Then

3. Let P*(/7) be the closure of the intersection of P(Γ) with the 4-space which
is called a generalized admissible class. P*(Γ) is a closed convex set. Strebel [11]
showed that there exists always a unique metric p0 called generalized extremal
metric which satisfies

if P*(Γ) is not void.
The deviation of pζP*(Γ) from p0 is evaluated by the following inequality:

( 2 ) 11/?—^o||2^IIHI2— ll^oll2

which was given with a numerical constant 1/2 in [13]. In fact we can take a
competing function (po+εp)l(l+ε) from the convexity of P*(Γ) for ε^O and the
standard argument shows it.

We call a metric psP*(Γ) measurable on Γ if the integral in (1) is defined for
all γεΓ. From the method of Ohtsuka [6] mentioned in the introduction we have

THEOREM 1. Let pζP*(Γ) be measurable on Γ and A be a subfamily of Γ
defined by

V|^|<fe|<l,r€/|

Then the module of A is equal to zero.

Proof. There exists a sequence {pv} contained in P(Γ) converging to p strongly.
Let An be the subfamily of A defined by

An- p\dz\<l-~,
n

Then a metric μv=n\ρv—ρ\ is admissible for An and hence mod Λn=0, since ||/ |̂|:'—>0.
We get moάA=0 from Lemma 1 because A=\jAn.

A similar class defined by the property in Theorem 1 was considered by Fuglede
[3] in the more general situations. It is easily verified that his class essentially
coincides with out class P*(Γ).



RADIAL SLIT DISC MAPPINGS 221

4. Let pi and p2 belong to P*(Γ). We put |0iV/02—max (pi, p2) which is easily
verified to belong to P*(Γ). Being concerned with the extremal distrance between
two sets, we take the family of curves joining them. Let A and B be two sets
on the complex sphere. We mean by a curve γ: z(t), O<Ύ<1, starting from the set
A such a curve that any neighbourhood of A taken in the sphere contains its
suitable subarc z=z(t), 0<.t<t0. Such terminologies as joining, ending etc. can be
defined by their neighbourhoods.

As to an open Riemann surface R, we take a compactification of R which makes
each boundary component an ideal point, that is so called Stoilow's compactification
of R and written by R ([2], Chap. I). For two disjoint closed sets A and B on R,
the above terminologies are defined similarly. Especially, let C be a closed set of
ideal point. Then we can construct a sequence of open sets {Δn} on R such that
i) Δn\jCzDΔn+i, ϋ) Δn consists of a finite number of subdomains of R whose relative
boundaries are a finite number of closed Jordan analytic curves, iii) R—Δn is
connected and iv) n ^ = C , we call {Δn} a defining sequence of C. An exhaustion
of R, given by Rn=R—Δn is called an exhaustion of R in the direction to C.

We define the distance of A and B by the quantity

P\dz\,
r

if p is measurable on the curve family Γ joining A and B, and define a new
metric β by

jΌ on G(A) = {z\dp(A,z)>l},
β=βA — \

[p elsewhere,

we call β a modified metric with respect to A.

LEMMA 2. Let Γ be the family of curves joining A and B within Ω. If pζP*(Γ)
and if p is measurable on Γ then so does β constructed above.

Proof. We first remark that the function dp(A, z) is lower semicontinuous in Ω
and the set G(A) defined above is open. In fact, let {zv} be a sequence converging
to Zo satisfying dp(A, zv)-»d0. Then we have dp(A,z0)^d0 which is shown by the
similar method due to Strebel [12, pp. 10-11]. Next we take such a compact set K
within G{A) that IMkc^)<IHU+ε/2. From Theorem 1 there exists a metric satis-
fying Hi"IU<ε/2, where A is the curve family defined in Theorem 1, if A±?φ. If
A=φ, we take μ=0. We put

0 on K,

pVμ elsewhere.

It is easily verified that pε belongs to P{Γ) and \\β—pt\\<ε, which implies the
assertion.
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§ 3. Minimal slit discs.

5. We introduce a quantity called the extremal radius due to Strebel [12].
Let a closed disc \z—a\^q be contained in Ω and Γq be a curve family joining the
disc and C. Then a quantity 2π{λ{Γq)+logq) increases with ressect to decreasing
q and its limit value is denoted by \ogR(a,C) (^oo) [7, 12]. R{a,C) is called the
extremal radius of C with respect to a.

We now state its relation to the radial slit disc mapping. The general radial
slit disc mapping was dealt by Strebel [12], Reich [9] and recently by the author [13].
Let {Ωn} be an exhaustion of Ω in the direction to C and Cn be its boundary curve
enclosing C. Then there exists a unique function gacn with the normalization
gacn(a)=l—gacn(a)=θ and mapping Ωn onto a minimal radial slit disc with its
radius R{af Cn). In the general case we give the following Strebel-Reich's

THEOREM 2. // R(a, C) is finite, then there exists a unique function gac(z)
with the following property:

i) WaclQac—QacJgacn\\Qn-*§ as n—>oo, where gacn is defined above.
ii) The images of the boundary components other than C under gac are a

quasi-minimal set of radial slits.
iii) The image of C is a circle with radius Q = R(a, C) having possible incisions

of angular measure zero emanating from it.
iv) The module of the curve family joining a small circle \z\=q and gac{C)

is equal to 2π/log {Qlq) [9, 12, 13].

We mean by a quasi-minimal set a set of slit whose compact subset is
minimal [13].

We now show a property of the incisions of gac(Ω).

THEOREM 3. Let a closed disc \w\ikq be contained in the image domain gac(Ω)
and let Λq be the family of curves joining the circle \w\=q and the points of the
outer boundary component contained in the disc \w\<R(a,C). Then the module of
Aq is equal to zero. In other words the extremal distance of the set of all incisions
is infinite from the circle.

We have already shown an altenative form of Ohtsuka's theorem [6] for metrics
in no. 3 and this can be proved word for word as in his proof, but we give a
simple proof adapting for the present situation.

Proof. Let {Ωv} be an exhaustion of Ω in the direction to C and gaσv be its
radial slit disc mapping function, where Cv is the distinguished boundary curve
enclosing C. Let Cq be the inverse image of the circle \w\=q under gac We
denote by Λq the curve family joining Cq and C:

ίίϊn log I gac(z) \ < log R{a, C) - — 1.
zsγ n\
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We define the value of gac. by the constant R(a} CJ) in Ω—Ωv and put uv=Λ
Then because of the uniform convergence of gacv on Cq and of the convergence of
R(a,Cv) to R(a,C) the oscillation of un on γsAq1 exceeds l/2n for sufficiently large
v and hence the metric pυ=2n\gxa.ά uv\ is admissible for Λ%. The property i) in
Theorem 2 shows that modΛj=0 and we get modΛ=0 by Lemma 1, since Λ= \jΛ%.

By the above theorem we have easily a simple proof of the StrebeΓs result about
the image domain gac(Ω) [11], which seemed to contain a gap in the original
paper and was proved alternatively in our previous paper [13].

COROLLARY 1. Let a closed disc \w\^kq be contained in the image domain of
Ω under a radial slit disc mapping function gac with a finite radius R(a, C). Let
Γq be a curve family joining two circles with radii q and R(a} C) in it. Then the
module of Γq is equal to 2τr/log (R(a, C)/q).

Proof. It is obvious from the following inequality due to Lemma 1:

mod Γq^moά Λ ^ m o d Γq-\-moά Λq,

where Γq and Λq are the curve families joining \w\=q with the outer boundary
and the possible incisions respectively. Hence moάΓq=moάΓq since modΛ^O.

We called the image domain under gac a quasi-minimal radial slit disc and
gave a geometrical characterization in [13]. Summing up the characterizations
given by Strebel [11, 12] and by us, we have from Theorems 2 and 3

COROLLARY 2. Let Ω be a bounded domain and Q be the least upper bound of
\z\ in Ω. Then Ω is a quasi-minimal radial slit disc, if any two of the following
three conditions are complied:

i) dΩ—C is a quasi-minimal set of radial slits.
ii) mod Γq=2π/\og (Q/q), where Γq is defined in Theorem 2.

iii) The module of its subfamily Λq of curves joining the circle \z\=q and the
boundary points contained in the disc \z\<Q is equal to zero.

Conversely all the three conditions are valid if Ω is a quasi-minimal slit disc
with radius Q.

Proof. We only show the characterizations, since the necessity is contained in

Theorems 2 and 3. The characterization by i) and ii) was given by Strebel [12, 13]

and that by ii) and iii) coincides with the condition of Theorem 15 in [13] if we

use the arguments in Corollary 1. Thus we assume the conditions i) and iii).

Then we have mod Λq=2π/\og(Q/q). Indeed the metric p=(\z\ log {Qlq)Yι belongs to

P*(Γq) from iii), since 0(=P*(Γq) and pv0 = p, and hence mod Γq^2π/log (Q/q). Next

from StrebeΓs inequality [11, 13]

.w
where 1(0) is the logarithmic length of the segment from the circle to the outer
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boundary component of Ω lying on the ray z=teι°, t^O. Since l{β)t=k\og(Qlq), we
get moάΓq^2π/\og(Qlq)f which implies the condition ii).

We shall give another characterization by means of an extremal property in § 4.

6. These results are easily generalized to the potentials on Riemann surfaces.
In fact let R be a Riemann surface and C be a closed set of R—R. Let a be a
point in R with its value of a local parameter zero. Then a potential function
P(p,a,C) can be constructed as follows: Let {Rn} be an exhaustion of R in the
direction to C. Denoting by Cn the relative boundary of Rn separating C, we first
make a potential function P(p,a,Cn) such that it is harmonic in Rn—a, P(p,a,Cn)
+log|z | is harmonic and is zero at a, P(p,a,Cn) is constant on Cn and its normal
derivative vanishes on the ideal boundary dRn—Cn. Such a function can be constructed
by means of Sario's linear operator method [2]. The constant value of P{p, a, Cn)
on Cn coincides with log R(a, Cn) and R(a, Cn) is increasing with n. The limit value
R(a,C) (^oo) is also called the extremal radius of C with respect to a. If R(a,C)
is finite, then P(p, a, Cn) converges to a function P(p, a, C) in such a way that
\\dP(p, a,Cn)—dP(p,a,C)\\Rn->0, as z-^oo. We remark that such repeated pro-
cedures are indispensable. Indeed Oikawa [8] showed that there exists a normal
exhaustion {Rn} such that dP(p,a,Cn) does not converge in the above sense. The
translation of our result on Riemann surface R is as follows:

Let A be the family of curves γ joining a compact neighbourhood of a and
boundary components C and satisfying that

ϊmv P(p} a,C)<\og R(a,C)

along γ. Then the module of A is equal to zero.

§ 4. An extremal problem.

7. We now define an essential minimum of a univalent function on C. Let
$ac be a family of univalent functions f(z) with the normalizations: f(a) = l— f'(a)=0
for a$Ω which maps C onto the outer boundary component of its image domain.
We put for a curve γ joining a compact simply connected neighbourhood 0 of a and C

along γ and define by m*(f) the least upper bound of m such that M ? (/)^m except
a curve family of its module zero. Let Λm be the curve family satisfying MΊ{f)<m.
Then from Lemma 1 we obtain mod ΛmHf)=0. In the image domain Δ the
extremal distance of the boundary points contained in the disc \w\<rn*(f) is infinite
from a compact neighbourhood of the origin.

We remark that the family of curves of module zero in the above definition is
independent of the choice of the neighbourhood U. Such a fact is not so trivial as
it seems and we discussed similar problems related to the criterion of minimal sets
in [13]. In fact, if the neighbourhood U contains a neighbourhood F, the well-
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known monotonity of the module shows the assertion. If not, we take a large
simply connected neighbourhood Vi with an analytic boundary and containing both
U and V. We now construct a quasiconformal mapping which maps Ω—ϋ onto
42— Vi and fixes the boundary of Ω: We first map by a function φ(z) the ring
domain Vi—O onto an annulus s<\w\<S<l in such a way that the mapping φ{z)
is extended to a larger neighbourhood V2 such that V2—U1S mapped onto S < | M > | ^ 1 .
The quasi-conformal mapping

Φ(W)=\W\logS/logsetκvgw

maps the annulus s<\w\^l onto S < | w | ^ l fixing the circle \ιv\~l. The function

^oφoφ in V2 — U,

z i n 4 2 - F 2

is a desired function because of the continuation theorem of quasiconformal
mapping [1], The invariance of vanishing of the module under a quasiconformal
mapping implies the conclusions.

8. We can state the extremal property of the radial slit disc mapping of finite
extremal radius.

THEOREM 4. The radial slit disc mapping gac is the unique function maximizing
the quantity m*(f) among the family %ac and its maximum value is equal to R(a, C).

Proof. Since m*(gac) = R(a,C) from Theorem 3, we only show the extremal
property. Let f(z) be a function in %ac and Δ be the image domain of Ω under
f(z). We take a closed disc \w\^q which is contained in Δ and denote by mq the
minimum modulus of gac

of~Kw) on it. The metric po=\g'aclgaclog (R(a, C)\mq)\ is
an extremal metric for the module problem of the family of curves joining the
closed curve \gac(z)\=mq and the boundary component C in Ω. The metric
p—\f'lf\og(m*(f)lq)\ in the intersection Ω with the domain q<\f(z)\ and ==0
elsewhere is admissible for it in the sense of no. 3. Taking the modified metric β
with respect to the curve \f(z)\~q in Lemma 2, we have by the fundamental
inequality (2)

mq

since the support of β is contained in the annulus q<\w\<m*(f), which implies
||/>||2^2π/log (m*(f)/q). Multiplying by it the denominators on the right hand side and
letting q tend to zero, we have

OaC R(a, C)

m*(f)

where 0 is a compact neighbourhood of the origin. Therefore R(a,C)^m*(f) and
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the equality implies f=gac from the normalization.
The above quantity m*(gac) = R(a,C) may be different from the true minimum

modulus of Qac on C, but Oikawa [7] showed that R(a, C) is the least upper bound
of the geometrical minimum modulus of /€ ??«<?.

§ 5. A characterization of a radial slit disc with infinite extremal radius.

9. We discuss the case in which R(a,C) = oo. In this case the sequence of the
radial slit disc mapping functions gacn of the exhausting domains Ωn of Ω in the
direction to C contains a convergent subsequence and its limit function, say go(z),
maps Ω onto a radial slit domain in such a way that the image of C in the point
at infinity with possible radial slit incisions emanating from it and the image of
the boundary components other than C is a quasi-minimal set of radial slits [12, 13].
Let Ω be a finite domain with the above mentioned property of the image damain
under g0. Then we can construct such an exhaustion {Ωn} in the direction to C
that their radial slit functions gocn(z) converge to the function w—z.

THEOREM 5. Let Ω be a finite domain containing the origin and lei C be its
boundary component containing the point at infinity. If R(0,C) = ooy and if the
union of boundary components other than C is a quasi-minimal set of radial slits,
then there exists such an exhaustion {Ωn} in the direction to C that its radial slit
disc mapping function gacn tends to the function w=z uniformly on any compact
set in Ω.

It should be noted that the conditions in Theorem 5 are degenerated conditions
in Corollary 2 in which Q=oo, and ii) coincides with iii).

Proof. We first remark that the condition that R(0, C) = oo implies the following:
The module of the curves joining C and a compact disc \z\^=kq vanishes and the
boundary component C is the point at infinity having possible radial incisions of
angular measure zero emanating from it. In fact taking an arbitrary exhaustion
of Ω in the direction to C, we can conclude that the extremal distance of the
boundary component C from a compact neighbourhood of the origin is infinite,
since i?(0, Cn) tends to infinity. Then StrebeΓs inequality (3) shows that the bound-
ary component C is the point at infinity with possible radial slit incisions of angular
measure zero.

We now construct an exhaustion of Ω stated in the theorem. To this end, for
given ε and Q we construct such an auxiliary domain Ωε

Q that all the points of its
outer boundary except on the incisions of Ωε

Q lie outside the circle \z\=Q, its inner
boundary consists of the slits of Ω and its reduced logarithmic area is less than
2ττlogO+ε/2. Such a domain may be constructed as follows. Taking an annulus
Q<\z\<Q' such that 2π log (Q7Q)<ε/4, we denote by S the set of all slits inter-
secting both the circles \z\=Q and \z\=Qf. The area of S is zero. Considering a
suitable member of the defining sequence of each slit of S and using Lindelof s
covering theorem, we can find at most a countable number of Jordan domains with
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analytic boundries {/v} such that dfvczΩ, Sa U/» and the logarithmic area of U/« is
less than ε/4. Then {\z\<Q'}Όji is possibly a domain with finite connectivity n.
Connecting its inner boundary components with its outer boundary by analytic
Jordan arcs within Ωπfi we have a simply connected domain Ωι

Q. Next we apply
the same procedure to ^ Q U / 2 , and so on. Then we have an increasing sequence
of simple connected domains {ΩV

Q}. Ω°Q=UMQ is a simply connected domain and
Ω°Qf]Ω is desired domain Ωε

Q, since Ωv

Qf)Ω is connected.
We denote by Ωe

qQ the intersection Ωε

Qf] {\z\>q}. Then we have

( 4 ) [ j y ^ g

Denoting by Γq the family of curves joining the circle \z\—q and the outer
boundary of ΩqQ, say CQ, we have from StrebeΓs inequality (3)

[2"l(0)dΘ
Jo

logarithmic area of Ωe

qQ

using Schwarz's inequality and the inequality (4) and the definition of the extremal
radius in no. 5 we get

(5) logi?(0,Q)<logQ+-f-.

Let gocQ(z) be the radial slit disc mapping function of Ωe

Q and mq be the minimum
value of gocQ on the circle |z |=#. We put

— j in the annulus q<\z\<Q,

elsewhere

and

Then ô is the generalized extremal metric for the curve family joining the inverse
image of the circle \gocQ\=mq and the boundary component CQ, and p is admissible
for it, since the module of the family of the curves ending at the boundary points in
\z\<Q vanishes. From the fundamental inequality (2) we have

l " I l s

* q & mq

and multiplying it by log (Qlq) log (i?(0, Cq)\mq) and tending q to zero we get from (5)
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QOCQ

QOCQ
^ πlog

R(0,CQ)

Q <r
Next we take an exhaustion of Ωε

Q in the direction CQ and for a sufficiently

near domain Ωλ with its outer boundary Cu and we have for a neighbourhood of

the origin

1 QoCi .

\z\ goc1 ij

Let {Qn} be an increasing sequence tending to infinity and {εn} be a decreasing

sequence tending to zero. Then we can construct an exhaustion {Ωn} of Ω in the

direction to C satisfying that || \QίcjQ*cn\~~V\z\ II2<£™> which implies the uniform

convergence of gocn on any compact set on Ω.

After we have completed this article we find that Marden and Rodin discuss

related problems in more general situations in Acta Math. 115 (1966), 237-269.
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