NORMAL STRUCTURE f SATISFYING f*+f=0

By SHIGERU ISHIHARA

A structure on an n-dimensional differentiable manifold given by a non-null
tensor field f of constant rank 7 satisfying f3*+/=0 is called an f-structure [2, 6, 7].V
If n=v, then an f-structure gives an almost complex structure of the manifold and
n=y is necessarily even. If the manifold is orientable and #—1=v, then an f-
structure gives an almost contact structure of the manifold and # is necessarily
odd.

Sasaki and Hatakeyama [4] have introduced the notion of normality in the
study of almost contact structure and characterized the normal almost contact
structure by the vanishing of a tensor field constructed from the structure. On
the other hand, it is well known [1,5,9] that an almost complex structure in the
tangent bundle is determined by giving a linear connection in the tangent bundle.
The almost complex structure in the tangent bundle is complex if and only if the
linear connection determining the almost complex structure is locally flat [5].

When an #-dimensional manifold V' admits a non-null f-structure f of rank »
such that z—r=1, there exist two distributions Z and M corresponding to the
projection operators /=—f2 and m=s2+1 respectively. The operator f operating
on the tangent bundle T'(V') of the manifold V acts as an almost complex structure
on the distribution L and as a null-operator on the distribution M. It is now well
known [1,5,9] that an almost complex structure is determined in the tangent
bundle when a linear connection is given in the tangent bundle. By a similar
device as that used in the study of almost complex structure in the tangent bundle,
we shall show in §3 of the present paper that an almost complex structure is
determined in the vector bundle M(V) by giving a connection w in the vector
bundle M(V), M(V) being the vector bundle consisting of all tangent vectors be-
longing to the distribution M.

When the almost complex structure in the vector bundle M(V) is complex
analytic, we say that the f-structure f is normal with respect to the given con-
nection w. We shall prove in §5 that the f-structure f is normal with respect to
a connection o given in the vector bundle M (V) if and only if the connection o
is of zero curvature and a tensor field constructed from f and w vanishes identically
(Theorem 2). The notion of normal f-structure seems to be very useful in study
of certain submanifolds immersed in an almost complex space (cf. [8]).

Received July 17, 1965.
1) The numbers between brackets refer to the Bibliography at the end of the paper.
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§1. fF-structure.

Let there be given, in an n-dimensional differentiable manifold V' of class C=,
a non-null tensor field f of type (1.1) and of class C* satisfying
1.1 fi+f=0.

We call such a structure f an f-structure of rank 7, when the rank of f is con-
stant everywhere and is equal to #, where # is necessarily even [2,6,7].

If we put
1.2) I=—r?, m=f?*+1,
we have
— 2__ 2
(1.3) l+m=1, 1*=l, mi=m,

fl=I1f=f, fm=mf=0,

where 1 denotes the unit tensor. These equations show that the operators I and
m applied to the tangent space at each point of the manifold V are complementary
projection operators. Then there exist in the manifold V two distributions L and
M corresponding to the projection operators I and m respectively. When the rank
of fis 7, L is r-dimensional and M (n—r)-dimensional.

Let U be an arbitrary coordinate neighborhood of the manifold V admitting an
f-structure f of rank r. If we take in U arbitrarily an ordered set {f.} of n—7
(contravariant) vector fields £, spanning the distribution M at each point, then there
exists uniquely in U an ordered set {fY} of n—r covariant vector fields (1-forms)
fv such that®

2n—r

1.4 2 F*Qf=m, f=(fy,)=05.
r=n+1

Taking account of (1. 3), we have from (1. 4)

1.5) fy(f X)=0, ff,=0

for any vector X at each point of V. We call such an ordered set {f,} an (n—7)-
Sframe and the ordered set {f¥} an (m—v)-coframe being dual to {f,}.
If a covariant vector field ¢, global or local, satisfies at each point

#(X)=0

for any vector X belonging to the distribution L, ¢ is said to be transversal to L.
It is easily seen that any covariant vector field @, being transversal to L, is ex-
pressible uniquely by

¢:¢1/fy

as a linear combination of fv in U. Similarly, any contravariant vector field v
belonging to the distribution M is expressible uniquely by

2) The indices x,y, z,# run over the range {n+1,%n+42, -, 2n—r}.
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v=0v*f,

as a linear combination of f; in U.
Denoting by f3%, %y, f5* respectively the components of f,f,, f* with respect to
local coordinates (»?) defined in U,® we find from (1. 1), (1.2), (1. 4) and (1. 5)

fbcfca= _5g.+fbyfa% fcyfcar- 1

1.6
(1.6 FefE=0, Feufo=3.

§2. Vector bundle M (V).

Let there be given an f-structure £ of rank 7 in an n-dimensional manifold V.
Then the set of all tangent vectors belonging to the distribution M forms a vector
bundle p: M(V)—V over V, which is a subbundle of the tangent bundle 7(V) of V.

Let M*(V) be the vector bundle which is dual to M(V). If we take an ele-
ment 93 belonging to the fibre M3%* of the bundle M*(V) at a point P of V, then
there exists at P uniquely a covector ¢ of 1/, which is transversal to the distri-
bution L, such that

@1 B()=g(v)

for any element v belonging to the fibre Mp of M(V) at P. Conversely, for any
covector ¢ transversal to L at P, there exists uniquely an element 5 of M% satis-
fying (2.1). In such a way, the vector bundle M*(V) can be identified naturally
with the set of all covectors transversal to the distribution L. In this sense, the
bundle M*(V) can be regarded as a subbundle of the cotangent bundle 7*(V) of
the manifold V.

If, in a coordinate neighborhood U of the manifold V, we take an (n—7)-
frame {f,} and an (m—r7)-coframe {f¢} being dual to {f.}, then {f.} is a basis of
the fibre Mp of M(V') at each point P of U and {fv} is a basis of the fibre M¥ of
M*(V) at each point P of U and dual to {f,}. Taking in ¥V a vector field v be-
longing to the distribution } and a covector field ¢ transversal to the distribution
L, then we have

v=0f5, ¢=¢yfy

in U with functions »* and ¢, defined in U, where v* and ¢, are determined
uniquely respectively for v and ¢. (v*) and (¢,) are called respectively the com-
ponents of vand ¢ with respect to the (n—7)-frame {f} in the vector bundle M(V).

Let U and U’ be two coordinate neighborhoods of the base space V such that
UnU'#¢. If {f;} and {fz} be (n—r)-frames defined respectively in U and U’,
then we have

2.2) fy=A4f,
in UNU’, where the matrix (AY) is a function in UNU’. Taking a vector field

3) The indices a,b,c,d, e, f run over the range {1,2,---, n}.
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v belonging to M and a covector field ¢ transversal to L, we have
v=0°f, S=op,f?
and
v=vw’fx1, ¢:¢ylfyl
respectively in U and in U’, and
2.3 vE=AZv", by=AY by
in UNU’, where (A%)=(AZ).

Let there be given a connection w* in the vector bundle M(V). Then w* has
n(n—r)* components I'.®, with respect to local coordinates (%) of the base space V
and an (n—7»)-frame {f,} in any coordinate neighborhood U of V. We take now
two coordinate neighborhoods U and U’ of V such that UN U’#¢ and (n—r)-frames
{fz} and {fs} respectively in U and in U’. Denoting by (»*) and (%) local coordi-
nates defined respectively in U and U’, we have (2.2) in UNnU’. Then, denoting
by I'4*y and I'¢.*'y the components of the given connection w* respectively with
respect to {7% fz} and to {»%,fs}, we find in UN U’

C 0 -
2. 4) I'e» ”'28—770—’14’” (Lemy Ay +0:. A7),
where 9,=0/0p°. The equation (2.4) is the so-called transformation law of com-
ponents of a connection given in the vector bundle M(V).

Taking a vector X and a covector p at a point P of the manifold ¥V, we con-
sider an element 7%(X, p) of the fibre Fp of the vector bundle M*(V)QM(V) at P
and suppose for T%(X, p) to be bilinear with respect to its arguments X and p.
The correspondence T (X, p)—Tw(X, p) is called an Fp-valued tensor of type (1,1)
at P. If there is given a correspondence T: P— T, it is called an M*(V)QM(V)-
valued tensor field of type (1,1) and its differentiability is naturally defined. Let v
and ¢ be respectively a vector field and a covector field and T an M*(V)Q M(V)-
valued tensor field of type (1. 1). Denote by T(v, ¢) a cross-section of M*(V)RQM (V)
such that its value at a point P is given by Tp(ve, gp), Where vp and gp are re-
spectively the values of v and ¢ at P. Then we have

T (ov, cg)=07t T (v, &)

for any two functions ¢ and z. Let (%) and {f.} be respectively local coordinates
and an (#n—r)-frame in a neighborhood U of V. Then in U the cross-section
T(X, p) is expressed by

TX p)= bZ' Xep T,
o=1

where

2n—r
ch___ Z chyxfy ® fx

z,y=n+1
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with functions 7.%* defined in U and X<, g, are respectively components of X and
p with respect to (9%). T is an M*(V)QM(V)-valued tensor field of type (0,0),
ie. an M*(V)Q®M(V)-valued scalar, in the neighborhood U for each pair (b, ¢) of
indices. T¢® or T.%,® are called the components of T. In a similar way, we consider

tensor fields of any such mixed type.
Taking in the manifold V a vector field v belonging to the distribution M and
a covector field ¢ transversal to the distribution L, we put

v=0"f; and ¢@=¢,f?
in a coordinate neighborhood U of V. If we put
Vowr=dwo+1 =Y,
Vody=0chy—1 c%yz,
then it is easily verified by means of (2.3) and (2. 4) that
Feo)f, and (Vg )fY

(2.5)

are globally defined covariant vector fields in V which take their values respectively
in M(V) and in M*(V). In this sense, we call

Vowo=V.*f, and Vc¢=Vc¢yfy:

or simply Fo® and V.dy, respectively the covariant derivatives of v and ¢ with re-
spect to the connection w*.

Let there be given a linear connection @ in the base space ¥ and denote by
I'.% its components with respect to local coordinates (%) in a coordinate neighbor-
hood U of V. If we consider now an M(V)® M*(V)-valued vector field T¢, then

we can put
Te=T%f:QFY
in U and T'%,* are components of 7'® with respect to {»%, f»} in U. On putting in U
(2. 6) VeToy=0,T%"+1 2T+ 1, T2 —1 2, T7,
then the tensor field
VeTo=F T, QFY

defined in each neighborhood U determines globally in the manifold V a tensor
field of type (1.1) which takes its values in M(V)QM*(V). In this sense, we call
V.Te, or simply V.T%>, the covariant devivative of T* with respect to connections
o and o* In the same way, we can define the covariant derivatives of tensor
fields of any mixed type. Summing up, if there are given connections w and o*
respectively in the manifold ¥ and in the vector bundle M(V), we can introduce
the covariant differentiation V. operating on tensor fields 73..%",.* of any mixed type.
In general case, two connections w and o* may be given independently. However, if
there is given a linear connection  in the manifold V, then there exists in the
vector bundle M(V) a connection w* defined by components
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Fczy=(acfev+rcedfdy)fe‘t,

where [':% are the components of the given linear connection o.

§3. Almost complex structure in M (V).

By identifying each tangent space of the fibre of the vector bundle p: M(V)—V
with the fibre itself, the tangent space T, (M (V)) of the manifold M(V) at a point
g of M(V) is expressible as a direct sum by

T(M(V)=Te(V)D Fp=Lr D Mp D Fp,

P being the point p(e) of V, where Te(V), Fp, Ly and Mp are at the point P re-
spectively the tangent space of V, the fibre of M(V'), the tangent plane belonging
to L and the tangent plane belonging to M. There exists naturally an identification
j: Mp—Fb.

Let there be given a connection w* in the vector bundle M(V). Taking a
tangent vector X of the base space Vat P, we denote by X the horizontal lift of
X at each point ¢ of the fibre p~'(P) with respect to the connection w*. We define
a linear operator J, applied to the tangent space T,(M(V)) of the manifold M (V)
at a point ¢ by J( X =({X)", J(YX)=4(Y), J(Z)=—("4Z))*, where X, Y and
Z belong respectively to Ly, Mp and Fp, P being the point p(s). It is easily verified
that the operators J, defined in each tangent space T,(M(V)) determine an almost
complex structure F in the manifold M(V), ie. that F?*=—1I, I being the unit
operator.

We shall now obtain the tensor representation Fi* of the almost complex
structure F. Let {U} be an open covering of the base space V. The fibre space of
M(V) being the (n—7)-dimensional vector space R*~7, the collection p~*(U)=UXx R*"
of local product representation of the bundle M (V) over U’s forms an open covering
of M(V). In a local product representation p~*(U)=UxR"7, any element v of
M(V) such that p(v)e U is expressed by (3% v%), where (%) are coordinates of the
point p(v) and v=v*f,, {f:} being an (n—r)-frame in U. Any tangent vector of

the bundle space M(V) is expressed by (g», if the tangent spaces of R* " are

identified with R~ itself. That is to say, (% v%) are local coordinates defined in
each neighborhood p~*(U)=UXR™ " of the bundle space M(V).

Let there be given a linear connection w* in the vector bundle M (V) and I'.*,
its components with respect to local coordinates (»*) and an (n—7)-frame {f.} in a
neighborhood U of the manifold V. Then, in the tangent space of the bundle
space M (V) at any point (%% v*) of p~(U)=UX R™ ", the horizontal plane is defined
by a linear equation

3.1 Vet Iy Ve=0,
I',* being defined by
3.2 I'y2=1"%yv,
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and the vertical plane is defined by a linear equation
Ve=0.

If, in each tangent space of the bundle space M(V), we consider a frame con-
sisting of 2n—7 vectors Vg, with components V%, such that®

Ve 3 V&) (0
(Vin)= = o (V)= = ,
V! =T Vi) \op

then Ve, are horizontal by virtue of (3.1) and Vi, are vertical. We now define
in each tangent space of the bundle space M (V) a linear operator F by

2n—r

F(Vy)= aZ=11fa“ Vi + x_ZHfbx Viays

3.3 i
F(V(y))= _a§1fay V(a)~

Then, the linear operators F' thus defined determine a tensor field of type (1,1) in
the bundle space M(V). If we denote by Fi* the components of the tensor field
F with respect to local coordinates (3%, v*) defined in neighborhood p~Y(U)=Ux R,
then we find from (3. 3)

( a 0 )(fo“ —fy")( ag 0 )‘1
B9 (FM)= ,
—Fb'” 5{,‘ fb"" 0 _["bm 5{,‘
ie.
Joo—=I"vf oy —/%y
3. 9) (Fi")= .
sz_fbefez+szfezFex fey['ex

Taking account of (1.6), we can easily verify
(fa“ ~fy“>2 (55‘ 0
0] \g 5;)'
Therefore, by virtue of (3. 4) we find

Fi=—],

I being the unit tensor. Consequently, the tensor field F thus defined is an almost
complex structure in the bundle space M (V). Summing up, we have

TureoreM 1. If a differentiable manifold V' admits an f-structure f of rank 7,
then there exist almost complex structures in the bundle space of the (n—r)-
dimensional vector bundle M(V') over V. Given a connection with components I'.*y
in M(V), then an almost complex structure F=(F;*) is determined by (3.5).

This seems to be a generalization of the following theorem: There exists almost

4) The indices 4,%,4, k&, [ run over the range {1,2,---, %, n+1,---,2n—7}.
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complex structuves in the tangent bundle T(V) of any diffeventiable manifold V
and an almost complex structures is determined by giving a connection in T(M).
(Cf. Tachibana and Okumura [5], for example.)

§4. Nijenhuis tensor of F.

Let there be given an f-structure £ of rank # in a differentiable manifold 1/
and a connection o* in the vector bundle M(V). Let I'.*, be the components of
the connection w* with respect to {2, .}, where (»*) are local coordinates and {f:}
is an (n—7)-frame in a neighborhood U of the manifold V. Denoting by f»* the
components of the f-structure f with respect to (%), we define in U a tensor field
Sev® of type (1. 2) by

(4. 1) Scba'=Ncba'+(acsz—abfcz)fza_(fchbzu_fbchzu)fzay

(fez) and (f»¥) being respectively the components of f. and f?, where the Nijenhuis
tensor Ng® of the f-structure f,% is by definition

Nev=fc0e fo*—[s°0c fo* — (0cfs°—00S ") o
We define next in U an M(V)-valued tensor field
Seo=Su"fx
of type (0,2) by
“4.2) Sev=Fc(0eSs"—00 fe™) —f1*(0e fo* —0c f o) — ([ o' =S f ) e,
an M*(V)-valued tensor field
Sc2=S.2 Y
of type (1,1) by
4.3 Sey =S y0cf " [ 0cf *y+ e 0c Syt S *L ey,
an M(V)Q M*(V)-valued tensor field
Se=Se,*fzQ FY
of type (0,1) by
4.4 Sey®=fy(0efc*—0c fe®) S f eyl e —1"c%
and an M*(V)Q M*(V)-valued tensor field
So=Suy*f*QFY
of type (1,0) by

4.5) Sy =F20cf %y—Fy0cf 0" —(FoL ety —Fy*L ) [ %2
They have the following properties:
Scba“‘sbca: y Scbz"{“sbcz: y Sa:py —l—Sa’yz ZO

The tensor fields Ses?, Seo, Sc% Se and S?, defined above in each neighborhood
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U, determine globally tensor field in the manifoid V, respectively. In fact, taking
arbitrarily a symmetric linear connection I.%, in the manifold V, we can easily
verify that these tensor fields are expressed respectively as following:

Sev?®=Nep®+F o[5> —Vo ) 22,

Sev?=[ "W eSs—V o fe™) —fs*Vef o™=V o fe®),
(4. 6) Sety=f Ve fes—feVef “y+Se VS,

Sey®=f YV et "=V fe"),

Sty =FoV ef Sy—FyV e f 22

by making use of covariant differentiation /. introduced by (2.6). Thus these
local tensor fields determine global tensor fields in the manifold V, respectively.
These tensors S’s are seemed to be generalizations of those introduced in [4].

As we have known in Theorem 1, there exists for a given linear connection
an almost complex structure F in the bundle space M(V) and its components Fi*
is given by (3.5). The Nijenhuis tensor H;* of the almost complex structure F
is by definition

“.7 it = Fy0, Fih— Filo Fit — (0,3t — 0. F i) Fy

with respect to local coordinates (% v%) in each neighborhood p~'(U)=UXx R™" of the
bundle space M(V), where we have put 7*=v® and 0;=0/d7*. If we substitute
(3.5) in the right-hand side of (4.7), taking account of (3. 2), we find

Hip =Sy — (L2823 — I'y7S:2:) 4+ I'# I'y2S, 0
—(fe?Rev* —fs* Rec®) [ 2+ (L' c*f “aRev™—1"*f s Rec™) [ *u,
mbxzscbx_(rczsbzx__.szsczz)_,Scbel—'e:c
H (L 2Spee—L52Sce) 6% — 2 5¥ S,y L e”
4. 8) F(Rev™ =S fo? Rea®) + (L' 2ot — Iy f “2 fe) Rea™ —1'*f *ol 'v"f “uRea”
F(fe?Rev* —fo° Rec) [ 4l 0 —(L'¢*f e Rey™ —I'v*f 2 Rec™) | ®ul a”,
Hey*=Sc%~+1"c*Say®+Ree*f *y [ %
Hyy*=Sey?—Sctyl "+ 1"2Sy 1
ey Rea® + 124 g Rea” + 1y Reef2 L o,
H,y2=5%,
Hyy"=—S%%l e —f%f “yRea”,
where
4.9 Rev®= Reoy*v?

and R, is the curvature tensor of the linear connection I'c%y, Resy® being defined
by
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RCDyx=acrbwy_'ab[,cxy“"[’czz[,bzg—"szzrczy.

Generally, the Nijenhuis tensor Hj"* of an almost complex structure F* is
hybrid with respect to the indices (%,7) and pure with respect to the indices (j,3),
that is,

4. 10) Hy"Fi++Hji*Fy =0, Hy"Fit—H; " Fit=0.

Taking account of (3.5), (4.8) and (4.9), we see that the left-hand sides of the
equations (4.10) are regarded as polynomials with respect to the variables v2.
Then, putting the terms independent of v* equal to zero in each equation of (4. 10),
we get equations containing Secs%, Scs%, Sc%y, Sey®, S%y, from which we find

Sep®=See®f b [ —Sey” fo*f Y,
Soy=Sae" 0 ¢y —S® sy fof %,
Sey®=Sac™f'f *y+S 2y feif %,
Se,y=—Sco%f .
Identities (4. 11) show that
Se®=0 implies Se®=0, Sc%=0, S¢®=0, S¢,=0.
(Cf. Nakagawa [3], Yano and Ishihara [8].)

(4.11)

§5. Normal f-structure.

When the almost complex structure F defined by (3.5) is complex in the
bundle space M(V), we say that the given f-structure f is normal with respect to
a connection w* given in the vector bundle M (V). Thus a necessary and sufficient
condition for the f-structure f to be normal with respect to w*, as is well known,
the Nijenhuis tensor H;"* of F given by (4. 8) vanishes identically in the bundle
space M(V).

The equations obtained by putting each components H;;* to be equal to zero are
equations with respect to the variables »* by virtue of (4.8). Therefore, the con-
dition H;;*=0 implies

Scba':O, Scbz: s
Scya'= ) wa___(), Sa'zyz s

because these S’s contain none of »*. Substituting (5.1) in the equations Z;;*=0,
we have linear equations with respect to R.;®, which imply

Rcbzzo,

5.1

ie.
(5. 2) Repy*=

as a consequence of Re*=Rey*v?. Conversely, if we assume the conditions (5. 1)
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and (5.2), we have evidently H;*=0. Consequently, a necessary and sufficient
condition for Hj"* to vanish identically is that (5.1) and (5. 2) are valid.
Summing up, we have

PropPOSITION 1. A mecessary and sufficient condition for an f-structuae f to be
normal in a differentiable manifold V with respect to a connection w* given in the
vector bundle M(V) is that the tensor fields

Scba, Scbzy Sca!/; wa’ Sazy
vanish identically and the connection o* is of zero curvature.

Taking account of the identities (4.11), we see that, if the tensor field S.,®
vanishes identically, the other tensor fields S’s, i.e. Sep%, Se%y, Sey®, Sy are equal
identically to zero. Thus, by virtue of Proposition 1 we have

THEOREM 2. A necessavy and sufficient condition for an f-structure f to be
normal in a differentiable manifold V with vespect to a commection w* given in the
vector bundle M(V) is that the tensor field So® vanishes identically and the connec-
tion w* is of zervo curvature.

If an f-structure in a manifold V'is normal with respect to a connection given
in the vector bundle M(V), then the connection has zero curvature by means of
Theorem 2. Thus, 7 assumed to be simply connected, the vector bundle M(V) is
trivial, i.e. it is a product bundle. Therefore, we have

ProPOSITION 2. If an f-structuve in a manifold V is normal with respect to a
connection given in the vector bundle M (V), then the vector bundle M(V) induced
from M(V) by the covering projection m V—7V is trivial, where V is the universal
covering space of V.

Let there be given an f-structure f of rank 7 in a manifold V. If the vector
bundle M(V) is trivial, then it is naturally identified with the product space
VxR, Then there exists naturally a connection w¥ of zero curvature in the
vector bundle M(V)=VxR", that is, all of the components of w¥* vanish with
respect to each local coordinates (y%,v%) of VX R"", (%) being local coordinates in
V and (v*) being Cartesian coordinates in R™". We assume that the f-structure
f is normal with respect to oF. If this is the case, the tensor fields S’s are given
by 4. 1), (4.2), (4.3), (4.4) and (4. 5) with vanishing I".%,, respectively and each of
S’s is a tensor field of corresponding type in the manifold V for fixed indices z, ¥
and z. By means of Theorem 2, in this case, a necessary and sufficient condition

for f to be normal with respect to of is
Ser®=Nep®+(0c 57— 05 %) f-*=0.

(Cf. Nakagawa [3].) -
Let Wbeihe subset {z=xz+4++/—1v||z|=1} in the plane of all complex num-
bers z=z-+a/—1y and R the set of all real numbers £ On putting

I=WxR={(z, )] |¢| =1, —oo<t<oo},
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if we identify each two points A+~"=1y, 8 and (—=1+4/ —1y,—1) of I then we
obtain~ a new manifold 3 of three dimensions. The manifold 2 admits an f-struc-
ture £ of rank 2. In fact, there exists in 2 an f-structure f defined by components

0 —1 0
(foe»y={1 0 0
0 0 0

with respect to coordinates~ (z, y,j). It is easily seen that the f-structure f induces
naturally an f-structure f in 2. On the other hand, there exists in the vector

bundle M(3) a connection @* of zero curvature, whose components are all zero
with respect to local coordinates (z,v,?). f-structure f is trjvially normal with
respect to the connection @*. However, the f-structure f in ¥ is not almost con-
tact, because 2 is not orientable.
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