
NORMAL STRUCTURE f SATISFYING

BY SHIGERU ISHIHARA

A structure on an n-dimensional differentiable manifold given by a non-null
tensor field /of constant rank r satisfying / 3 + / = 0 is called an /-structure [2,6,7].υ

If n=r, then an /-structure gives an almost complex structure of the manifold and
n—r is necessarily even. If the manifold is orientable and n—l=r, then a n / -
structure gives an almost contact structure of the manifold and n is necessarily
odd.

Sasaki and Hatakeyama [4] have introduced the notion of normality in the
study of almost contact structure and characterized the normal almost contact
structure by the vanishing of a tensor field constructed from the structure. On
the other hand, it is well known [1, 5, 9] that an almost complex structure in the
tangent bundle is determined by giving a linear connection in the tangent bundle.
The almost complex structure in the tangent bundle is complex if and only if the
linear connection determining the almost complex structure is locally flat [5].

When an n-dimensional manifold V admits a non-null /-structure / of rank r
such that n—r^l, there exist two distributions L and M corresponding to the
projection operators / = — / 2 and m = / 2 + l respectively. The operator / operating
on the tangent bundle T( V) of the manifold V acts as an almost complex structure
on the distribution L and as a null-operator on the distribution M. It is now well
known [1,5,9] that an almost complex structure is determined in the tangent
bundle when a linear connection is given in the tangent bundle. By a similar
device as that used in the study of almost complex structure in the tangent bundle,
we shall show in § 3 of the present paper that an almost complex structure is
determined in the vector bundle M(V) by giving a connection ω in the vector
bundle M(V), M(V) being the vector bundle consisting of all tangent vectors be-
longing to the distribution M.

When the almost complex structure in the vector bundle M(V) is complex
analytic, we say that the /-structure / is normal with respect to the given con-
nection ω. We shall prove in § 5 that the /-structure / is normal with respect to
a connection ω given in the vector bundle M{V) if and only if the connection ω
is of zero curvature and a tensor field constructed from / and ω vanishes identically
(Theorem 2). The notion of normal /-structure seems to be very useful in study
of certain submanifolds immersed in an almost complex space (cf. [8]).

Received July 17, 1965.
1) The numbers between brackets refer to the Bibliography at the end of the paper.
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: 1. /"-structure.

Let there be given, in an ^-dimensional differentiable manifold V of class C°°,
a non-null tensor field f of type (1.1) and of class C°° satisfying

(1.1) P+f=0.

We call such a structure f an f-structure of rank r, when the rank of f is con-
stant everywhere and is equal to r, where r is necessarily even [2,6,7].

If we put

(1.2) l=-f\ m = f 2 + l ,

we have

fl=lf=f, fm=mf=0,

where 1 denotes the unit tensor. These equations show that the operators I and
m applied to the tangent space at each point of the manifold V are complementary
projection operators. Then there exist in the manifold V two distributions L and
M corresponding to the projection operators I and m respectively. When the rank
of f is r, L is r-dimensional and M (n—r)-dimensional.

Let U be an arbitrary coordinate neighborhood of the manifold V admitting an
/•structure f of rank r. If we take in U arbitrarily an ordered set {fx} of n—r
(contravariant) vector fields fx spanning the distribution M at each point, then there
exists uniquely in U an ordered set {fy} of n—r covariant vector fields (1-forms)
fy such that2)

(1.4) 2UΣ fx®fχ^my fx(fυ)=δ$.
x=n+l

Taking account of (1. 3), we have from (1. 4)

(1.5) fv(fX)=0, ffx=0

for any vector X at each point of V. We call such an ordered set {fx} an (n—r)-
frame and the ordered set {fy} an (n—r)-coframe being dual to {fx}.

If a covariant vector field φ, global or local, satisfies at each point

for any vector X belonging to the distribution L, φ is said to be transversal to L.
It is easily seen that any covariant vector field φ, being transversal to L, is ex-
pressible uniquely by

φ=φyfy

as a linear combination of fy in U. Similarly, any contravariant vector field v
belonging to the distribution M is expressible uniquely by

2) T h e indices x,y,z,u r u n over the range {n+1, τz+2, •••, 2n—r}.
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υ=υxfχ

as a linear combination of fx in U.
Denoting by /&α,/%>/&* respectively the components of f,fy,f

x with respect to
local coordinates (ηa) defined in £/,8) we find from (1.1), (1. 2), (1. 4) and (1. 5)

§2. Vector bundle M(V).

Let there be given an /-structure f of rank r in an ^-dimensional manifold F.
Then the set of all tangent vectors belonging to the distribution M forms a vector
bundle p: M(V)-^V over F, which is a subbundle of the tangent bundle T(V) of F.

Let M*(V) be the vector bundle which is dual to M(V). If we take an ele-
ment φ belonging to the fibre M% of the bundle M*(V) at a point P of F, then
there exists at P uniquely a covector φ of F, which is transversal to the distri-
bution L, such that

(2.1) φ(v)=φ(v)

for any element v belonging to the fibre MP of M{V) at P. Conversely, for any
covector φ transversal to L at P, there exists uniquely an element φ of M* satis-
fying (2.1). In such a way, the vector bundle M*( F) can be identified naturally
with the set of all covectors transversal to the distribution L. In this sense, the
bundle M*(V) can be regarded as a subbundle of the cotangent bundle T*(V) of
the manifold F.

If, in a coordinate neighborhood U of the manifold F, we take an (n—r)-
frame {fx} and an (n—r)-coframe {/"̂ } being dual to {fx}, then {/̂ } is a basis of
the fibre MP of M(F) at each point P of U and {fv} is a basis of the fibre M? of
M*(F) at each point P of U and dual to {£,.}. Taking in F a vector field v be-
longing to the distribution M and a covector field φ transversal to the distribution
L, then we have

v=vxfχ, φ=φvf
y

in U with functions vx and ^ defined in £7, where z;* and ^ are determined
uniquely respectively for υ and φ. (vx) and (φy) are called respectively the com-
ponents of i? and φ with respect to the (n—r)-frame {/a?} in the vector bundle M(V).

Let C7 and Uf be two coordinate neighborhoods of the base space F such that
UtλU'Φφ. If {fχ\ and {f^} be (w—r)-frames defined respectively in U and ί/7,
then we have

(2.2) fy

in ί/Π C/7, where the matrix (A%,) is a function in f/Π i/r. Taking a vector field

3) T h e indices αt b, c> d, e,f run over the range {1, 2, •••, n}.
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i? belonging to M and a covector field φ transversal to L, we have

and

V = V*'fx,, φ

respectively in U and in U'f and

(2.3) v*=A%,v*; φy

in UnU', where {A%') = {A%t)-K
Let there be given a connection ω* in the vector bundle M(V). Then ω* has

n(n—γf components Γc

x

y with respect to local coordinates (ηa) of the base space V
and an (n—r) -frame {/̂ } in any coordinate neighborhood U of F We take now
two coordinate neighborhoods £7 and £7' of Fsuch that ί/Π ί/ '^ and (n—r)-frames
{fr} and {fx,} respectively in U and in £7'. Denoting by iy]a) and (ηa') local coordi-
nates defined respectively in U and U', we have (2. 2) in Uf] U'. Then, denoting
by Γa

x

y and /V^y' t n e components of the given connection ω* respectively with
respect to {ηa,fx} and to {ηa',fx,}, we find in Uπ U'

(2. 4) Γβ,*V = | ^ i « X Λ v 4 ? ' + ^ ),

where dc=djd-ηc. The equation (2. 4) is the so-called transformation law of com-
ponents of a connection given in the vector bundle M(V).

Taking a vector X and a covector ^ at a point P of the manifold F, we con-
sider an element TF(X,p) of the fibre FF of the vector bundle M*( F)(g)M( F) at P
and suppose for ΓP(X, p) to be bilinear with respect to its arguments X and p.
The correspondence TV: (X, p)-*TP(X, p) is called an FP-valued tensor of type (1,1)
at P. If there is given a correspondence T: P->ΓP, it is called an M*(V)®M(V)-
valued tensor field of type (1,1) and its differentiability is naturally defined. Let v
and φ be respectively a vector field and a covector field and T an M*(V)®M(V)-
valued tensor field of type (1.1). Denote by T(Ό, φ) a cross-section of M*(V)®M(V)
such that its value at a point P is given by 2p(i7P, φP), where vP and φP are re-
spectively the values of v and φ at P. Then we have

for any two functions a and τ. Let {ηa) and {fx} be respectively local coordinates
and an {n~r)-frame in a neighborhood £/ of F. Then in £7 the cross-section
T(X,ρ) is expressed by

b,c =

where

x,y=n+l
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with functions Tc

b

y

x defined in U and Xa, pb are respectively components of X and
p with respect to (ηa). Tc

b is an M*(F)(x)M(F)-valued tensor field of type (0,0),
i.e. an M*(F)(x)M(F)-valued scalar, in the neighborhood U for each pair φ,c) of
indices. Tc

b or Tc

h

y

x are called the components of T. In a similar way, we consider
tensor fields of any such mixed type.

Taking in the manifold V a vector field v belonging to the distribution M and
a covector field φ transversal to the distribution L, we put

v=vxfx and φ = φvf
y

in a coordinate neighborhood U of F. If we put

reυ*=dcυ*+Γe*yvv,
(Z. b)

V Cφy=dcφy—Γ c

Xyφχ,

then it is easily verified by means of (2. 3) and (2. 4) that

(Pcvx)fx and (Fcφy)fy

are globally defined covariant vector fields in F which take their values respectively
in M(V) and in M*(V). In this sense, we call

Fcv=Pcv
xfχ and Vcφ=Vcφyfy,

or simply Vcv
x and Pcφv, respectively the covariant derivatives of v and φ with re-

spect to the connection ω*.
Let there be given a linear connection ω in the base space F and denote by

Γc

a

b its components with respect to local coordinates (ηa) in a coordinate neighbor-
hood U of F. If we consider now an M(F)(x)M*(F)-valued vector field Ta, then
we can put

in U and 7%-* are components of Ta with respect to {ya, fx) in U. On putting in £/

\6. Ό ; V c± y — O c l y -γ-1 c bl y -f-1 c z-L y ί c y 1 z ,

then the tensor field

defined in each neighborhood U determines globally in the manifold F a tensor
field of type (1. 1) which takes its values in M(F)(g)M*(F). In this sense, we call
FcT

a, or simply VcT
a

y

x, the covariant derivative of Ta with respect to connections
ω and ω*. In the same way, we can define the covariant derivatives of tensor
fields of any mixed type. Summing up, if there are given connections ω and ω*
respectively in the manifold V and in the vector bundle M(V), we can introduce
the covariant differentiation Vc operating on tensor fields Tb...

a'"y...x'" of any mixed type.
In general case, two connections ω and ω* may be given independently. However, if
there is given a linear connection ω in the manifold F, then there exists in the
vector bundle M(V) a connection co* defined by components
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where Γc

a

b are the components of the given linear connection ω.

§3. Almost complex structure in M(V).

By identifying each tangent space of the fibre of the vector bundle p: M( V)~> V
with the fibre itself, the tangent space Tσ(M(V)) of the manifold M(V) at a point
a of M(V) is expressible as a direct sum by

Tσ(M(V))=TF(V)®FF=LP®MF®FF)

P being the point p(σ) of F, where TP(V), FF, LF and MF are at the point P re-
spectively the tangent space of F, the fibre of M(V), the tangent plane belonging
to L and the tangent plane belonging to M. There exists naturally an identification
j: MP—FF.

Let there be given a connection ω* in the vector bundle M(V). Taking a
tangent vector X of the base space F a t P, we denote by XL the horizontal lift of
X at each point σ of the fibre p~λQ?) with respect to the connection co*. We define
a linear operator Jσ applied to the tangent space Ta(M(V)) of the manifold M(V)
at a point a by Jσ(XL) = (fX)L, Jσ(YL)=j(Y\ Jσ(Z) = -(r1(Z))L, where X, Y and
Z belong respectively to LP, MF and FP, P being the point p(σ). It is easily verified
that the operators Jσ defined in each tangent space Tσ(M(V)) determine an almost
complex structure F in the manifold M(V), i.e. that F2 = —I, I being the unit
operator.

We shall now obtain the tensor representation F%h of the almost complex
structure F. Let {U} be an open covering of the base space F. The fibre space of
M(V) being the (n—r)-dimensional vector space Rn~r, the collection p~\U)= UxRn~r

of local product representation of the bundle M( V) over ί/'s forms an open covering
of M(V). In a local product representation p-ι(U)=UxRn~r, any element v of
M(V) such that p(v)£U is expressed by (τ?α,vx), where (ηa) are coordinates of the
point p(v) and v=vxfx, {fx} being an (n—r)-frame in U. Any tangent vector of

the bundle space M(V) is expressed by [ τr , if the tangent spaces of Rn~r are
\VXJ

identified with R n~r itself. That is to say, (^α, vx) are local coordinates defined in
each neighborhood p~1(U)=UxRn-r of the bundle space M(V).

Let there be given a linear connection ω* in the vector bundle M(V) and /Vy

its components with respect to local coordinates (j]α) and an (n—r)-frame {fx} in a
neighborhood U of the manifold F. Then, in the tangent space of the bundle
space M(V) at any point (-ηα

)v
x) of p-1(U)=UxRn~r, the horizontal plane is defined

by a linear equation

(3.1)

.Γα* being defined by

(3.2) Γα*=Γα*yυy,
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and the vertical plane is defined by a linear equation

Va=0.

If, in each tangent space of the bundle space M(V), we consider a frame con-
sisting of 2n—r vectors V^ with components F&> such that4)

0

then F(6) are horizontal by virtue of (3. 1) and F ( 1 0 are vertical. We now define
in each tangent space of the bundle space M(V) a linear operator F by

d. ό)

Then, the linear operators F thus defined determine a tensor field of type (1,1) in
the bundle space M(V). If we denote by Fιh the components of the tensor field
F with respect to local coordinates (ya

yv
x) defined in neighborhoodp~1(U)=UxRn-r,

then we find from (3. 3)

(δt o\//i* -fya\ι δ$ oy-1

(3.4) (ΛΛ) =
\-/v δg/\fb* o Λ-/v

i.e.

/ ' a T1 v -fa -fa

b — ί byj y — / y(3.5)

Taking account of (1. 6), we can easily verify

o / \o
Therefore, by virtue of (3. 4) we find

F2=-I,
I being the unit tensor. Consequently, the tensor field F thus defined is an almost
complex structure in the bundle space M(V). Summing up, we have

THEOREM h If a differentiate manifold V admits an f-structure f of rank r,
then there exist almost complex structures in the bundle space of the (n—r)-
dimensional vector bundle M(V) over F. Given a connection with components Γc

x

y

in M(V)y then an almost complex structure F=(Fih) is determined by (3. 5).

This seems to be a generalization of the following theorem: There exists almost

4) T h e i n d i c e s h, i,j, k, I r u n o v e r t h e r a n g e {I, 2, •••, n, rc+l, •••, 2n—r}.
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complex structures in the tangent bundle T(V) of any differentiable manifold V
and an almost complex structures is determined by giving a connection in T(M).
(Cf. Tachibana and Okumura [5], for example.)

§4. Nijenhuis tensor of F.

Let there be given an /-structure f of rank r in a differentiable manifold V
and a connection ω* in the vector bundle M(F) . Let Γc

x

y be the components of
the connection ω* with respect to {ηa, fx}, where (τ?α) are local coordinates and {fx}
is an (n—r)-frame in a neighborhood U of the manifold F. Denoting by fb

a the
components of the /-structure f with respect to (/yα), we define in U a tensor field
Scb

a of type (1. 2) by

(4.1) Scb

a=Nc

(/%) and (fby) being respectively the components of fx and fy, where the Nijenhuis
tensor iVcδα of the /-structure fb

a is by definition

We define next in U an M( F)-valued tensor field

Scb = Sebxfχ

of type (0,2) by

(4.2) Sβ 6*=/cW6*-d&/e*)-ΛWc*^^^

an M*(F)-valued tensor field

Sca = Scayfy

of type (1,1) by

(4. 3) Sca>y=fe

Vdefc*-fc

edefay+feadcfey+fcefazΓe*y,

an M(F)(g)M*(F)-valued tensor field

of type (0,1) by

(4. 4) Scy*=f*yφefc*-dc

and an M*(F)®M*(F)-valued tensor field

of type (1,0) by

(4.5) Sa

Xy=fx

edef%-fyedefx"

They have the following properties:

The tensor fields Scb

a, Scb, Sc

a, Sc and Sa, defined above in each neighborhood
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U, determine globally tensor field in the manifoid V, respectively. In fact, taking
arbitrarily a symmetric linear connection Γc

a

b in the manifold V, we can easily
verify that these tensor fields are expressed respectively as following:

(4. 6) Sca

y=feyFefca-fcePefay+feaFcfey,

S«xy =fxψef% -fyΨefx0'

by making use of covariant differentiation Vc introduced by (2. 6). Thus these
local tensor fields determine global tensor fields in the manifold F, respectively.
These tensors S's are seemed to be generalizations of those introduced in [4].

As we have known in Theorem 1, there exists for a given linear connection
an almost complex structure F in the bundle space M(V) and its components Fih

is given by (3. 5). The Nijenhuis tensor Hjih of the almost complex structure F
is by definition

(4.7) HJi
h=Fj

ιdιFih-Fί

ιdιFjh-(djFi

ι-diFjι)Fι

h

with respect to local coordinates 0?α, vz) in each neighborhoodi?"1(ί/)= UxRn~r of the
bundle space M(F), where we have put ηx=vx and di=djdη\ If we substitute
(3. 5) in the right-hand side of (4. 7), taking account of (3. 2), we find

ZTa—Q.a (Γ zQ.a _Γ.zQ a \ \ Γ zΓuQ a
ίlcb —^>cb —K 1 c Ob z L δ Oc zJΎ^J- c 1 6 ^>zu

(4.8) +(i?cδ*-/c^#ecZ*) + ^

\(feT?,z f e P z\fd Γ ^x (Γ zfe J? ̂ u F^zfe Ό u\fe Γ,x
T u c -*veδ J b JΛ-ec )J z1 d —\J- cj z-K-eb * bj zJK-ec )J u1 d >

TT a—Qa \ΓzQ a\J? zfe fa
lΊcy —^>c y^J- c OZy ~γJ\ce J yj z,

ΣT a7__C x C e Γ xΛ-P zQ eP xL±oy —Ocy Oc yί e ~TL c Oyz l e

TT a Qa
ΓlZy — O zy,

ilzy — — ^ zyl e J zj y-L\-ed >

where

(4.9) Rcb

x=Rcby
xvy

and Rcby
x is the curvature tensor of the linear connection Γc

x

y, Rcby

x being defined

by
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Generally, the Nijenhuis tensor Hnh of an almost complex structure F%h is
hybrid with respect to the indices (h, i) and pure with respect to the indices (j, i),
that is,

(4. 10) HjfFS+HjfF^O, HjιhFiι-HuhFjι=0.

Taking account of (3. 5), (4. 8) and (4. 9), we see that the left-hand sides of the
equations (4. 10) are regarded as polynomials with respect to the variables vx.
Then, putting the terms independent of vx equal to zero in each equation of (4. 10),
we get equations containing Sc6

α, SCb
x, Sc

a

y, Scy

x, Sa

zy, from which we find

Ocb — O c e J bj a Oey Jcjb >

Ob y—Ode Jb J y—O zyjbje f

(4 11)
C x QJ xf dfe _ l _ Q e f zf x

Ocy — O d e J c J y \ O zyj c J e •>

zy— Ocb Jzjy

Identities (4.11) show that

S c δ

α =0 implies Sc 6*=0, Sc%=0, Sey

x=0t Sa

zy=0.

(Cf. Nakagawa [3], Yano and Ishihara [8].)
§5. Normal /"-structure.

When the almost complex structure F defined by (3. 5) is complex in the
bundle space M{ V), we say that the given /-structure f is normal with respect to
a connection ω* given in the vector bundle M{V). Thus a necessary and sufficient
condition for the /-structure f to be normal with respect to ω*, as is well known,
the Nijenhuis tensor Hμh of F given by (4. 8) vanishes identically in the bundle
space M ( F ) .

The equations obtained by putting each components Hjίh to be equal to zero are
equations with respect to the variables vx by virtue of (4. 8). Therefore, the con-
dition Hjih=0 implies

Scδα = 0, Scb

X = 0,
(5.1)

Scy<>>=0, Scv*=0, S % = 0 ,

because these S's contain none of vx. Substituting (5. 1) in the equations //y^=0,
we have linear equations with respect to RCb

x, which imply

Rcbx=0,

i.e.

(5. 2) RcbyX = 0

as a consequence of RCb
z=Rcbyxvy. Conversely, if we assume the conditions (5.1)
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and (5. 2), we have evidently Hjih=O. Consequently, a necessary and sufficient
condition for Hjih to vanish identically is that (5. 1) and (5. 2) are valid.

Summing up, we have

PROPOSITION 1. A necessary and sujfίcient condition for an f-structuae f to be
normal in a differentiable manifold V with respect to a connection ω* given in the
vector bundle M( V) is that the tensor fields

S c δ

α , Scbx, Scay, Scy

X

f Sa

zy

vanish identically and the connection ω* is of zero curvature.

Taking account of the identities (4. 11), we see that, if the tensor field Sc6

α

vanishes identically, the other tensor fields S's, i.e. SCb
x, Sc

a

y, Scy

x, Sa

zy are equal
identically to zero. Thus, by virtue of Proposition 1 we have

THEOREM 2. A necessary and sufficient condition for an f-structure f to be
normal in a differentiable manifold V with respect to a connection ω* given in the
vector bundle M(V) is that the tensor field SCb

a vanishes identically and the connec-
tion cυ* is of zero curvature.

If an /-structure in a manifold V is normal with respect to a connection given
in the vector bundle M(V), then the connection has zero curvature by means of
Theorem 2. Thus, V assumed to be simply connected, the vector bundle M( V) is
trivial, i.e. it is a product bundle. Therefore, we have

PROPOSITION 2. // an f-structure in a manifold V is normal with respect to a
connection given in the vector bundle M(V), then the vector bundle M(V) induced
from M(V) by the covering projection π: V-^V is trivial, where V is the universal
covering space of V.

Let there be given an /-structure f of rank r in a manifold V. If the vector
bundle M(V) is trivial, then it is naturally identified with the product space
VxRn~r. Then there exists naturally a connection ωf of zero curvature in the
vector bundle M(V)= VxRn~r, that is, all of the components of ωf vanish with
respect to each local coordinates (ηa,vx) of VxRn~\ {ηa) being local coordinates in
V and (vx) being Cartesian coordinates in Rn~r. We assume that the /-structure
f is normal with respect to ωf. If this is the case, the tensor fields S's are given
by (4.1), (4. 2), (4. 3), (4. 4) and (4. 5) with vanishing Γc

z

y, respectively and each of
S's is a tensor field of corresponding type in the manifold V for fixed indices x, y
and z. By means of Theorem 2, in this case, a necessary and sufficient condition
for f to be normal with respect to ωf is

(Cf. Nakagawa [3].)
Let W be the subset {z=x+\/—ly\\x\^l} in the plane of all complex num-

bers z=x+*/—ly and R the set of all real numbers t. On putting
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if we identify each two points (X+^/^ϊytf) and (— l+*/^ly, —t) of Σ then we

obtain a new manifold Σ of three dimensions. The manifold Σ admits an /-struc-

ture f of rank 2. In fact, there exists in Σ an /-structure f denned by components

'0 - 1 0\

0

0

with respect to coordinates (x, y, t). It is easily seen that the /-structure f induces

naturally an /-structure f in Σ. On the other hand, there exists in the vector

bundle M(Σ) a connection ώ* of zero curvature, whose components are all zero

with respect to local coordinates (x, y, t). /-structure f is trivially normal with

respect to the connection <£*. However, the /-structure f in Σ is not almost con-

tact, because Σ is not orientable.
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